
Techniques of the simplex basis LU factorization update

Daniela Renata Cantane1

Electric Engineering and Computation School (FEEC), State University of Campinas
(UNICAMP), São Paulo, Brazil

Aurelio Ribeiro Leite de Oliveira2

Institute of Mathematics, Statistics and Science of Computation (IMECC), State University of
Campinas (UNICAMP), São Paulo, Brazil

Christiano Lyra Filho3

Electric Engineering and Computation School (FEEC), State University of Campinas
(UNICAMP), São Paulo, Brazil

Abstract

The objective of this work is to compare the developed LU factorization update with results
from MINOS. This technique, use a matrix columns static reordering and they are rearranged
in accordance with the increasing number of nonzero entries and triangularized, leading to
sparse basis factorization without computational effort to reorder the columns. Only the
columns factorizations actually modified by the change of basis are carried through due to
matrix sparse structure. Computational results in Matlab for problems from the Netlib show
that this is a very promising idea, since there is no need to refactorize the matrix in the tested
problems.

Keywords: linear optimization, sparse matrix, factorization update, simplex.

1. Introduction

The efficient solution of large-scale linear systems is very important for solving linear
optimization problems. These systems can be approached through generic methods as, for
example, LU factorization of the basis and its update, or through the problem specific
structure exploitation, as in the network flow problem [5].

In [2] the column reordering in the combined cutting stock and lot sizing problems [8]
is done in such a way that the resulting matrix is block diagonal. Therefore, it is easy to factor
the base, resulting in little fill-in. Through the static reordering of columns, it is possible to
obtain a sparse factorization of the basis, without any overhead to determine the order of the
columns, since the base columns follow the given ordering.

In the LU update, the floating-point operations originated by the column that leaves
the base are undone, in the reverse order of the factorization, always considering sparsity.

Finally, it is necessary to compute the factored columns after the entering column, also
considering the sparse pattern.

1 Av. Albert Einsten, 400, CEP: 13083-852, Campinas, SP, Brazil. E-mail: dcantane@densis.fee.unicamp.br
2 Sérgio Buarque de Holanda, 651, CEP: 13081-970, Campinas, SP, Brazil. E-mail: aurelio@ime.unicamp.br
3 Av. Albert Einsten, 400, CEP: 13083-852, Campinas, SP, Brazil. E-mail: chrlyra@densis.fee.unicamp.br

For the combined problem, results obtained in [2] have shown that this approach is
fast and robust, introducing insignificant accumulated rounding errors in worst case
situations, after thousands of iterations.

2. LU Factorization Update Methods

The LU factorization update technique with partial pivot was proposed by [1]. Two variants of
this algorithm proposed in [9] aim to balance the sparsity and numeric stability in the
factorization. The latter variant is an improvement over the former.

Several basic matrix LU factorization update was implemented [10] (in portuguese)
with the objective to balance data original sparsity, it is conclude that the LU factorization
update number carried through in the following iterations it influences considerably in the
solved time of the problems, in the fill-ins and even iterations numbers of the simplex
method.

In [7], the LU factorization update proposed by [6] and its application in the simplex
update basis method is described in detail. Moreover, it presents the ideas of an efficient
implementation proposed by [11], which is a good combination of the symbolic and
numerical phase of the pivoting and presents a compromise between sparsity and numerical
stability. Other techniques updates are describe in [4].

3. Implementation Issues

The objective of the implementation developed here is to simulate simplex iterations using the
static reordering and the LU update adopted in [2] for general linear optimization problems.

The base sequence obtained from MINOS is used in the simulation. A procedure for
finding the initial basis, “Crash” base described in [7] and the leaving and entering columns of
the basis from MINOS' output was implemented. The matrix is triangularized, the columns
are reordered according to the number of nonzero entries, in increasing order, leading to
sparse factorizations without computational effort to obtain the order of columns, since the
reordering of the matrix is static and basis columns follow this ordering.

Two column update approaches are used in the implementation and the number of
nonzero entries for each one is compared. When the entering column e in the basis follows
the static ordering the approach is called 1U . In the second approach, called 2U , the entering

column e entries in the basis in the position of the leaving column l . The notation MINOSU is

the used for MINOS results.
In the 1U approach, a LU factorization of the basis considering its sparsity, called 1F ,

is performed. Only the factored columns actually modified by the change of the basis are
carried through. Notice that there is no changes in column k located after the entering and/or
leaving column if 0),(ekLU or 0),(lkLU due to sparse structure of columns involved.

In the MINOSU approach, a complete LU factorization of the basis to simulate the MINOS’

factorization, called MINOSF , is carried through.

The introduced error estimation in the factorization was computed with the objective
of verify the robustness of the LU factorization method. Each factorization is completely
undone in every simplex method iteration. Thus, the operations are performed in the reverse
order of the LU factorization and the matrix that will simulate the basis factorization update is
obtained from the one being factored from the very first column. Therefore, the original basis

is obtained with some amount of numerical error and the accumulated errors are a worst case
estimation for each iteration.

4. Numerical Experiments

Initially, it was carried through numeric experiments for verifying the efficiency of the basis
column update approaches presented in the previous section. Table 1 shows iterations (phase
2) and factorizations number of a subset of Netlib problems. Tables 2 and 3 show the nonzero
number entries of the basis factorization of the same linear optimization problems using and
not using the Crash basis, respectively.

IterationsLO Problems Updates
With Crash Without Crash

kb2 3 55 82
adlittle 3 67 67
sc205 2 52 208
israel 3 235 193
scsd1 8 314 223
bandm 3 297 197
scfxm1 2 138 173

beaconfd 1 26 27
scsd6 14 917 972

Table 1: Linear optimization problems data.

Maximum Minimum AverageNonzero
entries

1U 2U MINOSU 1U 2U MINOSU 1U 2U MINOSU

kb2 353 460 406 179 210 130 271 332 257
adlittle 406 501 501 297 314 248 348 393 367
sc205 1242 1795 897 676 677 439 898 1109 644
israel 2187 6116 3536 1606 2740 1612 1957 4382 2173
scsd1 689 1274 907 421 577 371 537 881 602
bandm 5508 9674 4163 3240 3818 1977 4439 6422 3076
scfxm1 2250 4721 2059 1988 3397 1364 2096 4006 1692

beaconfd 1423 1845 1217 1396 1610 1194 1396 1610 1194
scsd6 1618 2997 1934 734 1294 580 1053 1968 1168

Table 2: Nonzero entries number with crash basis.

Maximum Minimum AverageNonzero
entries

1U 2U MINOSU 1U 2U MINOSU 1U 2U MINOSU

kb2 357 612 387 86 86 44 241 407 230
adlittle 399 697 528 255 363 262 348 521 374
sc205 1273 2094 1221 411 411 206 767 917 560
israel 1994 5840 2933 625 749 363 1641 4020 1796
scsd1 859 1215 1013 407 516 342 611 820 625
bandm 5287 22422 4173 3963 18496 2229 4572 20415 3121
scfxm1 2316 4718 2090 1782 3352 1279 2067 4227 1654

beaconfd 1615 3744 1485 1442 3581 1421 1482 3655 1458
scsd6 1744 3644 1975 709 1368 615 1064 2426 1194

Table 3: Nonzero entries number without crash basis.

The 1U basis update approach reduces up to %52 for the problem scfxm1 and %78

for the problem bandm nonzero entries, in comparison to the 2U approach in the Tables 2 and

3, respectively. Thus, 1U is used to carry through the LU factorization proposed in this work.

The 1U update approach is a little more dense that the MINOSU update in a few cases, but as we

shall see it not need to refactorize the base. Thus, it probably will be faster than other
approaches.

The Table 4 shows the flop number (floating point operation count) of each
factorization presented in the previous section. MINOS' Crash option is turned off.

Maximum Average TotalFlop
Number

1F MINOSF 1F MINOSF 1F MINOSF

kb2 2289 3624 1462 1693 119873 138836
adlittle 2492 5358 2103 2646 140909 177309
israel 12585 30456 10010 12039 1922010 2311507
scsd1 5279 11829 3635 4346 810552 969254
bandm 41178 88358 27961 21238 5508392 4183852
scfxm1 13919 21071 12436 11979 2151433 2072447

beaconfd 9701 9948 8898 9785 240233 264184
scsd6 10298 23511 6199 8158 6025711 7930057

Table 4: Flops number of LU factorization.

The 1F factorization, proposed in this work, reduces the flop number with respect to

the MINOSF factorization.

In Table 5, the error estimate introduced by these operations was verified, computing
the norm of the difference between the basis obtained by completely undoing the factorization
and the original basis obtained directly from the constraint matrix.

Error Maximum Minimum Average
kb2 1.7e-14 0 1.0e-14

adlittle 3.4e-16 1.1e-16 2.5e-16
sc205 3.5e-16 0 1.2e-16
israel 4.6e-12 0 2.4e-13
scsd1 7.3e-16 1.4e-16 3.3e-16
bandm 1.9e-13 5.7e-14 1.1e-14
scfxm1 1.1e-14 2.1e-15 7.5e-15

beaconfd 2.4e-16 2.8e-17 7.0e-17
scsd6 1.0e-15 1.4e-16 3.2e-16

Table 5: Error estimate of updated basis without crash basis.

It can be concluded that the factorization update proposed method is very robust. The
maximum accumulated error in the worst case is of the order of 1210 , that is, in this approach
it is not necessary at all to refactorize the basis any time, as it is usually done by the
tradicional methods due to robustness and sparsity considerations.

5. Conclusions

In this work a static reordering of matrix columns is proposed, leading to simplex base with
sparse LU factorizations and inexpensive factorization updates. The reordering has no
initialization or updating costs since there is no need to reorder the columns in the
factorization.

Stable results are present in Table 5. It is safe to conclude that no periodical
factorization is needed for these problems as it is usually for updating schemes [4] and [7]. As
a result, if the starting basis is the identity, is not necessary to compute any LU factorization at
all.

In spite of the new basis update approach obtain a little less sparse basis than
MINOS, it does not need to perform periodic refactorizations. Thus, it will probably obtain
better running time in the same computational environment since it takes less computational
effort. For future work this approach and factorization will be integrated to an
implementation such as MINOS or GLPK.

Acknowledgement

This research was sponsored by the Foundation for the Support of Research of the State of
São Paulo (FAPESP) and the Brazilian Council for the Development of Science and
Technology (CNPq).

References

[1] R. Bartels, A stabilization of the simplex method, Numer. Math., 16 (1969), pp. 414–434.

[2] G. Bressan and A. Oliveira, Fast iterations for the combined cutting-stock and lot-sizing problems, Anais da IX
International Conference on Industrial Enginnering and Operations Management, Arq. TI0601, (2003), pp. 1–8.

[3] G. Bressan and A. Oliveira, Reordenamento eficiente das colunas básicas na programação de lotes e cortes, Pesquisa
Operacional, 4 (2004), pp. 323–337.

[4] I. Duff, A. Erisman and J. Reid, Direct methods for sparse matrices, Clarendon Press, Oxford, 1986.

[5] J. L. Kennington and R. V. Helgason, Algorithms for Network Programming, Wiley, New York, 1980.

[6] H Markowitz, The elimination form of the inverse and its applications to linear programming, Management Science, 3
(1957), pp. 255–269.

[7] I. Maros, Computational Techniques of the Simplex Method, Kluwer Academic Publishers, 2003.

[8] S. L. Nonas and A. Thorstenson, A combined cutting-stock and lot-sizing problem, Operations Research, 120 (2000), pp.
327--342.

[9] J. Reid, A sparsity-exploiting variant of the Bartels-Golub decomposition for linear programming bases, Mathematical
Programming, 24 (1982), pp. 55–69.

[10] C. T. L. Silva, Problemas de Otimização Linear Canalizados e Esparsos, Dissertação de Mestrado, ICMC - USP, 2002.

[11] U. Suhl and L. Suhl, A fast LU update for linear programming, Annals of Operations Research, 43 (1993), pp. 33–47.

