
A note on hybrid pre
onditioners for large-s
ale normal equationsarising from interior-point methodsM. I. Velaz
o � A. R. L. Oliveira � F. F. Campos yAbstra
tA previously developed approa
h for solving linear systems arising from interior-point methodsapplied to linear programming problems is 
onsidered and improved upon. The pre
onditioned 
on-jugate gradient method is used to solve these systems in two di�erent phases of the interior-pointmethod: during the initial interior-point iterations, an in
omplete Cholesky fa
torization pre
on-ditioner with 
ontrolled �ll-in is used; in the se
ond phase, near the optimal solution, a spe
ializedpre
onditioner based upon the LU fa
torization is used to 
ombat the high ill-
onditioning of thelinear systems in this phase. This approa
h works better than dire
t methods on some 
lasses oflarge-s
ale problems. New heuristi
s are presented to identify the 
hange of phases, thus a
hiev-ing better 
omputational results and solving additional problems. Moreover, new orderings of the
onstraint matrix 
olumns are presented allowing savings in the pre
onditioned 
onjugate gradientmethod iteration number. Experiments are performed with a set of large-s
ale problems and bothapproa
hes are 
ompared with respe
t to the number of iterations and running time.Keywords: Interior-point methods, Pre
onditioners, Iterative methods.1 Introdu
tionThe most expensive step of an interior-point method is the 
omputation of the sear
h dire
tionthrough the solution of one or more linear systems. Su
h systems are inde�nite and 
an be writtenin a symmetri
 form known as an augmented system. A 
ommon approa
h redu
es the augmentedsystem to a smaller positive de�nite system 
alled the normal equations. Usually they are solvedby dire
t methods. However, for some 
lasses of large-s
ale problems, the use of dire
t methodsbe
omes prohibitive be
ause of storage and running-time limitations. In su
h situations, iterativeapproa
hes are more interesting.The performan
e of implementations using iterative methods depends on the 
hoi
e of an appro-priate pre
onditioner, in parti
ular, the linear system be
omes highly ill-
onditioned as an optimalsolution of the problem is approa
hed. Several pre
onditioners have been used to solve the normalequations systems from interior-point methods, see for example [1, 18, 22, 26℄. Some of them arebased on in
omplete Cholesky fa
torization of the normal equations system. Typi
ally, this 
lass ofpre
onditioners is eÆ
ient in the initial iterations but it deteriorates as the interior-point method
onverges to a solution. In general, the normal equations system is more ill-
onditioned and denserthan the augmented system and this has motivated the study of methods to solve the inde�nitesystem [5, 9, 12, 13, 2, 11, 17, 20, 23℄. The pre
onditioner for the augmented system proposedin [20℄ is based on an LU fa
torization and has been shown to perform well near the solution of thelinear programming problem but it gives poor results during the initial interior-point iterations.In [6℄ an iterative hybrid approa
h was proposed for solving the normal equations system that arisesin an interior-point method for linear programming. The 
onjugate gradient method is pre
ondi-tioned during the initial interior-points iterations (phase I ) using an in
omplete fa
torization known�Applied Mathemati
s Department - State University of Campinas, C.P. 6065, 13.083-970 Campinas - SP, Brazil;(velaz
o,aurelio�ime.uni
amp.br).yComputer S
ien
e Department - Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31.270-010 BeloHorizonte - MG, Brazil; (�
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as the 
ontrolled Cholesky fa
torization (CCF) [8℄ and in the remaining iterations (phase II ) bythe splitting pre
onditioner developed in [20℄. The amount of memory used by the CCF pre
on-ditioner is easily 
ontrolled during interior-point iterations. As the system be
omes ill-
onditionedmore �ll-in is allowed. When the CCF pre
onditioner loses eÆ
ien
y, the system is already highlyill-
onditioned and it is a good indi
ator that the splitting pre
onditioner will work better. Aheuristi
 has been developed to determine the 
hange of phases. The hybrid approa
h is appliedwithin the PCx 
ode [10℄.In this work, the 
hange of phases heuristi
s developed in [6℄ is improved upon and the 
olumnsplitting rule in [20℄ is modi�ed. As a result, the 
omputational running times obtained in [6℄ areredu
ed and more of the large-s
ale problems 
an now be solved by the hybrid approa
h.2 Primal-Dual interior-point methodsPrimal-dual interior-point methods are widely used for solving large-s
ale linear programming prob-lems [27℄. Consider the linear programming problem in the standard form,min 
Tx (1)subje
t to Ax = bx � 0;where A 2 Rm�n , b 2 Rm , 
 2 Rn , x 2 Rn and m � n. We remark that the following dis
ussion
an be easily extended when problems with bounded variables are 
onsidered.The dual problem asso
iated with problem (1) ismax bT y (2)subje
t to AT y + z = 
z � 0;where y 2 Rm is a ve
tor of free variables and z 2 Rn is the ve
tor of dual sla
k variables. TheKarush-Kuhn-Tu
ker optimality 
onditions for (1) and (2) areAx� b = 0 (3)AT y + z � 
 = 0XZe = 0(x; z) � 0;where e 2 Rn is the ve
tor of all ones and X = diag(x), Z = diag(z). The optimality 
onditions (3)are a system of nonlinear equations. The Primal-dual methods are, therefore, based on Newton'smethod applied to the optimality 
onditions without the nonnegativity of the (x; z) 
omponents.Mehrotra's predi
tor-
orre
tor method [19℄ is one of the most su

essful variant amongst the 
lassof interior-point methods. The sear
h dire
tion is 
omputed by solving two linear systems whi
hhave the same 
oeÆ
ient matrix but di�erent right-hand sides. The aÆne-s
aling dire
tions are
omputed by �nding the solution of24 A 0 00 AT InZk 0 Xk 3524 �axk�ayk�azk 35 = 24 rkprkdrka 35 (4)where rkp = b � Axk , rkd = 
 � AT yk � zk and rka = �XkZke. Then, to 
ompute the 
entering
orre
tor dire
tion (�
xk;�
yk;�
zk) the right-hand side ve
tor of (4) is repla
ed by rkd = 0,rkp = 0, rka = �ke��aXk�aZke and the resulting systems solved. Here �k is a 
entering parameter,�aXk = diag(�axk) and �aZk = diag(�azk). The sear
h dire
tion is obtained by adding theaÆne-s
aling dire
tion to the 
entering 
orre
tor dire
tion. The overall sear
h dire
tions may be




omputed solving system (4) repla
ing rka by �ke � �aXk�aZke � XkZke and solving a se
ondlinear system.The predi
tor-
orre
tor version 
an be summarized as follows:Method 1 (Predi
tor-
orre
tor version).Given y0 and (x0; z0) > 0.For k = 0; 1; 2; : : :, do(1) Solve linear system (4).(2) Compute �k = � ~
k
k�2 and set �k = �k �
kn � where, 
k = (xk)T zk and~
k = (xk + ~�k�xk)T (zk + ~�k�zk).(3) Solve linear system (4) repla
ing rka by �ke��aXk�aZke�XkZke.(4) Form the new iterate (xk+1; yk+1; zk+1) = (xk ; yk; zk) + �k(�xk ;�yk;�zk):3 Linear system solutionThe most expensive step in interior-point methods is the 
omputation of sear
h dire
tions. Sin
eboth predi
tor-
orre
tor systems share the same 
oeÆ
ient matrix, we will only dis
uss the linearsystem given by (4). In pra
ti
e, variables �z (from now on the supers
ript k will be dropped for
larity reason) are eliminated and the system redu
es to the augmented inde�nite linear system,whi
h 
an be written in a symmetri
 form,� ���1 ATA 0 �� �x�y � = � rd �X�1rarp � ; (5)where � = Z�1X . Noti
e that X�1 and Z�1 are well de�ned by de�nition of interior-point. Giventhat the matrix A is full rank, the system (5) 
an be redu
ed to a smaller positive de�nite system
alled the normal equations by eliminating �x from the �rst equation,(A�AT )�y = A�(rd �X�1ra) + rp : (6)Dire
t or iterative methods 
an be applied to solve either system (5) or (6). The most 
ommonapproa
h used in interior-point methods for solving the normal equations system is the Choleskyfa
torization. This approa
h has the advantage of working with symmetri
 positive de�nite matri-
es. However, it 
an be very expensive if the Cholesky fa
tor is dense. For instan
e, the presen
eof few dense 
olumns in A 
auses loss of sparsity in A�AT .One way around this problem is the use of iterative methods. The 
lassi
al approa
h adopted tosolve the normal equations system is the pre
onditioned 
onjugate gradient method. However, tobuild the pre
onditioner, su
h implementations often need to 
ompute A�AT whi
h is usually lesssparse than A. Moreover, it is in general more diÆ
ult to �nd a good pre
onditioner to the normalequations matrix than to the augmented one. For this reason, the augmented system strategy hasbeen 
onsidered in several papers [4, 9, 13, 17, 20℄ even though it is inde�nite.However, the Cholesky fa
torization 
annot be applied to su
h system sin
e there is no numeri
allystable way to fa
tor a general inde�nite matrix onto LDLT with D diagonal. Another alternativethat has been used in interior-point methods 
hanges the inde�nite system to a quaside�nite oneapplying primal and dual regularization method [3℄. In this 
ase, the Cholesky-like fa
torizationLDLT with a diagonal D exists for any symmetri
 row and 
olumn permutation of the matrix.This approa
h has also been used with iterative methods [5℄. For inde�nite systems, the 
onjugategradient method is not guaranteed to a
hieve 
onvergen
e. However, it was su

essfully appliedwith a 
onvenient pre
onditioner [5, 13℄.Most pre
onditioners for inde�nite systems from interior-point methods are developed for solvingnonlinear and quadrati
 programming problems and almost always are not eÆ
ient in solving large-s
ale linear programming problems. However, a 
lass of pre
onditioners 
alled splitting pre
ondi-tioners was designed spe
ially for inde�nite systems arising from linear programming problems [20℄.



An important feature of this 
lass is the option to redu
e the pre
onditioned inde�nite system toa positive de�nite one like the normal equations system allowing the appli
ation of the 
onjugategradient method. Moreover, there are variants of the 
onjugate gradient method whi
h take intoa

ount the normal equations stru
ture of the linear system [25℄. Su
h variants are not exploited inthis work. Finally, sin
e this 
lass was developed for the last interior-point iterations, an alternativepre
onditioner is ne
essary for the initial iterations.4 A Hybrid pre
onditionerThe matrix � 
hanges signi�
antly from one interior-point iteration to the next and it be
omeshighly ill-
onditioned in the �nal iterations. For this reason it is diÆ
ult to �nd a pre
onditioningstrategy that produ
es good performan
e of iterative methods over the entire 
ourse of the interior-point iterations.In [6℄ it was proposed to apply the 
onjugated gradient method for solving system (6) pre
onditionedby a hybrid pre
onditioner matrix M ,M�1(A�AT )M�T �y =M�1(A�(rd �X�1ra) + rp); (7)where �y =MT�y. This approa
h assumes the existen
e of two phases during interior-point itera-tions. In the �rst one, the 
ontrolled Cholesky pre
onditioner is used to build matrix M and thismethod is brie
y des
ribed in Se
tion 4.1. After the 
hange of phases, matrixM will be built usingthe splitting pre
onditioner, whi
h is presented in Se
tion 4.2.4.1 Controlled Cholesky Fa
torization pre
onditionerThe Controlled Cholesky Fa
torization (CCF) pre
onditioner was designed for solving general pos-itive de�nite systems [8℄ and it was su

essfully applied to solve linear systems from impli
it time-dependent partial di�erential equations [8℄. This fa
torization makes it possible to 
ontrol �ll-inwith predi
table memory requirements.Consider the Cholesky fa
torization A�AT = LLT = ~L~LT + R, where L is the fa
tor obtainedwhen fa
torization is 
omplete, ~L when it is in
omplete and R is a remainder matrix. De�ningE = L� ~L then the pre
onditioned 
oeÆ
ient matrix is~L�1(A�AT )~L�T = (~L�1L)(~L�1L)T = (Im + ~L�1E)(Im + ~L�1E)T :It is easy to see that when ~L � L =) E � 0 =) ~L�1(A�AT )~L�T � Im. It is assumed that thematrix A�AT has been diagonally s
aled to give a unit diagonal [14℄ in order to improve robustness.The CCF is based on the minimization of the Frobenius norm of E. Thus, we 
onsider the problemminimize kEk2F = mXj=1 
j with 
j = mXi=1 jlij � ~lij j2:where lij represents the ij-th entry of L.Now 
j 
an be split in two summations:
j = tj+�Xk=1 jlik j � ~lik j j2 + mXk=tj+�+1 jlik j j2;where tj is the number of nonzero entries below the diagonal in the jth 
olumn of matrix A�ATand � is the number of extra entries allowed per 
olumn. The �rst summation 
ontains all tj + �nonzero entries of the jth 
olumn of ~L. The se
ond one has only those remaining entries of the
omplete fa
tor L whi
h do not have 
orresponding entries in ~L. Considering that ~lij � lij as � ! m



and lij is not 
omputed, kEkF is minimized based on a heuristi
, whi
h 
onsists of modifying the�rst summation. By in
reasing �, that is, allowing more �ll-in, 
j will de
rease. Moreover, kEkF isfurther minimized by 
hoosing the tj + � largest entries of ~L in absolute value almost annihilatingthe 
orresponding largest entries in L leaving only the smallest lij in the se
ond summation. Thepre
onditioner ~L is built by 
olumns. Consequently it needs only the jth 
olumn of A�AT atea
h time allowing great savings of memory or their 
omputation in parallel when more than onepro
essor is available.The main features of the CCF pre
onditioner are des
ribed in detail in [6℄ and 
an be summarizedas follows:� Choi
e of entries by value, allowing us to work with the largest ones;� Generalization of improved in
omplete fa
torization;� Avoiding loss of positive de�niteness by exponential shift;� Versatility pre
onditioner: the number of nonzero entries per 
olumn 
an vary from 1 to m;� Predi
table storage.4.2 The Splitting pre
onditionerThe splitting pre
onditioner was proposed for inde�nite systems arising from interior-point meth-ods [20℄ for linear programming problems. This pre
onditioner is a generalization of those proposedby Resende and Veiga [24℄ in the 
ontext of the minimum 
ost network 
ow problem. The mainappeal of this 
lass of pre
onditioners is that it works better near a solution of the linear program-ming problem. That is a wel
ome feature sin
e the linear system is known to be very ill-
onditioned
lose to a solution and these systems are diÆ
ult to be solved by iterative methods. Additionally,the splitting pre
onditioner avoids the normal equations 
omputation. However, sin
e the pre
on-ditioner is spe
ially tailored for the �nal iterations of the interior-point methods, it fails to obtain
onvergen
e in the initial iterations for many linear programming problems. We are using a versionof the splitting pre
onditioner derived as follows [20℄:It is possible do de�ne P 2 Rn�n a permutation matrix, su
h that A = [B N ℄P where B 2 Rm�mis nonsingular and N 2 Rn�(n�m) , sin
e A is full row rank. Thus,A�AT = [B N ℄P T�P � BTNT � = [B N ℄ � �B 00 �N �� BTNT � = B�BBT +N�NNT :Now, the pre
onditioner is given by �� 12B B�1 and the pre
onditioned matrix T is the following:T = �� 12B B�1(A�AT )B�T�� 12B = Im +WW T ; (8)where W = �� 12B B�1N� 12N 2 Rm�(n�m) .The produ
t B�1N 
an be seen as a s
aling of the linear programming problem. Close to a solution,at least n�m entries of � are small. Thus, with a suitable 
hoi
e of the 
olumns of B, the diagonalentries of ��1B and �N are very small 
lose to a solution. In this situation, W approa
hes the zeromatrix, T approa
hes the identity matrix and both the smallest eigenvalue �min(T ) and the largesteigenvalue �max(T ) approa
h the value 1 and thus its 
ondition number, the ratio �2(T ) = �max(T )�min(T ) ,too.The pri
e paid for avoiding the normal equations system is to �nd B and solve linear systems usingit. However, the fa
torization QB = LU , where Q 2 Rm�m is a permutation matrix, is typi
allyeasier to 
ompute than the Cholesky fa
torization. In fa
t, it is known [15℄ that the sparse patternof LT and U is 
ontained in the sparse pattern of R, where AAT = RTR, for any valid permutationQ. In pra
ti
e, the number of nonzero entries of R is mu
h larger than the number of nonzeroentries of L and U together.



A strategy to form B is to minimize kWk sin
e 
lose to a solution the pre
onditioned matrixapproa
hes the identity for a suitable 
hoi
e of B's 
olumns due to the diagonal entries of ��1Band �N values. This problem is hard to solve. An approximate solution was obtained in [20℄ bysele
ting the �rst m linearly independent 
olumns of A� with smallest 1-norm to form B.4.2.1 Computing the splitting pre
onditioner eÆ
ientlyA naive implementation of the splitting pre
onditioner 
an be very expensive, mainly be
ause B ishard to �nd. A detailed des
ription of how to implement it eÆ
iently 
an be found in [20℄. Next,the main topi
s are brie
y 
ommented.A ni
e property of the splitting pre
onditioner is that we 
an work with the sele
ted set of 
olumnsfor some iterations. As a 
onsequen
e, B 
an be kept and the pre
onditioner is very 
heap to
ompute for su
h iterations sin
e only the diagonal matrix � 
hanges.For this appli
ation, the most e
onomi
al way to 
ompute the LU fa
torization is to work with thedelayed update form. It �ts very well with our problem be
ause when a linearly dependent 
olumnappears, it is eliminated from the fa
torization and the method pro
eeds with the next 
olumn inthe ordering.One of the main drawba
ks of a straightforward implementation is the ex
essive �ll-in in the LUfa
torization. The reason is that the 
riterion for reordering the 
olumns does not take the sparsitypattern ofA into a

ount. A good te
hnique 
onsists of interrupting the fa
torization when ex
essive�ll-ill o

urs. The independent 
olumns found thus far are reordered by the number of nonzeroentries. The fa
torization is then started from s
rat
h using the new ordering and the pro
essrepeated until m independent 
olumns are found.A se
ond fa
torization is then applied to the 
hosen set of independent 
olumns using standardte
hniques for 
omputing an eÆ
ient sparse LU fa
torization. As a wel
ome side e�e
t, it is notne
essary to store U in the previous fa
torization that determines B.Before starting the �rst fa
torization, the sparse pattern of the ordered matrix is studied in or-der to identify 
olumns that are symboli
ally (in)dependent, that is, 
olumns that are linearly(in)dependent in stru
ture no matter the numeri
al values of their nonzero entries. Those 
olumnsthat are dependent are dis
arded while the independent ones are moved to the front and reorderedamong them as mentioned early. This te
hnique does not perform any 
oating point operation andleads to faster implementations.4.3 A new 
olumn orderingIn [20℄ the �rst m linearly independent 
olumns of A� with smallest 1-norm are sele
ted to formB aiming to obtain W 
lose to the zero matrix. However, the 1-norm has a tenden
y to diminishthe e�e
t of outliers, a feature not desirable in this 
ontext sin
e the goal is to split the 
olumns intwo sets of size m and n�m, respe
tively. In fa
t, we would like to stress the so 
alled \outliers".In this work we are using the 2-norm instead of the 1-norm, avoiding this tenden
y [2℄. This 
hoi
ehave improved the performan
e of the splitting pre
onditioner for most problems. It also allowsbetter 
omputational results after the 
hange of phases and redu
es the number of iterations for the
onvergen
e of the 
onjugate gradient method. Experiments with the 1-norm show that it doesnot obtain better performan
e in 
omparison with the 2-norm in a similar fashion as the resultsobtained by the 1-norm. It seems that it happens be
ause the 1-norm is given by the value of onesingle entry instead of a 
ombination of the whole 
olumn.Experiments ordering the 
olumns of A� 12 were also performed, although the results did not im-prove for any of the three norms tested in 
omparison with the ordering given by 
olumns of A�.



4.4 Change of phasesIn a previous work [6℄, the 
hange of phase was performed when the initial gap (xT0 z0) is redu
edby a fa
tor of 106 or the number of inner iterations of pre
onditioner iterative method rea
hes m2 .This 
hange of phase a
tually happens in a very early stage of the optimization pro
ess and thehybrid approa
h works better when the 
hange o

urs almost at the end of the pro
ess.In this work, a new 
hange of phase is presented. If the number of iterations needed for the 
onju-gate gradient method to a
hieve 
onvergen
e is greater than m6 the parameter � in the 
ontrolledCholesky fa
torization is updated: �  � + 10. The swit
h now happens when � falls above themaximum allowed. In the next se
tion 
omparative numeri
al experiments are presented with bothheuristi
s, showing that the new one obtains better 
omputational results.5 Numeri
al experimentsThe hybrid approa
h was integrated in the PCx 
ode [10℄. The pro
edures for solving linear systemswere 
oded in C, ex
ept the 
ontrolled Cholesky fa
torization, whi
h was implemented in FOR-TRAN. The PCx's default parameters are adopted ex
ept the multiple 
entrality 
orre
tions [16℄that was disabled. All tests were performed on an Intel Core 2 Duo 2.2GHz pro
essor with 2Gb ofmemory under Linux using the g

 and gfortran 
ompilers.In all experiments we have used the pre
onditioned 
onjugate gradient method with termination
riteria set by the Eu
lidean residual norm jjrk jj. For solving both systems (aÆne dire
tion) and(�nal dire
tion) in phase I, the termination 
riteria is set as jjrk jj < 10�4. When the optimalitygap is less than 10�5 or 
hange of phases is dete
ted, the 
riteria 
hange to jjrkjj < 10�8. The
onjugate gradient method maximum number of iterations is given by the system dimension.5.1 Test problemsAll test problems are publi
 domain linear problems. Most QAP models tested here are fromthe QAPLIB 
olle
tion [7℄ with the modi�
ation des
ribed in [21℄. Some of the NUG problems,however, are not modi�ed. To 
larify when one of the NUG problems has been modi�ed, the letterM is added to the end of the problem's name. Table 1 summarizes the test data. The number ofrows and 
olumns refer to prepro
essed problems.5.2 Computational resultsThe behavior of both hybrid approa
hes is presented in three tables. In Table 2 the results using theprevious heuristi
 approa
h with 1-norm and 2-norm for reordering the 
olumns of A are presented.For ea
h test problem IPM represents the interior-point method outer iterations number, T imeindi
ates the total CPU time in se
onds and PCG represents the average number of iterations of theiterative method after the 
hange of phase o

urs. For some problems the 
hange of pre
onditionerdoes not happen and the symbol (-) is used to represent that situation. In some problems thenumber of iterations for iterative methods is redu
ed, although the total time of pro
essing doesnot redu
e. This is due to the fa
t that the pre
onditioner with the new ordering is less sparseleading to more expensive inner-iterations.The previous heuristi
 does not a
hieve good performan
e for the NUG problems. The 
hange ofphases is triggered in an early stage of the optimization pro
ess. For all tested problems better
omputational results are a
hieved when the CCF is used until nearly the end of the optimizationpro
ess. Table 3 shows the results when the new 
hange of phase is used for both the 1-norm and2-norm 
olumn reordering. Therefore, the 
hange of pre
onditioner o

urs in the same iteration.For ea
h test problem IPM represents the number of outer iterations, T ime indi
ates the totalCPU time in se
onds and PCG represents the average number of iterations of the iterative method



after the 
hange of pre
onditioner. For some problems the 
hange of phase does not o

ur and thesymbol (-) is used to represent that.Table 4 shows a 
omparison between the two heuristi
 approa
hes. For ea
h test problem IPMrepresents the number of outer iterations, T ime indi
ates the total CPU time in se
onds andPCG represents the average number of iterations of the iterative method after the 
hange ofpre
onditioner. The results show that the pro
essing time was redu
ed in most of test problems. Insome 
ases the running time was not redu
ed, although the average of inner-iterations redu
es. Theset of NUG problems show that the new rules for 
hange of phases and the new 
olumn orderingimprove robustness of this approa
h allowing it to solve more problems. We remark that the dire
tapproa
h for the largest NUG problems fails either due to la
k of memory or to the very long timeit takes to a
hieve 
onvergen
e. Experiments have shown that better results are obtained with the1-norm in a few 
ases. However, the overall better results are a
hieved when the 2-norm is usedin the 
olumn ordering.6 Con
lusionsThis work presents new heuristi
s for the 
hange of phases of a hybrid pre
onditioner for solvinglinear systems arising from interior-point methods. We have provided 
omputational eviden
e thatwith the new 
hange of phases more problems are solved and the running time to solve many otherproblems is enhan
ed.Additionally, a new 
olumn ordering is proposed. In the previous approa
h, the 1-norm was usedto reorder the 
olumns of A�. The numeri
al experiments with 2-norm and 1-norm show that 2-norm improves the performan
e of the splitting pre
onditioner for most problems. The new 
olumnordering redu
es the number of iterations for the 
onvergen
e of the 
onjugate gradient methodand the total pro
essing time in most tested instan
es. Experiments adopting the ordering of the
olumns a

ording to the norm of A� 12 instead of A� were also performed but this approa
h hasfailed to improve the results.A
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Problem Row Column Colle
tionKBAPAH2 12 28 KBAPAHELS-19 4350 13186 QAPCHR22B 5587 10417 QAPCHR25A 8149 15325 QAPSCR15 2234 6210 QAPSCR20 5079 15980 QAPROU20 7359 37640 QAPSTE36A 27683 131076 QAPSTE36B 27683 131076 QAPSTE36C 27683 131076 QAPQAP12 2794 8856 NETLIBQAP15 5698 22275 NETLIBSCSD8-2B-64 5130 35910 STOCHLPSCSD8-2C-64 5130 35910 STOCHLPSCSD8-2R-432 8650 60550 STOCHLPPDS-20 32276 106180 MISCPDS-40 64265 214385 MISCPDS-60 96503 332862 MISCPDS-80 126109 430800 MISCPDS-100 156243 514577 MISCNUG08M 742 1632 MISCNUG12M 2794 8856 MISCNUG15M 5698 22275 MISCNUG05 210 225 QAPNUG05-3rd 1410 1425 QAPNUG06 372 486 QAPNUG06-3rd 3972 4686 QAPNUG07 602 931 QAPNUG07-3rd 9742 12691 QAPNUG08 912 1632 QAPNUG08-3rd 19728 29856 QAPNUG12 3192 8856 QAPNUG15 6330 22275 QAPTable 1: Test problems data.



1{NORM 2{NORMProblem IPM Time PCG IPM Time PCGKBAPAH2 8 0.01 - 8 0.01 -ELS-19 31 114.75 328 31 155.97 368CHR22B 329 34.53 389 29 37.24 433CHR25A 28 66.68 535 28 68.51 530SCR15 24 14.81 216 24 18.53 246SCR20 21 135.28 638 21 179.28 512ROU20 24 1571.86 648 24 3014.92 555STE36A 37 19543.78 3029 * * *STE36B 37 47469.21 7343 37 39067.58 6162STE36C 41 73749.53 6135 * * *QAP12 20 350.47 779 20 345.67 740QAP15 23 3196.30 1676 * * *SCSD8-2B-64 7 3.52 - 7 3.52 -SCSD8-2C-64 7 3.44 - 7 3.44 -SCSD8-2R-432 18 33.95 - 18 33.95 -PDS-20 60 661.77 - 60 661.77 -PDS-40 79 1276.17 - 79 1276.17 -PDS-60 85 3646.18 - 85 3646.18 -PDS-80 83 4811.76 - 83 4811.7 -PDS-100 86 8244.13 - 86 8244.13 -NUG08M 10 2.05 88 10 2.05 89NUG12M 20 369.31 782 20 345.82 635NUG15M * * * * * *NUG05 * * * * * *NUG05-3rd * * * * * *NUG06 6 0.25 - 6 0.25 -NUG06-3rd * * * * * *NUG07 11 1.11 52 11 1.10 53NUG07-3rd * * * * * *NUG08 10 3.76 88 10 3.81 89NUG08-3rd * * * * * *NUG12 20 370.53 782 20 348.38 635NUG15 * * * * * *Table 2: Previous 
hange of phases and 
omparison of the 1-norm/2-norm orderings.*: means that the method failed. -:means no 
hange of pre
onditioner



1{NORM 2{NORMProblem IPM Time PCG IPM Time PCGKBAPAH2 8 0.01 - 8 0.01 -ELS-19 31 128.67 305 31 144.26 361CHR22B 29 25.34 240 29 27.61 272CHR25A 28 66.96 548 28 67.74 503SCR15 24 16.16 215 24 18.82 189SCR20 21 147.96 638 21 167.76 622ROU20 24 1478.82 560 24 2302.25 377STE36A 38 24492.67 3338 38 29402.3 2553STE36B * * * 37 32938.95 4795STE36C 42 54635.78 3639 41 30186.23 4359QAP12 20 274.06 506 20 248.95 406QAP15 23 2728.56 1093 23 2815.45 1118SCSD8-2B-64 7 3.52 - 7 3.52 -SCSD8-2C-64 7 3.44 - 7 3.44 -SCSD8-2R-432 18 33.95 - 18 33.95 -PDS-20 60 661.77 - 60 661.77 -PDS-40 79 1276.17 - 79 1276.17 -PDS-60 85 3646.18 - 85 3646.18 -PDS-80 83 4811.76 - 83 4811.7 -PDS-100 86 8244.13 - 86 8244.13 -NUG08M 9 1.57 63 9 1.63 62NUG12M 20 243.59 500 20 208.92 441NUG15M * * * 23 2310.06 1819NUG05 8 0.06 - 8 0.06 -NUG05-3rd 6 2.18 32 6 2.21 38NUG06 6 0.19 60 6 0.17 51NUG06-3rd 7 21.22 - 7 21.22 -NUG07 11 0.73 59 10 0.76 52NUG07-3rd 8 65.45 - 8 65.45 -NUG08 9 3 63 9 3.17 62NUG08-3rd 9 1047.9 - 9 1047.9 -NUG12 20 243.38 500 20 208.66 441NUG15 * * * 23 2298.88 1819Table 3: New 
hange of phases and 
omparison of the 1-norm/2-norm orderings.*: means that the method failed. -:means no 
hange of pre
onditioner



Previous NewProblem IPM Time PCG IPM Time PCGKBAPAH2 8 0.01 - 8 0.01 -ELS-19 31 114.75 328 31 144.26 361CHR22B 29 34.53 389 29 27.61 272CHR25A 28 66.68 535 28 67.74 503SCR15 24 14.81 216 24 18.82 189SCR20 21 135.28 638 21 167.76 622ROU20 24 1571.86 648 24 2302.25 377STE36A 37 19543.78 3029 38 29402.3 2553STE36B 37 47469.21 7343 37 32938.95 4795STE36C 41 73749.53 6135 41 30186.23 4359QAP12 20 350.47 779 20 248.95 406QAP15 23 3196.30 1676 23 2815.45 1118SCSD8-2B-64 7 3.52 - 7 3.52 -SCSD8-2C-64 7 3.44 - 7 3.44 -SCSD8-2R-432 18 33.95 - 18 33.95 -PDS-20 60 661.77 - 60 661.77 -PDS-40 79 1276.17 - 79 1276.17 -PDS-60 85 3646.18 - 85 3646.18 -PDS-80 83 4811.76 - 83 4811.7 -PDS-100 86 8244.13 - 86 8244.13 -NUG08M 10 2.05 88 9 1.63 62NUG12M 20 369.12 782 20 208.92 441NUG15M * * * 23 2310.06 1819NUG05 * * * 8 0.06 -NUG05-3rd * * * 6 2.21 38NUG06 6 0.25 - 6 0.17 51NUG06-3rd * * * 7 21.22 -NUG07 11 1.11 52 10 0.76 52NUG07-3rd * * * 8 65.45 -NUG08 10 3.76 88 9 3.17 62NUG08-3rd * * * 9 1047.9 -NUG12 20 370.53 782 20 208.66 441NUG15 * * * 23 2298.88 1819Table 4: New and previous 
hange of phases 
omparison with the 2-norm ordering.*: means that the method failed. -:means no 
hange of pre
onditioner


