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Abstract

A previously developed approach for solving linear systems arising from interior-point methods
applied to linear programming problems is considered and improved upon. The preconditioned con-
jugate gradient method is used to solve these systems in two different phases of the interior-point
method: during the initial interior-point iterations, an incomplete Cholesky factorization precon-
ditioner with controlled fill-in is used; in the second phase, near the optimal solution, a specialized
preconditioner based upon the LU factorization is used to combat the high ill-conditioning of the
linear systems in this phase. This approach works better than direct methods on some classes of
large-scale problems. New heuristics are presented to identify the change of phases, thus achiev-
ing better computational results and solving additional problems. Moreover, new orderings of the
constraint matrix columns are presented allowing savings in the preconditioned conjugate gradient
method iteration number. Experiments are performed with a set of large-scale problems and both
approaches are compared with respect to the number of iterations and running time.
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1 Introduction

The most expensive step of an interior-point method is the computation of the search direction
through the solution of one or more linear systems. Such systems are indefinite and can be written
in a symmetric form known as an augmented system. A common approach reduces the augmented
system to a smaller positive definite system called the normal equations. Usually they are solved
by direct methods. However, for some classes of large-scale problems, the use of direct methods
becomes prohibitive because of storage and running-time limitations. In such situations, iterative
approaches are more interesting.

The performance of implementations using iterative methods depends on the choice of an appro-
priate preconditioner, in particular, the linear system becomes highly ill-conditioned as an optimal
solution of the problem is approached. Several preconditioners have been used to solve the normal
equations systems from interior-point methods, see for example [1, 18, 22, 26]. Some of them are
based on incomplete Cholesky factorization of the normal equations system. Typically, this class of
preconditioners is efficient in the initial iterations but it deteriorates as the interior-point method
converges to a solution. In general, the normal equations system is more ill-conditioned and denser
than the augmented system and this has motivated the study of methods to solve the indefinite
system [5, 9, 12, 13, 2, 11, 17, 20, 23]. The preconditioner for the augmented system proposed
in [20] is based on an LU factorization and has been shown to perform well near the solution of the
linear programming problem but it gives poor results during the initial interior-point iterations.

In [6] an iterative hybrid approach was proposed for solving the normal equations system that arises
in an interior-point method for linear programming. The conjugate gradient method is precondi-
tioned during the initial interior-points iterations (phase I) using an incomplete factorization known
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as the controlled Cholesky factorization (CCF) [8] and in the remaining iterations (phase II) by
the splitting preconditioner developed in [20]. The amount of memory used by the CCF precon-
ditioner is easily controlled during interior-point iterations. As the system becomes ill-conditioned
more fill-in is allowed. When the CCF preconditioner loses efficiency, the system is already highly
ill-conditioned and it is a good indicator that the splitting preconditioner will work better. A
heuristic has been developed to determine the change of phases. The hybrid approach is applied
within the PCx code [10].

In this work, the change of phases heuristics developed in [6] is improved upon and the column
splitting rule in [20] is modified. As a result, the computational running times obtained in [6] are
reduced and more of the large-scale problems can now be solved by the hybrid approach.

2 Primal-Dual interior-point methods

Primal-dual interior-point methods are widely used for solving large-scale linear programming prob-
lems [27]. Consider the linear programming problem in the standard form,

min 'z (1)
subject to Az =b
z > 0,

where A € R™*™" b e R™, c € R*, x € R* and m < n. We remark that the following discussion
can be easily extended when problems with bounded variables are considered.

The dual problem associated with problem (1) is

max by (2)
subject to ATy +2z2=c
z >0,

where y € R™ is a vector of free variables and z € R" is the vector of dual slack variables. The
Karush-Kuhn-Tucker optimality conditions for (1) and (2) are

Az —b =
ATy+z2—-c =
XZe =
(2,2) >

(3)

o O O O

)

where e € R" is the vector of all ones and X = diag(z), Z = diag(z). The optimality conditions (3)
are a system of nonlinear equations. The Primal-dual methods are, therefore, based on Newton’s
method applied to the optimality conditions without the nonnegativity of the (z,z) components.
Mehrotra’s predictor-corrector method [19] is one of the most successful variant amongst the class
of interior-point methods. The search direction is computed by solving two linear systems which
have the same coefficient matrix but different right-hand sides. The affine-scaling directions are
computed by finding the solution of

A 0 0 Ay zk rﬁ
0o AT I, Ayt | = rs (4)
ZF 0 Xk Agz* r¥

where rﬁ =b— AzF, r{j =c— ATyk — 2¥ and r¥ = —X*Zke. Then, to compute the centering

corrector direction (A.z¥, A.y* A.z¥) the right-hand side vector of (4) is replaced by rk = 0,
r’; =0,7" = ypre— A, X*¥A,Z¥e and the resulting systems solved. Here u* is a centering parameter,
A X% = diag(A,z*) and A,Z* = diag(A,2z¥). The search direction is obtained by adding the
affine-scaling direction to the centering corrector direction. The overall search directions may be



computed solving system (4) replacing r* by pke — A, X*A,Z%e — X*¥Z*e and solving a second
linear system.

The predictor-corrector version can be summarized as follows:

Method 1 (Predictor-corrector version).
Given y° and (2°,2°) > 0.
For k=0,1,2,..., do

(1) Solve linear system (4).

N
(2) Compute o = (1—:) and set p* = o* (Vn—k) where, v* = (x

A* = (zF + ab AP T (2% + akAzF).
(3) Solve linear system (4) replacing r% by pke — A, X*A,Zke — X* ZFe,
(4) Form the new iterate (x*+1 yk+1 2k+1) = (ak yk 2%) + oF(Azk, Ayk AZF).

k)T k

3 Linear system solution

The most expensive step in interior-point methods is the computation of search directions. Since
both predictor-corrector systems share the same coefficient matrix, we will only discuss the linear
system given by (4). In practice, variables Az (from now on the superscript k& will be dropped for
clarity reason) are eliminated and the system reduces to the augmented indefinite linear system,
which can be written in a symmetric form,

—O~1 AT Az | [ ra—X"'r, 5)
A 0 Ay | Tp ’
where © = Z~'X. Notice that X ' and Z~! are well defined by definition of interior-point. Given

that the matrix A is full rank, the system (5) can be reduced to a smaller positive definite system
called the normal equations by eliminating Az from the first equation,

(AOAT) Ay = AO(rqg — X 'r,) + 7, . (6)

Direct or iterative methods can be applied to solve either system (5) or (6). The most common
approach used in interior-point methods for solving the normal equations system is the Cholesky
factorization. This approach has the advantage of working with symmetric positive definite matri-
ces. However, it can be very expensive if the Cholesky factor is dense. For instance, the presence
of few dense columns in A causes loss of sparsity in AQAT.

One way around this problem is the use of iterative methods. The classical approach adopted to
solve the normal equations system is the preconditioned conjugate gradient method. However, to
build the preconditioner, such implementations often need to compute A®A™ which is usually less
sparse than A. Moreover, it is in general more difficult to find a good preconditioner to the normal
equations matrix than to the augmented one. For this reason, the augmented system strategy has
been considered in several papers [4, 9, 13, 17, 20] even though it is indefinite.

However, the Cholesky factorization cannot be applied to such system since there is no numerically
stable way to factor a general indefinite matrix onto LDL" with D diagonal. Another alternative
that has been used in interior-point methods changes the indefinite system to a quasidefinite one
applying primal and dual regularization method [3]. In this case, the Cholesky-like factorization
LDLT with a diagonal D exists for any symmetric row and column permutation of the matrix.
This approach has also been used with iterative methods [5]. For indefinite systems, the conjugate
gradient method is not guaranteed to achieve convergence. However, it was successfully applied
with a convenient preconditioner [5, 13].

Most preconditioners for indefinite systems from interior-point methods are developed for solving
nonlinear and quadratic programming problems and almost always are not efficient in solving large-
scale linear programming problems. However, a class of preconditioners called splitting precondi-
tioners was designed specially for indefinite systems arising from linear programming problems [20].



An important feature of this class is the option to reduce the preconditioned indefinite system to
a positive definite one like the normal equations system allowing the application of the conjugate
gradient method. Moreover, there are variants of the conjugate gradient method which take into
account the normal equations structure of the linear system [25]. Such variants are not exploited in
this work. Finally, since this class was developed for the last interior-point iterations, an alternative
preconditioner is necessary for the initial iterations.

4 A Hybrid preconditioner

The matrix © changes significantly from one interior-point iteration to the next and it becomes
highly ill-conditioned in the final iterations. For this reason it is difficult to find a preconditioning
strategy that produces good performance of iterative methods over the entire course of the interior-
point iterations.

In [6] it was proposed to apply the conjugated gradient method for solving system (6) preconditioned
by a hybrid preconditioner matrix M,

MY AOA"YM "5 =M (AO(rg — X 'ry) + 1), (7)

where § = M T Ay. This approach assumes the existence of two phases during interior-point itera-
tions. In the first one, the controlled Cholesky preconditioner is used to build matrix M and this
method is briefly described in Section 4.1. After the change of phases, matrix M will be built using
the splitting preconditioner, which is presented in Section 4.2.

4.1 Controlled Cholesky Factorization preconditioner

The Controlled Cholesky Factorization (CCF) preconditioner was designed for solving general pos-
itive definite systems [8] and it was successfully applied to solve linear systems from implicit time-
dependent partial differential equations [8]. This factorization makes it possible to control fill-in
with predictable memory requirements.

Consider the Cholesky factorization AOA” = LL" = LL" + R, where L is the factor obtained
when factorization is complete, L when it is incomplete and R is a remainder matrix. Defining
E = L — Lthen the preconditioned coefficient matrix is

L'AANL "= (') (') =T, + LT'E)T,, + LT'E)".

It is easy to see that when L ~ L = E ~ 0 = L '(A0AT)L-T ~ I,,. It is assumed that the
matrix A©A” has been diagonally scaled to give a unit diagonal [14] in order to improve robustness.
The CCF is based on the minimization of the Frobenius norm of E. Thus, we consider the problem

m m
minimize ||E||% = Z Cj with Cj = Z ‘l” — l~z7|2
j=1 i=1

where /;; represents the ij-th entry of L.

Now c; can be split in two summations:

tij+mn ~ m
=3 Mg~ Ll + D il
k=1 k=t;+n+1

where ¢; is the number of nonzero entries below the diagonal in the jth column of matrix A0 A”
and 7 is the number of extra entries allowed per column. The first summation contains all ¢; + 7
nonzero entries of the jth column of L. The second one has only those remaining entries of the
complete factor I which do not have corresponding entries in L. Considering that I;; ~ l;; asn — m



and l;; is not computed, ||E||r is minimized based on a heuristic, which consists of modifying the
first summation. By increasing n, that is, allowing more fill-in, ¢; will decrease. Moreover, ||E||F is
further minimized by choosing the ¢; 4+ n largest entries of L in absolute value almost annihilating
the corresponding largest entries in L leaving only the smallest I;; in the second summation. The
preconditioner L is built by columns. Consequently it needs only the jth column of AOAT at
each time allowing great savings of memory or their computation in parallel when more than one
processor is available.

The main features of the CCF preconditioner are described in detail in [6] and can be summarized
as follows:

Choice of entries by value, allowing us to work with the largest ones;

Generalization of improved incomplete factorization;

Avoiding loss of positive definiteness by exponential shift;

Versatility preconditioner: the number of nonzero entries per column can vary from 1 to m;

Predictable storage.

4.2 The Splitting preconditioner

The splitting preconditioner was proposed for indefinite systems arising from interior-point meth-
ods [20] for linear programming problems. This preconditioner is a generalization of those proposed
by Resende and Veiga [24] in the context of the minimum cost network flow problem. The main
appeal of this class of preconditioners is that it works better near a solution of the linear program-
ming problem. That is a welcome feature since the linear system is known to be very ill-conditioned
close to a solution and these systems are difficult to be solved by iterative methods. Additionally,
the splitting preconditioner avoids the normal equations computation. However, since the precon-
ditioner is specially tailored for the final iterations of the interior-point methods, it fails to obtain
convergence in the initial iterations for many linear programming problems. We are using a version
of the splitting preconditioner derived as follows [20]:

It is possible do define P € R**" a permutation matrix, such that A = [B N]P where B € R™*™
is nonsingular and N € R**("=") gince A is full row rank. Thus,

BT Op oHBT

AT ire _ _ 0 T 0 T
AO®A" = [B N|P OP[NT}[BN][ 0 Oy NT}BOBB +NOyNT.

Now, the preconditioner is given by © ;2 B! and the preconditioned matrix 7' is the following:
1 _1
T=0,"B 404" B"T0,> =1, + WWT, (8)

where W = (-),;%B*]N(—)%N c Rmx(n—m)

The product B~' N can be seen as a scaling of the linear programming problem. Close to a solution,
at least n —m entries of © are small. Thus, with a suitable choice of the columns of B, the diagonal
entries of @731 and Oy are very small close to a solution. In this situation, W approaches the zero

matrix, 7' approaches the identity matrix and both the smallest eigenvalue Ay, (T') and the largest
Amaz (T)

eigenvalue Ay, 4, (T") approach the value 1 and thus its condition number, the ratio sy (7T") = 5= T

too.

The price paid for avoiding the normal equations system is to find B and solve linear systems using
it. However, the factorization QB = LU, where @Q € R"™*™ is a permutation matrix, is typically
easier to compute than the Cholesky factorization. In fact, it is known [15] that the sparse pattern
of LT and U is contained in the sparse pattern of R, where AAT = RTR, for any valid permutation
Q. In practice, the number of nonzero entries of R is much larger than the number of nonzero
entries of L and U together.



A strategy to form B is to minimize ||[W|| since close to a solution the preconditioned matrix
approaches the identity for a suitable choice of B’s columns due to the diagonal entries of (—)g1
and O values. This problem is hard to solve. An approximate solution was obtained in [20] by
selecting the first m linearly independent columns of A® with smallest 1-norm to form B.

4.2.1 Computing the splitting preconditioner efficiently

A naive implementation of the splitting preconditioner can be very expensive, mainly because B is
hard to find. A detailed description of how to implement it efficiently can be found in [20]. Next,
the main topics are briefly commented.

A nice property of the splitting preconditioner is that we can work with the selected set of columns
for some iterations. As a consequence, B can be kept and the preconditioner is very cheap to
compute for such iterations since only the diagonal matrix © changes.

For this application, the most economical way to compute the LU factorization is to work with the
delayed update form. It fits very well with our problem because when a linearly dependent column
appears, it is eliminated from the factorization and the method proceeds with the next column in
the ordering.

One of the main drawbacks of a straightforward implementation is the excessive fill-in in the LU
factorization. The reason is that the criterion for reordering the columns does not take the sparsity
pattern of A into account. A good technique consists of interrupting the factorization when excessive
fill-ill occurs. The independent columns found thus far are reordered by the number of nonzero
entries. The factorization is then started from scratch using the new ordering and the process
repeated until m independent columns are found.

A second factorization is then applied to the chosen set of independent columns using standard
techniques for computing an efficient sparse LU factorization. As a welcome side effect, it is not
necessary to store U in the previous factorization that determines B.

Before starting the first factorization, the sparse pattern of the ordered matrix is studied in or-
der to identify columns that are symbolically (in)dependent, that is, columns that are linearly
(in)dependent in structure no matter the numerical values of their nonzero entries. Those columns
that are dependent are discarded while the independent ones are moved to the front and reordered
among them as mentioned early. This technique does not perform any floating point operation and
leads to faster implementations.

4.3 A new column ordering

In [20] the first m linearly independent columns of A® with smallest 1-norm are selected to form
B aiming to obtain W close to the zero matrix. However, the 1-norm has a tendency to diminish
the effect of outliers, a feature not desirable in this context since the goal is to split the columns in
two sets of size m and n — m, respectively. In fact, we would like to stress the so called “outliers”.
In this work we are using the 2-norm instead of the 1-norm, avoiding this tendency [2]. This choice
have improved the performance of the splitting preconditioner for most problems. It also allows
better computational results after the change of phases and reduces the number of iterations for the
convergence of the conjugate gradient method. Experiments with the co-norm show that it does
not obtain better performance in comparison with the 2-norm in a similar fashion as the results
obtained by the 1-norm. It seems that it happens because the co-norm is given by the value of one
single entry instead of a combination of the whole column.

Experiments ordering the columns of AO? were also performed, although the results did not im-
prove for any of the three norms tested in comparison with the ordering given by columns of A©.



4.4 Change of phases

In a previous work [6], the change of phase was performed when the initial gap (z 29) is reduced

by a factor of 10 or the number of inner iterations of preconditioner iterative method reaches 5
This change of phase actually happens in a very early stage of the optimization process and the

hybrid approach works better when the change occurs almost at the end of the process.

In this work, a new change of phase is presented. If the number of iterations needed for the conju-
gate gradient method to achieve convergence is greater than % the parameter n in the controlled
Cholesky factorization is updated: 1 < n + 10. The switch now happens when 7 falls above the
maximum allowed. In the next section comparative numerical experiments are presented with both
heuristics, showing that the new one obtains better computational results.

5 Numerical experiments

The hybrid approach was integrated in the PCx code [10]. The procedures for solving linear systems
were coded in C, except the controlled Cholesky factorization, which was implemented in FOR-
TRAN. The PCx’s default parameters are adopted except the multiple centrality corrections [16]
that was disabled. All tests were performed on an Intel Core 2 Duo 2.2GHz processor with 2Gb of
memory under Linux using the gcc and gfortran compilers.

In all experiments we have used the preconditioned conjugate gradient method with termination
criteria set by the Euclidean residual norm ||r¥||. For solving both systems (affine direction) and
(final direction) in phase I, the termination criteria is set as ||r*|| < 107*. When the optimality
gap is less than 10~° or change of phases is detected, the criteria change to ||r*|| < 1078, The
conjugate gradient method maximum number of iterations is given by the system dimension.

5.1 Test problems

All test problems are public domain linear problems. Most QAP models tested here are from
the QAPLIB collection [7] with the modification described in [21]. Some of the NUG problems,
however, are not modified. To clarify when one of the NUG problems has been modified, the letter
M is added to the end of the problem’s name. Table 1 summarizes the test data. The number of
rows and columns refer to preprocessed problems.

5.2 Computational results

The behavior of both hybrid approaches is presented in three tables. In Table 2 the results using the
previous heuristic approach with 1-norm and 2-norm for reordering the columns of A are presented.
For each test problem IPM represents the interior-point method outer iterations number, Time
indicates the total CPU time in seconds and PCG represents the average number of iterations of the
iterative method after the change of phase occurs. For some problems the change of preconditioner
does not happen and the symbol (-) is used to represent that situation. In some problems the
number of iterations for iterative methods is reduced, although the total time of processing does
not reduce. This is due to the fact that the preconditioner with the new ordering is less sparse
leading to more expensive inner-iterations.

The previous heuristic does not achieve good performance for the NUG problems. The change of
phases is triggered in an early stage of the optimization process. For all tested problems better
computational results are achieved when the CCF is used until nearly the end of the optimization
process. Table 3 shows the results when the new change of phase is used for both the 1-norm and
2-norm column reordering. Therefore, the change of preconditioner occurs in the same iteration.
For each test problem IPM represents the number of outer iterations, Time indicates the total
CPU time in seconds and PCG represents the average number of iterations of the iterative method



after the change of preconditioner. For some problems the change of phase does not occur and the
symbol (-) is used to represent that.

Table 4 shows a comparison between the two heuristic approaches. For each test problem IPM
represents the number of outer iterations, Time indicates the total CPU time in seconds and
PCG represents the average number of iterations of the iterative method after the change of
preconditioner. The results show that the processing time was reduced in most of test problems. In
some cases the running time was not reduced, although the average of inner-iterations reduces. The
set of NUG problems show that the new rules for change of phases and the new column ordering
improve robustness of this approach allowing it to solve more problems. We remark that the direct
approach for the largest NUG problems fails either due to lack of memory or to the very long time
it takes to achieve convergence. Experiments have shown that better results are obtained with the
oo-norm in a few cases. However, the overall better results are achieved when the 2-norm is used
in the column ordering.

6 Conclusions

This work presents new heuristics for the change of phases of a hybrid preconditioner for solving
linear systems arising from interior-point methods. We have provided computational evidence that
with the new change of phases more problems are solved and the running time to solve many other
problems is enhanced.

Additionally, a new column ordering is proposed. In the previous approach, the 1-norm was used
to reorder the columns of A@. The numerical experiments with 2-norm and oo-norm show that 2-
norm improves the performance of the splitting preconditioner for most problems. The new column
ordering reduces the number of iterations for the convergence of the conjugate gradient method
and the total processing time in most tested instances. Experiments adopting the ordering of the
columns according to the norm of AO7 instead of AO were also performed but this approach has
failed to improve the results.
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‘ Problem Row ‘ Column ‘ Collection
| KBAPAH2 12 | 28 | KBAPAH
ELS-19 4350 13186 QAP
CHR22B 5587 10417 QAP
CHR25A 8149 15325 QAP
SCR15 2234 6210 QAP
SCR20 5079 15980 QAP
ROU20 7359 37640 QAP
STE36A 27683 | 131076 QAP
STE36B 27683 | 131076 QAP
STE36C 27683 | 131076 QAP
QAP12 2794 8856 NETLIB
QAP15 5698 22275 NETLIB
SCSD8-2B-64 5130 35910 | STOCHLP
SCSD8-2C-64 5130 35910 | STOCHLP
SCSD8-2R-432 8650 60550 | STOCHLP
PDS-20 32276 | 106180 MISC
PDS-40 64265 | 214385 MISC
PDS-60 96503 | 332862 MISC
PDS-80 126109 | 430800 MISC
PDS-100 156243 | 514577 MISC
NUGO8M 742 1632 MISC
NUG12M 2794 8856 MISC
NUG15M 5698 22275 MISC
NUGO05 210 225 QAP
NUGO05-3rd 1410 1425 QAP
NUGO06 372 486 QAP
NUGO06-3rd 3972 4686 QAP
NUGO7 602 931 QAP
NUGO07-3rd 9742 12691 QAP
NUGO8 912 1632 QAP
NUGO08-3rd 19728 29856 QAP
NUG12 3192 8856 QAP
NUG15 6330 22275 QAP

Table 1: Test problems data.




1 NORM 2 NORM

Problem  [IPM | Time [PCG [IPM] Time [PCG

| KBAPAH2 | 8| 001] -] 8] 001 ] -
ELS-19 31 11475 ] 328] 31| 155.97 [ 368
CHR22B 329 3453 | 389 29 37.24 | 433
CHR25A 28 66.68 | 535 | 28 68.51 | 530
SCR15 24 1481 | 216 | 24 18.53 | 246
SCR20 21| 13528 | 638 | 21| 179.28 | 512
ROU20 24 | 1571.86 | 648 | 24| 3014.92 | 555
STE36A 37 | 19543.78 | 3029 * * *
STE36B 37 [ 47469.21 | 7343 | 37 | 39067.58 | 6162
STE36C 41 | 73749.53 | 6135 * * *
QAP12 20 [ 35047 ] 779] 20| 345.67 ] 740
QAP15 23 | 3196.30 | 1676 * * *
SCSD8-2B-64 7 3.52 - 7 3.52 -
SCSD8-2C-64 7 3.44 - 7 3.44 -
SCSD8-2R-432 [ 18 33.95 - 18 33.95 -
PDS-20 60 | 661.77 - 60 ] 661.77 -
PDS-40 79 | 1276.17 - 79| 1276.17 -
PDS-60 85 | 3646.18 - | 85| 3646.18 -
PDS-80 83 | 4811.76 -| 83| 48117 -
PDS-100 86 | 8244.13 - | 86 824413 -
NUG0SM 10 205] 88] 10 2.05 | 89
NUGI2M 20 | 36931 | 782| 20| 345.82 ] 635
NUGO05 * * * * * *
NUGO05-3rd * * * * * *
NUGO06 6 0.25 - 6 0.25 -
NUGO06-3rd * * * * * *
NUGO07 11 L] 52| 11 110 | 53
NUGO07-3rd * * * * * *
NUGO08 10 376 | 88] 10 381 89
NUG08-3rd * * * * * *
NUGI12 20 | 37053 | 782 | 20| 34838 635

Table 2:

*: means that the method failed. -:means no change of preconditioner

Previous change of phases and comparison of the 1-norm/2-norm orderings.




1 NORM 2 NORM

Problem  [IPM | Time [PCG [IPM] Time [PCG

| KBAPAH2 | 8| 001] -] 8] 001 ] -
ELS-19 31| 12867 305| 31] 14426 ] 361
CHR22B 29 25.34 [ 240 [ 29 27.61 | 272
CHR25A 28 66.96 | 548 | 28 67.74 | 503
SCR15 24 16.16 | 215 | 24 18.82 | 189
SCR20 21 | 14796 | 638 | 21| 167.76 | 622
ROU20 24 | 147882 | 560 | 24| 2302.25 | 377
STE36A 38 | 24492.67 | 3338 | 38| 29402.3 | 2553
STE36B * * ¥ 3713293895 | 4795
STE36C 42 | 54635.78 | 3639 | 41 | 30186.23 | 4359
QAP12 20 [ 27406 | 506 | 20| 248.95[ 406
QAP15 23 | 272856 | 1093 | 23 | 2815.45 | 1118
SCSD8-2B-64 7 3.52 - 7 3.52 -
SCSD8-2C-64 7 3.44 - 7 3.44 -
SCSD8-2R-432 [ 18 33.95 - 18 33.95 -
PDS-20 60 | 661.77 - 60 ] 661.77 -
PDS-40 79 | 127617 - 79| 127617 -
PDS-60 85 | 3646.18 - | 85| 3646.18 -
PDS-80 83 | 4811.76 -| 83| 48117 -
PDS-100 86 | 8244.13 - | 86 824413 -
NUG0SM 9 1L57] 63 9 1.63] 62
NUGI2M 20 | 24359 | 500 | 20| 208.92 [ 441
NUG15M * * ¥ 23] 2310.06 | 1819
NUGO05 8 0.06 - 8 0.06 -
NUGO05-3rd 6 218 | 32 6 221 38
NUGO06 6 019 60 6 017 | 51
NUGO06-3rd 7 21.22 - 7 21.22 -
NUGO07 11 073 59 10 0.76 | 52
NUGO07-3rd 8 65.45 - 8 65.45 -
NUGO08 9 3] 63 9 317 62
NUG08-3rd 9 10479 - 9 10479 -
NUG12 20 | 24338 ] 500 | 20| 208.66 | 441
NUG15 * * *| 23] 2298.88 | 1819

Table 3: New change of phases and comparison of the 1-norm/2-norm orderings.

*: means that the method failed. -:means no change of preconditioner




Previous New
Problem  [IPM | Time [PCG [IPM] Time [PCG
| KBAPAH2 | 8| 001 -] 8] 0.01] -]

ELS-19 31| 11475 328 31] 14426 ] 361
CHR22B 29 3453 | 380 [ 29 27.61 | 272
CHR25A 28 66.68 | 535 | 28 67.74 | 503
SCR15 24 1481 | 216 | 24 18.82 | 189
SCR20 21| 13528 | 638 | 21| 167.76 | 622
ROU20 24 | 1571.86 | 648 | 24 [ 2302.25 | 377
STE36A 37 | 19543.78 | 3029 | 38 | 29402.3 | 2553
STE36B 37 | 47469.21 | 7343 | 37 | 32938.95 | 4795
STE36C 41 | 73749.53 | 6135 | 41 | 30186.23 | 4359
QAP12 20 | 35047 ] 779 20 ] 248.95 [ 406
QAP15 23 | 3196.30 | 1676 | 23 | 2815.45 | 1118
SCSD8-2B-64 7 3.52 - 7 3.52 -
SCSD8-2C-64 7 3.44 - 7 3.44 -
SCSD8-2R-432 | 18 33.95 -| 18 33.95 -
PDS-20 60 | 661.77 -] 60] 66177 -
PDS-40 79 | 1276.17 - 79| 1276.17 -
PDS-60 85 | 3646.18 - | 85| 3646.18 -
PDS-80 83 | 4811.76 -| 83| 48117 -
PDS-100 86 | 8244.13 -| 86| 824413 -
NUGO8M 10 2.05 | 88 9 163 ] 62
NUGI12M 20 | 36912 | 782 | 20| 208.92 [ 441
NUG15M ¥ * [ 23] 2310.06 | 1819
NUGO5 * * * 8 0.06 -
NUGO05-3rd * * * 6 221 38
NUGO06 6 0.25 - 6 017 [ 51
NUGO06-3rd ¥ * * 7 21.22 -
NUGO07 11 L11| 52| 10 0.76 | 52
NUGO7-3rd ¥ * * 8 65.45 -
NUGO8 10 3.76 | 88 9 317 [ 62
NUGO08-3rd * * * 9 10479 -
NUGI2 20 | 37053 | 782 | 20| 208.66 | 441
NUGI5 * * *[ 23] 2298.88 | 1819

Table 4: New and previous change of phases comparison with the 2-norm ordering.

*: means that the method failed. -:means no change of preconditioner



