
A note on hybrid preonditioners for large-sale normal equationsarising from interior-point methodsM. I. Velazo � A. R. L. Oliveira � F. F. Campos yAbstratA previously developed approah for solving linear systems arising from interior-point methodsapplied to linear programming problems is onsidered and improved upon. The preonditioned on-jugate gradient method is used to solve these systems in two di�erent phases of the interior-pointmethod: during the initial interior-point iterations, an inomplete Cholesky fatorization preon-ditioner with ontrolled �ll-in is used; in the seond phase, near the optimal solution, a speializedpreonditioner based upon the LU fatorization is used to ombat the high ill-onditioning of thelinear systems in this phase. This approah works better than diret methods on some lasses oflarge-sale problems. New heuristis are presented to identify the hange of phases, thus ahiev-ing better omputational results and solving additional problems. Moreover, new orderings of theonstraint matrix olumns are presented allowing savings in the preonditioned onjugate gradientmethod iteration number. Experiments are performed with a set of large-sale problems and bothapproahes are ompared with respet to the number of iterations and running time.Keywords: Interior-point methods, Preonditioners, Iterative methods.1 IntrodutionThe most expensive step of an interior-point method is the omputation of the searh diretionthrough the solution of one or more linear systems. Suh systems are inde�nite and an be writtenin a symmetri form known as an augmented system. A ommon approah redues the augmentedsystem to a smaller positive de�nite system alled the normal equations. Usually they are solvedby diret methods. However, for some lasses of large-sale problems, the use of diret methodsbeomes prohibitive beause of storage and running-time limitations. In suh situations, iterativeapproahes are more interesting.The performane of implementations using iterative methods depends on the hoie of an appro-priate preonditioner, in partiular, the linear system beomes highly ill-onditioned as an optimalsolution of the problem is approahed. Several preonditioners have been used to solve the normalequations systems from interior-point methods, see for example [1, 18, 22, 26℄. Some of them arebased on inomplete Cholesky fatorization of the normal equations system. Typially, this lass ofpreonditioners is eÆient in the initial iterations but it deteriorates as the interior-point methodonverges to a solution. In general, the normal equations system is more ill-onditioned and denserthan the augmented system and this has motivated the study of methods to solve the inde�nitesystem [5, 9, 12, 13, 2, 11, 17, 20, 23℄. The preonditioner for the augmented system proposedin [20℄ is based on an LU fatorization and has been shown to perform well near the solution of thelinear programming problem but it gives poor results during the initial interior-point iterations.In [6℄ an iterative hybrid approah was proposed for solving the normal equations system that arisesin an interior-point method for linear programming. The onjugate gradient method is preondi-tioned during the initial interior-points iterations (phase I ) using an inomplete fatorization known�Applied Mathematis Department - State University of Campinas, C.P. 6065, 13.083-970 Campinas - SP, Brazil;(velazo,aurelio�ime.uniamp.br).yComputer Siene Department - Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31.270-010 BeloHorizonte - MG, Brazil; (�ampos�d.ufmg.br).



as the ontrolled Cholesky fatorization (CCF) [8℄ and in the remaining iterations (phase II ) bythe splitting preonditioner developed in [20℄. The amount of memory used by the CCF preon-ditioner is easily ontrolled during interior-point iterations. As the system beomes ill-onditionedmore �ll-in is allowed. When the CCF preonditioner loses eÆieny, the system is already highlyill-onditioned and it is a good indiator that the splitting preonditioner will work better. Aheuristi has been developed to determine the hange of phases. The hybrid approah is appliedwithin the PCx ode [10℄.In this work, the hange of phases heuristis developed in [6℄ is improved upon and the olumnsplitting rule in [20℄ is modi�ed. As a result, the omputational running times obtained in [6℄ areredued and more of the large-sale problems an now be solved by the hybrid approah.2 Primal-Dual interior-point methodsPrimal-dual interior-point methods are widely used for solving large-sale linear programming prob-lems [27℄. Consider the linear programming problem in the standard form,min Tx (1)subjet to Ax = bx � 0;where A 2 Rm�n , b 2 Rm ,  2 Rn , x 2 Rn and m � n. We remark that the following disussionan be easily extended when problems with bounded variables are onsidered.The dual problem assoiated with problem (1) ismax bT y (2)subjet to AT y + z = z � 0;where y 2 Rm is a vetor of free variables and z 2 Rn is the vetor of dual slak variables. TheKarush-Kuhn-Tuker optimality onditions for (1) and (2) areAx� b = 0 (3)AT y + z �  = 0XZe = 0(x; z) � 0;where e 2 Rn is the vetor of all ones and X = diag(x), Z = diag(z). The optimality onditions (3)are a system of nonlinear equations. The Primal-dual methods are, therefore, based on Newton'smethod applied to the optimality onditions without the nonnegativity of the (x; z) omponents.Mehrotra's preditor-orretor method [19℄ is one of the most suessful variant amongst the lassof interior-point methods. The searh diretion is omputed by solving two linear systems whihhave the same oeÆient matrix but di�erent right-hand sides. The aÆne-saling diretions areomputed by �nding the solution of24 A 0 00 AT InZk 0 Xk 3524 �axk�ayk�azk 35 = 24 rkprkdrka 35 (4)where rkp = b � Axk , rkd =  � AT yk � zk and rka = �XkZke. Then, to ompute the enteringorretor diretion (�xk;�yk;�zk) the right-hand side vetor of (4) is replaed by rkd = 0,rkp = 0, rka = �ke��aXk�aZke and the resulting systems solved. Here �k is a entering parameter,�aXk = diag(�axk) and �aZk = diag(�azk). The searh diretion is obtained by adding theaÆne-saling diretion to the entering orretor diretion. The overall searh diretions may be



omputed solving system (4) replaing rka by �ke � �aXk�aZke � XkZke and solving a seondlinear system.The preditor-orretor version an be summarized as follows:Method 1 (Preditor-orretor version).Given y0 and (x0; z0) > 0.For k = 0; 1; 2; : : :, do(1) Solve linear system (4).(2) Compute �k = � ~kk�2 and set �k = �k �kn � where, k = (xk)T zk and~k = (xk + ~�k�xk)T (zk + ~�k�zk).(3) Solve linear system (4) replaing rka by �ke��aXk�aZke�XkZke.(4) Form the new iterate (xk+1; yk+1; zk+1) = (xk ; yk; zk) + �k(�xk ;�yk;�zk):3 Linear system solutionThe most expensive step in interior-point methods is the omputation of searh diretions. Sineboth preditor-orretor systems share the same oeÆient matrix, we will only disuss the linearsystem given by (4). In pratie, variables �z (from now on the supersript k will be dropped forlarity reason) are eliminated and the system redues to the augmented inde�nite linear system,whih an be written in a symmetri form,� ���1 ATA 0 �� �x�y � = � rd �X�1rarp � ; (5)where � = Z�1X . Notie that X�1 and Z�1 are well de�ned by de�nition of interior-point. Giventhat the matrix A is full rank, the system (5) an be redued to a smaller positive de�nite systemalled the normal equations by eliminating �x from the �rst equation,(A�AT )�y = A�(rd �X�1ra) + rp : (6)Diret or iterative methods an be applied to solve either system (5) or (6). The most ommonapproah used in interior-point methods for solving the normal equations system is the Choleskyfatorization. This approah has the advantage of working with symmetri positive de�nite matri-es. However, it an be very expensive if the Cholesky fator is dense. For instane, the preseneof few dense olumns in A auses loss of sparsity in A�AT .One way around this problem is the use of iterative methods. The lassial approah adopted tosolve the normal equations system is the preonditioned onjugate gradient method. However, tobuild the preonditioner, suh implementations often need to ompute A�AT whih is usually lesssparse than A. Moreover, it is in general more diÆult to �nd a good preonditioner to the normalequations matrix than to the augmented one. For this reason, the augmented system strategy hasbeen onsidered in several papers [4, 9, 13, 17, 20℄ even though it is inde�nite.However, the Cholesky fatorization annot be applied to suh system sine there is no numeriallystable way to fator a general inde�nite matrix onto LDLT with D diagonal. Another alternativethat has been used in interior-point methods hanges the inde�nite system to a quaside�nite oneapplying primal and dual regularization method [3℄. In this ase, the Cholesky-like fatorizationLDLT with a diagonal D exists for any symmetri row and olumn permutation of the matrix.This approah has also been used with iterative methods [5℄. For inde�nite systems, the onjugategradient method is not guaranteed to ahieve onvergene. However, it was suessfully appliedwith a onvenient preonditioner [5, 13℄.Most preonditioners for inde�nite systems from interior-point methods are developed for solvingnonlinear and quadrati programming problems and almost always are not eÆient in solving large-sale linear programming problems. However, a lass of preonditioners alled splitting preondi-tioners was designed speially for inde�nite systems arising from linear programming problems [20℄.



An important feature of this lass is the option to redue the preonditioned inde�nite system toa positive de�nite one like the normal equations system allowing the appliation of the onjugategradient method. Moreover, there are variants of the onjugate gradient method whih take intoaount the normal equations struture of the linear system [25℄. Suh variants are not exploited inthis work. Finally, sine this lass was developed for the last interior-point iterations, an alternativepreonditioner is neessary for the initial iterations.4 A Hybrid preonditionerThe matrix � hanges signi�antly from one interior-point iteration to the next and it beomeshighly ill-onditioned in the �nal iterations. For this reason it is diÆult to �nd a preonditioningstrategy that produes good performane of iterative methods over the entire ourse of the interior-point iterations.In [6℄ it was proposed to apply the onjugated gradient method for solving system (6) preonditionedby a hybrid preonditioner matrix M ,M�1(A�AT )M�T �y =M�1(A�(rd �X�1ra) + rp); (7)where �y =MT�y. This approah assumes the existene of two phases during interior-point itera-tions. In the �rst one, the ontrolled Cholesky preonditioner is used to build matrix M and thismethod is briey desribed in Setion 4.1. After the hange of phases, matrixM will be built usingthe splitting preonditioner, whih is presented in Setion 4.2.4.1 Controlled Cholesky Fatorization preonditionerThe Controlled Cholesky Fatorization (CCF) preonditioner was designed for solving general pos-itive de�nite systems [8℄ and it was suessfully applied to solve linear systems from impliit time-dependent partial di�erential equations [8℄. This fatorization makes it possible to ontrol �ll-inwith preditable memory requirements.Consider the Cholesky fatorization A�AT = LLT = ~L~LT + R, where L is the fator obtainedwhen fatorization is omplete, ~L when it is inomplete and R is a remainder matrix. De�ningE = L� ~L then the preonditioned oeÆient matrix is~L�1(A�AT )~L�T = (~L�1L)(~L�1L)T = (Im + ~L�1E)(Im + ~L�1E)T :It is easy to see that when ~L � L =) E � 0 =) ~L�1(A�AT )~L�T � Im. It is assumed that thematrix A�AT has been diagonally saled to give a unit diagonal [14℄ in order to improve robustness.The CCF is based on the minimization of the Frobenius norm of E. Thus, we onsider the problemminimize kEk2F = mXj=1 j with j = mXi=1 jlij � ~lij j2:where lij represents the ij-th entry of L.Now j an be split in two summations:j = tj+�Xk=1 jlik j � ~lik j j2 + mXk=tj+�+1 jlik j j2;where tj is the number of nonzero entries below the diagonal in the jth olumn of matrix A�ATand � is the number of extra entries allowed per olumn. The �rst summation ontains all tj + �nonzero entries of the jth olumn of ~L. The seond one has only those remaining entries of theomplete fator L whih do not have orresponding entries in ~L. Considering that ~lij � lij as � ! m



and lij is not omputed, kEkF is minimized based on a heuristi, whih onsists of modifying the�rst summation. By inreasing �, that is, allowing more �ll-in, j will derease. Moreover, kEkF isfurther minimized by hoosing the tj + � largest entries of ~L in absolute value almost annihilatingthe orresponding largest entries in L leaving only the smallest lij in the seond summation. Thepreonditioner ~L is built by olumns. Consequently it needs only the jth olumn of A�AT ateah time allowing great savings of memory or their omputation in parallel when more than oneproessor is available.The main features of the CCF preonditioner are desribed in detail in [6℄ and an be summarizedas follows:� Choie of entries by value, allowing us to work with the largest ones;� Generalization of improved inomplete fatorization;� Avoiding loss of positive de�niteness by exponential shift;� Versatility preonditioner: the number of nonzero entries per olumn an vary from 1 to m;� Preditable storage.4.2 The Splitting preonditionerThe splitting preonditioner was proposed for inde�nite systems arising from interior-point meth-ods [20℄ for linear programming problems. This preonditioner is a generalization of those proposedby Resende and Veiga [24℄ in the ontext of the minimum ost network ow problem. The mainappeal of this lass of preonditioners is that it works better near a solution of the linear program-ming problem. That is a welome feature sine the linear system is known to be very ill-onditionedlose to a solution and these systems are diÆult to be solved by iterative methods. Additionally,the splitting preonditioner avoids the normal equations omputation. However, sine the preon-ditioner is speially tailored for the �nal iterations of the interior-point methods, it fails to obtainonvergene in the initial iterations for many linear programming problems. We are using a versionof the splitting preonditioner derived as follows [20℄:It is possible do de�ne P 2 Rn�n a permutation matrix, suh that A = [B N ℄P where B 2 Rm�mis nonsingular and N 2 Rn�(n�m) , sine A is full row rank. Thus,A�AT = [B N ℄P T�P � BTNT � = [B N ℄ � �B 00 �N �� BTNT � = B�BBT +N�NNT :Now, the preonditioner is given by �� 12B B�1 and the preonditioned matrix T is the following:T = �� 12B B�1(A�AT )B�T�� 12B = Im +WW T ; (8)where W = �� 12B B�1N� 12N 2 Rm�(n�m) .The produt B�1N an be seen as a saling of the linear programming problem. Close to a solution,at least n�m entries of � are small. Thus, with a suitable hoie of the olumns of B, the diagonalentries of ��1B and �N are very small lose to a solution. In this situation, W approahes the zeromatrix, T approahes the identity matrix and both the smallest eigenvalue �min(T ) and the largesteigenvalue �max(T ) approah the value 1 and thus its ondition number, the ratio �2(T ) = �max(T )�min(T ) ,too.The prie paid for avoiding the normal equations system is to �nd B and solve linear systems usingit. However, the fatorization QB = LU , where Q 2 Rm�m is a permutation matrix, is typiallyeasier to ompute than the Cholesky fatorization. In fat, it is known [15℄ that the sparse patternof LT and U is ontained in the sparse pattern of R, where AAT = RTR, for any valid permutationQ. In pratie, the number of nonzero entries of R is muh larger than the number of nonzeroentries of L and U together.



A strategy to form B is to minimize kWk sine lose to a solution the preonditioned matrixapproahes the identity for a suitable hoie of B's olumns due to the diagonal entries of ��1Band �N values. This problem is hard to solve. An approximate solution was obtained in [20℄ byseleting the �rst m linearly independent olumns of A� with smallest 1-norm to form B.4.2.1 Computing the splitting preonditioner eÆientlyA naive implementation of the splitting preonditioner an be very expensive, mainly beause B ishard to �nd. A detailed desription of how to implement it eÆiently an be found in [20℄. Next,the main topis are briey ommented.A nie property of the splitting preonditioner is that we an work with the seleted set of olumnsfor some iterations. As a onsequene, B an be kept and the preonditioner is very heap toompute for suh iterations sine only the diagonal matrix � hanges.For this appliation, the most eonomial way to ompute the LU fatorization is to work with thedelayed update form. It �ts very well with our problem beause when a linearly dependent olumnappears, it is eliminated from the fatorization and the method proeeds with the next olumn inthe ordering.One of the main drawbaks of a straightforward implementation is the exessive �ll-in in the LUfatorization. The reason is that the riterion for reordering the olumns does not take the sparsitypattern ofA into aount. A good tehnique onsists of interrupting the fatorization when exessive�ll-ill ours. The independent olumns found thus far are reordered by the number of nonzeroentries. The fatorization is then started from srath using the new ordering and the proessrepeated until m independent olumns are found.A seond fatorization is then applied to the hosen set of independent olumns using standardtehniques for omputing an eÆient sparse LU fatorization. As a welome side e�et, it is notneessary to store U in the previous fatorization that determines B.Before starting the �rst fatorization, the sparse pattern of the ordered matrix is studied in or-der to identify olumns that are symbolially (in)dependent, that is, olumns that are linearly(in)dependent in struture no matter the numerial values of their nonzero entries. Those olumnsthat are dependent are disarded while the independent ones are moved to the front and reorderedamong them as mentioned early. This tehnique does not perform any oating point operation andleads to faster implementations.4.3 A new olumn orderingIn [20℄ the �rst m linearly independent olumns of A� with smallest 1-norm are seleted to formB aiming to obtain W lose to the zero matrix. However, the 1-norm has a tendeny to diminishthe e�et of outliers, a feature not desirable in this ontext sine the goal is to split the olumns intwo sets of size m and n�m, respetively. In fat, we would like to stress the so alled \outliers".In this work we are using the 2-norm instead of the 1-norm, avoiding this tendeny [2℄. This hoiehave improved the performane of the splitting preonditioner for most problems. It also allowsbetter omputational results after the hange of phases and redues the number of iterations for theonvergene of the onjugate gradient method. Experiments with the 1-norm show that it doesnot obtain better performane in omparison with the 2-norm in a similar fashion as the resultsobtained by the 1-norm. It seems that it happens beause the 1-norm is given by the value of onesingle entry instead of a ombination of the whole olumn.Experiments ordering the olumns of A� 12 were also performed, although the results did not im-prove for any of the three norms tested in omparison with the ordering given by olumns of A�.



4.4 Change of phasesIn a previous work [6℄, the hange of phase was performed when the initial gap (xT0 z0) is reduedby a fator of 106 or the number of inner iterations of preonditioner iterative method reahes m2 .This hange of phase atually happens in a very early stage of the optimization proess and thehybrid approah works better when the hange ours almost at the end of the proess.In this work, a new hange of phase is presented. If the number of iterations needed for the onju-gate gradient method to ahieve onvergene is greater than m6 the parameter � in the ontrolledCholesky fatorization is updated: �  � + 10. The swith now happens when � falls above themaximum allowed. In the next setion omparative numerial experiments are presented with bothheuristis, showing that the new one obtains better omputational results.5 Numerial experimentsThe hybrid approah was integrated in the PCx ode [10℄. The proedures for solving linear systemswere oded in C, exept the ontrolled Cholesky fatorization, whih was implemented in FOR-TRAN. The PCx's default parameters are adopted exept the multiple entrality orretions [16℄that was disabled. All tests were performed on an Intel Core 2 Duo 2.2GHz proessor with 2Gb ofmemory under Linux using the g and gfortran ompilers.In all experiments we have used the preonditioned onjugate gradient method with terminationriteria set by the Eulidean residual norm jjrk jj. For solving both systems (aÆne diretion) and(�nal diretion) in phase I, the termination riteria is set as jjrk jj < 10�4. When the optimalitygap is less than 10�5 or hange of phases is deteted, the riteria hange to jjrkjj < 10�8. Theonjugate gradient method maximum number of iterations is given by the system dimension.5.1 Test problemsAll test problems are publi domain linear problems. Most QAP models tested here are fromthe QAPLIB olletion [7℄ with the modi�ation desribed in [21℄. Some of the NUG problems,however, are not modi�ed. To larify when one of the NUG problems has been modi�ed, the letterM is added to the end of the problem's name. Table 1 summarizes the test data. The number ofrows and olumns refer to preproessed problems.5.2 Computational resultsThe behavior of both hybrid approahes is presented in three tables. In Table 2 the results using theprevious heuristi approah with 1-norm and 2-norm for reordering the olumns of A are presented.For eah test problem IPM represents the interior-point method outer iterations number, T imeindiates the total CPU time in seonds and PCG represents the average number of iterations of theiterative method after the hange of phase ours. For some problems the hange of preonditionerdoes not happen and the symbol (-) is used to represent that situation. In some problems thenumber of iterations for iterative methods is redued, although the total time of proessing doesnot redue. This is due to the fat that the preonditioner with the new ordering is less sparseleading to more expensive inner-iterations.The previous heuristi does not ahieve good performane for the NUG problems. The hange ofphases is triggered in an early stage of the optimization proess. For all tested problems betteromputational results are ahieved when the CCF is used until nearly the end of the optimizationproess. Table 3 shows the results when the new hange of phase is used for both the 1-norm and2-norm olumn reordering. Therefore, the hange of preonditioner ours in the same iteration.For eah test problem IPM represents the number of outer iterations, T ime indiates the totalCPU time in seonds and PCG represents the average number of iterations of the iterative method



after the hange of preonditioner. For some problems the hange of phase does not our and thesymbol (-) is used to represent that.Table 4 shows a omparison between the two heuristi approahes. For eah test problem IPMrepresents the number of outer iterations, T ime indiates the total CPU time in seonds andPCG represents the average number of iterations of the iterative method after the hange ofpreonditioner. The results show that the proessing time was redued in most of test problems. Insome ases the running time was not redued, although the average of inner-iterations redues. Theset of NUG problems show that the new rules for hange of phases and the new olumn orderingimprove robustness of this approah allowing it to solve more problems. We remark that the diretapproah for the largest NUG problems fails either due to lak of memory or to the very long timeit takes to ahieve onvergene. Experiments have shown that better results are obtained with the1-norm in a few ases. However, the overall better results are ahieved when the 2-norm is usedin the olumn ordering.6 ConlusionsThis work presents new heuristis for the hange of phases of a hybrid preonditioner for solvinglinear systems arising from interior-point methods. We have provided omputational evidene thatwith the new hange of phases more problems are solved and the running time to solve many otherproblems is enhaned.Additionally, a new olumn ordering is proposed. In the previous approah, the 1-norm was usedto reorder the olumns of A�. The numerial experiments with 2-norm and 1-norm show that 2-norm improves the performane of the splitting preonditioner for most problems. The new olumnordering redues the number of iterations for the onvergene of the onjugate gradient methodand the total proessing time in most tested instanes. Experiments adopting the ordering of theolumns aording to the norm of A� 12 instead of A� were also performed but this approah hasfailed to improve the results.Aknowledgments The authors would like to thank the Foundation for the Support of Researhof the State of S~ao Paulo (FAPESP) and the Brazilian Counil for the Development of Siene andTehnology (CNPq).Referenes[1℄ I. Adler, M. G. C. Resende, G. Veiga, and N. Karmarkar, An implementation of Kar-markar's algorithm for linear programming, Mathematial Programming, 44 (1989), pp. 297{335.[2℄ G. AL-Jeiroudi, J. Gondzio, and J. A. J. Hall, Preonditioning inde�nite systems ininterior point methods for large sale linear optimization, Optim. Methods Softw., 23 (2008),pp. 345{363.[3℄ A. Altman and J. Gondzio, Regularized symmetri inde�nite systems in interior pointmethods for linear and quadrati optimization, Optimization Methods and Software, 11 (1999),pp. 275{302.[4℄ L. Bergamashi, J. Gondzio, M. Venturin, and G. Zilli, Inexat onstraint preondi-tioners for linear systems arising in interior point methods, Computational Optimization andAppliations, 36 (2007), pp. 137{147.[5℄ L. Bergamashi, J. Gondzio, and G. Zilli, Preonditioning inde�nite systems in interiorpoint methods for optimization, Computational Optimization and Appliations, 28 (2004),pp. 149{171.
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Problem Row Column ColletionKBAPAH2 12 28 KBAPAHELS-19 4350 13186 QAPCHR22B 5587 10417 QAPCHR25A 8149 15325 QAPSCR15 2234 6210 QAPSCR20 5079 15980 QAPROU20 7359 37640 QAPSTE36A 27683 131076 QAPSTE36B 27683 131076 QAPSTE36C 27683 131076 QAPQAP12 2794 8856 NETLIBQAP15 5698 22275 NETLIBSCSD8-2B-64 5130 35910 STOCHLPSCSD8-2C-64 5130 35910 STOCHLPSCSD8-2R-432 8650 60550 STOCHLPPDS-20 32276 106180 MISCPDS-40 64265 214385 MISCPDS-60 96503 332862 MISCPDS-80 126109 430800 MISCPDS-100 156243 514577 MISCNUG08M 742 1632 MISCNUG12M 2794 8856 MISCNUG15M 5698 22275 MISCNUG05 210 225 QAPNUG05-3rd 1410 1425 QAPNUG06 372 486 QAPNUG06-3rd 3972 4686 QAPNUG07 602 931 QAPNUG07-3rd 9742 12691 QAPNUG08 912 1632 QAPNUG08-3rd 19728 29856 QAPNUG12 3192 8856 QAPNUG15 6330 22275 QAPTable 1: Test problems data.



1{NORM 2{NORMProblem IPM Time PCG IPM Time PCGKBAPAH2 8 0.01 - 8 0.01 -ELS-19 31 114.75 328 31 155.97 368CHR22B 329 34.53 389 29 37.24 433CHR25A 28 66.68 535 28 68.51 530SCR15 24 14.81 216 24 18.53 246SCR20 21 135.28 638 21 179.28 512ROU20 24 1571.86 648 24 3014.92 555STE36A 37 19543.78 3029 * * *STE36B 37 47469.21 7343 37 39067.58 6162STE36C 41 73749.53 6135 * * *QAP12 20 350.47 779 20 345.67 740QAP15 23 3196.30 1676 * * *SCSD8-2B-64 7 3.52 - 7 3.52 -SCSD8-2C-64 7 3.44 - 7 3.44 -SCSD8-2R-432 18 33.95 - 18 33.95 -PDS-20 60 661.77 - 60 661.77 -PDS-40 79 1276.17 - 79 1276.17 -PDS-60 85 3646.18 - 85 3646.18 -PDS-80 83 4811.76 - 83 4811.7 -PDS-100 86 8244.13 - 86 8244.13 -NUG08M 10 2.05 88 10 2.05 89NUG12M 20 369.31 782 20 345.82 635NUG15M * * * * * *NUG05 * * * * * *NUG05-3rd * * * * * *NUG06 6 0.25 - 6 0.25 -NUG06-3rd * * * * * *NUG07 11 1.11 52 11 1.10 53NUG07-3rd * * * * * *NUG08 10 3.76 88 10 3.81 89NUG08-3rd * * * * * *NUG12 20 370.53 782 20 348.38 635NUG15 * * * * * *Table 2: Previous hange of phases and omparison of the 1-norm/2-norm orderings.*: means that the method failed. -:means no hange of preonditioner



1{NORM 2{NORMProblem IPM Time PCG IPM Time PCGKBAPAH2 8 0.01 - 8 0.01 -ELS-19 31 128.67 305 31 144.26 361CHR22B 29 25.34 240 29 27.61 272CHR25A 28 66.96 548 28 67.74 503SCR15 24 16.16 215 24 18.82 189SCR20 21 147.96 638 21 167.76 622ROU20 24 1478.82 560 24 2302.25 377STE36A 38 24492.67 3338 38 29402.3 2553STE36B * * * 37 32938.95 4795STE36C 42 54635.78 3639 41 30186.23 4359QAP12 20 274.06 506 20 248.95 406QAP15 23 2728.56 1093 23 2815.45 1118SCSD8-2B-64 7 3.52 - 7 3.52 -SCSD8-2C-64 7 3.44 - 7 3.44 -SCSD8-2R-432 18 33.95 - 18 33.95 -PDS-20 60 661.77 - 60 661.77 -PDS-40 79 1276.17 - 79 1276.17 -PDS-60 85 3646.18 - 85 3646.18 -PDS-80 83 4811.76 - 83 4811.7 -PDS-100 86 8244.13 - 86 8244.13 -NUG08M 9 1.57 63 9 1.63 62NUG12M 20 243.59 500 20 208.92 441NUG15M * * * 23 2310.06 1819NUG05 8 0.06 - 8 0.06 -NUG05-3rd 6 2.18 32 6 2.21 38NUG06 6 0.19 60 6 0.17 51NUG06-3rd 7 21.22 - 7 21.22 -NUG07 11 0.73 59 10 0.76 52NUG07-3rd 8 65.45 - 8 65.45 -NUG08 9 3 63 9 3.17 62NUG08-3rd 9 1047.9 - 9 1047.9 -NUG12 20 243.38 500 20 208.66 441NUG15 * * * 23 2298.88 1819Table 3: New hange of phases and omparison of the 1-norm/2-norm orderings.*: means that the method failed. -:means no hange of preonditioner



Previous NewProblem IPM Time PCG IPM Time PCGKBAPAH2 8 0.01 - 8 0.01 -ELS-19 31 114.75 328 31 144.26 361CHR22B 29 34.53 389 29 27.61 272CHR25A 28 66.68 535 28 67.74 503SCR15 24 14.81 216 24 18.82 189SCR20 21 135.28 638 21 167.76 622ROU20 24 1571.86 648 24 2302.25 377STE36A 37 19543.78 3029 38 29402.3 2553STE36B 37 47469.21 7343 37 32938.95 4795STE36C 41 73749.53 6135 41 30186.23 4359QAP12 20 350.47 779 20 248.95 406QAP15 23 3196.30 1676 23 2815.45 1118SCSD8-2B-64 7 3.52 - 7 3.52 -SCSD8-2C-64 7 3.44 - 7 3.44 -SCSD8-2R-432 18 33.95 - 18 33.95 -PDS-20 60 661.77 - 60 661.77 -PDS-40 79 1276.17 - 79 1276.17 -PDS-60 85 3646.18 - 85 3646.18 -PDS-80 83 4811.76 - 83 4811.7 -PDS-100 86 8244.13 - 86 8244.13 -NUG08M 10 2.05 88 9 1.63 62NUG12M 20 369.12 782 20 208.92 441NUG15M * * * 23 2310.06 1819NUG05 * * * 8 0.06 -NUG05-3rd * * * 6 2.21 38NUG06 6 0.25 - 6 0.17 51NUG06-3rd * * * 7 21.22 -NUG07 11 1.11 52 10 0.76 52NUG07-3rd * * * 8 65.45 -NUG08 10 3.76 88 9 3.17 62NUG08-3rd * * * 9 1047.9 -NUG12 20 370.53 782 20 208.66 441NUG15 * * * 23 2298.88 1819Table 4: New and previous hange of phases omparison with the 2-norm ordering.*: means that the method failed. -:means no hange of preonditioner


