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Abstract

Interior point methods specialized to the L; fitting problem are surveyed and the
affine scaling primal method is presented. Their main features are highlighted and
improvements are proposed for polynomial fitting problems. For such problems, a
careful handling of data avoids storing of matrices for the interior point approaches.
Moreover, the computational complexity of iterations is reduced. An inexpensive
way to compute a basic solution, using interpolation, is also provided. Extensive
numerical experiments are carried out, including comparisons with a specialized
simplex method. In general, the interior point methods performed better than the
simplex approach. Among the interior point methods investigated, the dual affine
scaling version was the most efficient.
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1 Introduction

Li-norm based curve fitting is a recognized robust method for data analysis
in statistics. Its main strength is the ability to diminish effect of outliers upon
estimates; other relevant aspects are appraised by Dodge (1987b). Recently,
statistics techniques have found their way into areas previously considered
unrelated, for example, the one of databases and data mining in particular
(Glymour, Madigan, Pregibon and Smyth, 1996; Elder and Pregibon, 1995).
In data mining one may be interested in obtaining interesting patterns from
a large dataset (e.g., purchase transactions in a department store), as well as
in predicting behavior (e.g., variables) (Berson and Smith, 1997). Therefore,
efficient solutions for curve fitting problems in general, and the L; curve fitting
problem in particular, are of current interest.

Linear programming provides a convenient representation for the L; fitting
problem. This representation, known since late fifties, brought along a prac-
tical way to solve this class of problems — namely, the simplex algorithm; it
played a major role in the wide use of L;-norm based statistical data analysis.

The first specialized linear programming methods for solving L, fitting prob-
lems to appear are variants of the simplex algorithm (Wagner, 1959; Barrodale
and Roberts, 1973; Armstrong, Frome and Kung, 1979; Abdelmalek, 1980).
Since the advent of the interior point approach for linear programming in
mid eighties (Karmarkar, 1984), a new family of specially designed interior
point methods has been developed (Meketon, 1987; Sherali, Skarpness and
Kim, 1988; Ruzinsky and Olsen, 1989; Zhang, 1993). Another technique closely
related to the interior point family was proposed by Coleman and Li (1992b).

This work revisits several interior point methods for the L, fitting problem
proposed in the past ten years. The polynomial L, fitting problem is discussed
in more detail; by exploiting its special structure we propose improvements
that enhance all interior point approaches to the problem. These improvements
lead to reduction of the computational complexity and memory requirements
of the interior point methods. We also show how a basic solution can be easily
obtained for the polynomial fitting problem once the interior point method
terminates.

Computational performance of interior point and Coleman and Li’s (1992b)
methods for L, fitting problems are benchmarked. They are all compared
against one of the best known implementation of the specialized simplex ap-
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proach for this problem (Armstrong et al., 1979).

This paper is organized as follows. Next section discusses the main interior
point methods for the L, fitting problem. Section 3 brings improvements to
the polynomial fitting problem. Extensive numerical results are presented in
Section 4. Conclusions follow.

Notation. We use the following notation throughout this work. Lower case
Greek letters denote scalars, lower case Latin letters denote vectors and upper
case Latin letters denote matrices. Components of vectors are represented by
the corresponding letter with subscripts. The symbol 0 will denote the scalar
zero, the zero column vector and the zero matrix; its dimension will be clear
from context. The identity matrix will be denoted by I. The Euclidean norm is
represented by ||-||. Other p-norms are represented by || - ||,. Diagonal matrices
whose diagonal entries are the components of a vector represented by the same
Latin letter (in lower case), X = diag(z) for instance, are used throughout
the paper.

2 Interior Point Methods for the L; Fitting Problem

Consider the L, fitting problem,

minimize ||r||;

(1)

subject to Ax+7r=>

where A is a full column rank n xm matrix and r, b and x are column vectors of
appropriate dimension. It is well known that this problem can be transformed
into a linear programming problem by writing r as the difference between two
nonnegative variables r = u — v

minimize e'(u + v) @
subject to Az +u—v =05, (u,v) >0,
where e is the n-vector of all ones.
Associated with problem (2) is the dual linear programming problem
maximize by

subject to Aly =0, —e <y <e,



where y is a n-vector. The optimality conditions for (2) and (3) is given by

Az +u—v—1>
Aty
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where p and ¢ are vectors of slack variables (for y). Recall that U,V ,P and Q
are diagonal matrices whose diagonal entries are, respectively, the components
of u, v, p, and gq.

The dual affine-scaling method ® (Meketon, 1987) was the first specialization of
interior point methods for solving (2) to appear. The same method with a dif-
ferent choice of the scaling matrix is presented in (Ruzinsky and Olsen, 1989).
This work adopts the second choice since it uses the nowadays standard way
for dealing with bounded variables in interior point methods. A primal-dual
method was developed by Zhang (1993) together with a predictor-corrector
variant. The primal-dual and the predictor-corrector are compared against a
specialized simplex implementation in (Duarte and Vanderbei, 1994). In or-
der to complete this family of methods, we present the primal affine-scaling
method.

The main ideas of the the method described by Coleman and Li (1992b) are
pretty much in the flavor of interior point techniques. In particular, its it-
erations are similar to the iterations of interior point approaches; the most
noticeable difference being the line search procedure. The quadratic conver-
gence result shown for this method leaded us to study it.

Figures 1, 2, 3 and 4 summarize the interior point approaches specialized
for L, fitting problems (2). Figure 5 summarizes the method proposed by
Coleman and Li (1992b). In the description of the methods we sometimes use
the notation z = (z,u,v) and the gap v = u'p + v'q. The parameters 7 and
p used in some of the methods are discussed in the Numerical Experiments
section. The convergence criteria and starting points are also discussed later.

It is convenient to define 2p = e—y and 2g = e+y for the implementation of the
dual method. However, these definitions were not used in Figure 2 to achieve

3 By dual method we mean a method that solves the related dual problem in order
to obtain the solution of the primal problem.



Given z° and (u®,v°) > 0 such that Az® 4+ u® —v% = b.
For £k =0,1,2,..., do

D*=((U*? +(vH1)™ (1)
wh = DF((U")? — (VF)?)e (2)
AzF = (A'DFA) T Atw® (3)
y* =wF — DFAALF (4)
Aut = —(UF)?p (5)
Av® = —(VF)24F (6)
ak:Tmin{min{_uéC Auk <0 —u: Avk<0}} (7)
i Auk 7 TApE T
2L =2k 4 oF AR (8)
Until Convergence.
Fig. 1. Primal Affine-Scaling Method (L1P)
Given —e < y° < e such that Aly? = 0.
For £k =0,1,2,..., do
ot = Y (P 4 (@) 0
z* = (A'DFA) 1A' Db (2)
rk=b— AzF (3)
AgF = DFrk (4)
Apf=—-Adk (5)

k qlc
Apf < 0;—=
D; ’Aq,’-“
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k_ . { . { D;

o’ =7 min { min %
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PP = pk 4 oF APk
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Until Convergence.

Fig. 2. Dual Affine-Scaling Method (L1D)

a cleaner notation. Zhang (1993) works with a slight different formulation of
the linear programming problem. Figures 3 and 4 present the version of his
methods for problem (2). Because we noticed some convergence difficulties

2
when p* = (7k) , as proposed by Zhang, this perturbation parameter was

2n

changed to pf = ( i )

(2n)3




Given z° and (u°,v°) > 0 such that Az° + 4’ —v® =band —e < 9 < e
such that Aly? = 0.
For £k =0,1,2,..., do

Dk — (Uk(Plc)—l + Vk(Qk)—l)—l
wh = DE(F (@) = (PR e + uF — oF)

(2)
(3)
Az = (A'D*A)~! Alwk (4)
AyF =wb — DFAAZF (5)
AuF = pF(PF) e — b + UF(PF) L AyF (6)
Avt =pH QM) 7l — ot = VHQN) T A (7)
~k : [ —uf k —vf k
oz;,):mim{mm{AulC Aui<O;A—vf Afui<0}} (8)
(Szl(jzm_in{min{_qZI;c AyF <0; pfk |Ay:c >O}} (9)
! Ay Ay
(ak,ak), if &f > éF and uf Ap* + vl Ag" >0,
(ef, ag) =1 (ak,ak), if &k > &k and phAuF + gf Avk > 0, (10)
(&g, 4%, otherwise.
2=k 4 TkaI;Azk (11)
yF =gk 4 rFal Ay (12)

Until Convergence.

Fig. 3. Primal-Dual Method (L1PD)

The line search procedure (that is, the computation of the step length) in
Step (8) of the method, shown in Figure 5, is computed by looking at all
k_

aFf = —r¥/ArF > 0. Observe that this procedure is O(n?) in the worst case.

In Coleman and Li (1992b) the step length is given by

of = o/j# +v(ak - o/;#),

where o, = max{0; max; of|0 < af < af} instead of 7af. However, we adopted
the step length shown in Steps (9) and (10) of Figure 5, since we experienced
numerical problems in some test problems when o and a’j# are too close to-
gether.

Notice that there is a related method, for each approach, to the L, fitting
problem. The dual affine-scaling version was presented by Ruzinsky and Olsen
(1989). A primal-dual and a predictor-corrector variant were presented by
Zhang (1993). Coleman and Li (1992a) also presented a related variant for



Given z° and (u°,v°) > 0 such that Az° + 4’ —v® =band —e < 9 < e
such that Aly? = 0.
For £k =0,1,2,..., do

UR(PF )+ vE@M) ! (2)
= (A'D*FA) LA D* (uF — oF) (3)
Agkzpk(uk vk — AAZF) (4)
Ak = —uk + U*(PF)IAGE (5)
At = —o* —VHQF) T A (6)
,wk :Dk(’u,k _ Uk + (NkI . A}’}kA‘}lc)(Qk)—l

(45 + AVFATF)(PF) Le) 7)
AzF = (A'DFA) T At (8)
Ayk w® — D¥ AAzF (9)
Ak = (U*T + AVEAT*)(PF) e — uF + UF(PF) 1 Ayt (10)
AvF = (pF I — AYFAVFE)(QF) e — vF — VE(QF) T Ay* (11)
N . —U; k . —vf k
ap—miln{mm{A—uzc‘Aui <O’A—1JZIC‘AUi <O}} (12)
(SAItjzmlln{mln{—‘AyZ < b >0}} (13)
(af,ak), if &k > ak and ukApk—i-vtAq >0,
(al;, k) = (ak,ak), if aF > a& and p AuF + gL Av* >0, (14)
(&, ak), otherwise
L=k 4 TkaI;Azk (15)
yk+1 _ yk 4+ Tkalchyk (16)

Until Convergence.

Fig. 4. Predictor-Corrector Method (L1PC)

their method. We are not aware of any work proposing the primal affine-
scaling version for this problem; nevertheless, it is not difficult to develop
it from the general primal affine-scaling method (Vanderbei, 1989). The L,
problem will no longer be discussed here. However, it is worthy to remark that
most of the ideas in this paper also apply to the specialized L., interior point
methods. They are subject of a forthcoming paper.



Given 2%, 70 = b — A2° and —e < y° < e such that A%y° = 0.
For £k =0,1,2,..., do

w* = sign(r¥) (1)
wk — ok
# = max {max {’“w e 1}} @)
o B
= @)

D* =|(R*)"'(WF + (1 - 0")Y"H)|

(4)

AzF = (A'DFA) T Atwh (5)

ArF = —AAzF (6)

y* ! =w® + DF AP (7)

Ir* + af Ar*(ly = min [|r* + of Ar¥|y (8)

a;i>0
" =% 4+ rak Azk 9)
rEtl =rk 4 raf Ark (10)

Until Convergence.

Fig. 5. Coleman-Li Method (L1CL)

2.1 Considerations about Computational Requirements

Since the constraint matrix of this application is usually full, we do not have
any concern about sparse structure in the following discussion. The most ex-
pensive step for all methods is the solution of a linear system with a matrix
of type A*D* A, where D* is a diagonal matrix whose diagonal entries depend
upon the method. The most widely used way for solving the linear system
is to compute the matrix and then its Cholesky factorization (Golub and
Van Loan, 1996), since it is symmetric and positive definite. Computing the

3nm(m+1
2

matrix involves ) flops* because it is symmetric and D* is already at

hand. The Cholesky factorization costs about mTS flops. The solution of the
triangular systems requires 2m? — m flops. The number of multiplications for
computing the matrix can be halved by storing the entries of the dot prod-
ucts among each pair of columns of A. However, this approach needs w
memory positions of storage. All of the methods also require at least one
matrix-vector product involving both A and A*. Each matrix-vector product
costs 2mn flops.

In resume, the computational complexity of one iteration is O(nm? + n?) for
the L1CL method and O(nm?) for the other methods (recall that m < n).

4 Flop is a float point operation.



Notice that the predictor-corrector variant requires the solution of two linear
systems per iteration using the same matrix. Therefore, given the Cholesky
factorization from the first system, solving the second linear system costs only
2m? — m extra flops.

3 Specialization to Polynomial L; Fitting Problems

Let us consider the special case were the data is approximated by a polynomial
of degree d = m — 1. In this situation, the constraint matrix has a very
structured form,

1 1 1
(6731 (6% (679
V=
-1 -1 m—1
oy Q (%44

which is called a rectangular Vandermonde matriz.

Moreover, the product H = VD*V' has the special structure of a Hankel
matriz; its entries are constant along its antidiagonals. That is,

/,71 772 PP nm

H— 7).2 7].3 :
MNom—2
M = Tl2m—2 Tlom—1

With a careful use of this structure, the computational complexity of an itera-
tion can be reduced. The reason is that there are O(m?) algorithms for solving
Hankel systems (e.g., Trench, 1965) and H can be obtained in O(nm) flops
since only 2m—1 entries are computed. Thus, the worst case complexity of one
iteration is reduced to O(n?) for the L1CL method and O(nm) for the other
methods. Observe that these changes do not affect the line search procedure
of LICL (Step (8) of Figure 5). Therefore, as n becomes much larger than
m the performance of L1CL method may deteriorate faster than the other
methods.

The so called fast algorithms (e.g., Heinig and Jankowski, 1990) have even
better computational complexity for solving Hankel systems. However, these



Wi < Ty

Wi < I + ow; (fOI‘ j:m—l,. .. ,1)

Fig. 6. Procedure for Computing w = Vz

algorithms typically have a large overhead which are worth using only for
larger problems than the ones we expect to solve.

Perhaps a more surprising result, there is no need to store any matrix in all the
methods studied, due to the special structure of V. The matrix-vector products
Vx or V'y can be computed at the usual amount of flops without storing V.
The same applies for computing H from V. Also, since H has only 2m — 1
different entry values, it can be stored as a vector. Furthermore, it is possible to
compute its inverse in O(m?) flops (Trench, 1965) and simultaneously solve the
linear system. Thus, no matrix is stored in any procedure altogether. Notice
that Trench’s method can be applied because H is positive definite — thus all
leading principal submatrices are nonsingular. The only method where it may
be convenient (but not necessary) to store a matrix is the predictor-corrector
variant. The lower half of H=! could be stored for solving the second linear
system faster.

A procedure for computing the matrix-vector products w = V& with 2n(m—1)
flops is given in Fig. 6 — notice that w; = Y7, ofz;. A procedure to obtain
z = V' with 2nm — n flops is given in Fig. 7 — notice that z can written as
="y (1, 0502, ..., ).

Observe that a general matrix-vector product costs 2nm flops. This cost can be
reduced to 2nm—n flops considering that all the component of the first column
of V are one. In this context, the cost of computing the values (o;)’ must be
also considered. It amounts to n(m — 2) flops. However, this computation is
done only once, before starting the iterations. Therefore, the procedures given
before not only avoid storing matrix V' but actually are slightly less expensive
than the straightforward approach.

Figure 8 gives a similar procedure to compute matrix H, where 6} is the
1th-diagonal entry of D*. The procedure costs 4nm — 3n flops.

There is yet another improvement for the polynomial fitting problem. It is
very easy to find a basis without storing any matrix as before. In order to
compute it, it is enough to select the m smallest residuals |r;| and interpo-
late the corresponding points. As the values of o; are all distinct, any set of
columns of V' will lead to a nonsingular matrix for the interpolation. After the
interpolation, a simplex based code can be used to find an optimal basis, if
desirable.

In our implementation, the m smallest residuals are found using the heap

10



z4+0
For: = 1,...,ndo
o 4~ Y
Z1 — 21t Y
For j=2,...,mdo

O+ ;0

Zj & zZj+ o0

Fig. 7. Procedure for Computing z = V'y

H<+0

Fori = 1,...,ndo
o+ 9
m 4 A+

For j=2,...,2m —1do

O+ o0

nj<mn;+o

Fig. 8. Procedure for Computing H

algorithm (Sedgewick, 1983). Since all we need is the m smallest entries, this
algorithm is suitable for our application — because it does not need to sort
the whole vector 7. Its computational complexity is O(nlog(n)).

After finding the points, the interpolation is computed in O(m?) flops by
divided differences (Golub and Van Loan, 1996). This cross-over procedure
would be much more expensive in a general context, because the sorting step
can lead to singular matrices. Thus, several matrix factorizations may be com-
puted before getting a basis. Moreover, these factorizations cost about m? flops
when no special structure is present.

4 Numerical Experiments

We have run a large number of experiments in order to compare the standard
and specialized version of interior point methods (IPMs)® against the spe-
cialized revised simplex method proposed by Armstrong et al. (1979) — this

5 As previously noted, Coleman and Li’s (1992b) is not strictly an IPM.
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method was chosen because previous experiences reported by Dodge (1987a)
considered it to be the best one.

The simplex method, referred to as L1IAFK, was implemented as it appears in
the original paper (coded in FORTRAN) — only few changes were made in the
dimension of arrays, in order to run larger problems. All experiments were run
on a SUN SPARCstation-20 under SunOS 5.5., using IEEE standard double
precision floating point arithmetic. The IPMs were implemented in C and
compiled with GNU’s GCC compiler. LIAFK was compiled with GNU’s G77
compiler which is a front end for GCC with options to recognize FORTRAN
77 — that is, all the executable codes are generated by the same compiler.

The stopping criteria is based in the optimality conditions (4). It measures
the relative dual infeasibility.

llA%*||
1+{y[[+la]l

e?ykipk < €
I+lykl+Hlall | —

lle-+y* —q"|]
1+ly*([+(lal|

and the relative gap

max;{max(ufp¥; vFqF)} <e
1+ T

Where a = (o, ..., o). Thus, ||a|| is an estimate of || A||. The stopping toler-
ance € is the square root of machine precision (Dennis and Schnabel, 1996).

Starting points are computed based on an idea from Coleman and Li (1992b),

0= (A"A)"1 A% (5)
' =b— Az° (6)
L0 if 9 > 0
W=y 0 | (7)
—25-r; Otherwise.

ALp0if 9 >0

u={ - (8)
—25r?  Otherwise.
0
o KT
7 o

12



Actually, in Coleman and Li (1992b) u and v are not defined. We are proposing
this choice for them in order to satisfy the relation u® + v = |Ar°|. Thus, if A
is O(1), both u° and v° are of the same order as r°. Recall that, by definition,
u—v = r. For L1P we use A = 2. For L1PD and L1PC we choose A = n, since
these methods work better for starting points not too close to the boundaries.
For all methods we set kK = 0.975.

Another option is to start with 4 = 0, as in Meketon (1987). This starting
point is attractive because y° is in the middle of the set of constraints —e <
y < e. However, we adopted the choice of y° shown in (9), because it performed
slightly better in our experiments.

The parameter 7 was set to 0.95 for L1P and L1D, For L1PD and L1PC,
™ = max(0.95,1 — p*) and 7 = 0.975 in L1CL as adopted by Coleman and
Li (1992b). The parameter p in Step (3) of Figure 5 was set to 0.99.

We are mainly interested in comparing the CPU time needed by each of the
methods as a function of n (number of observations) and d (degree of the
fitting polynomial) — recall that d = m — 1. Several data sets were randomly
generated as follows: (i) n was fixed at 2500 and d varied (d = 1,2,3 and 5)
— these data sets yielded the curves shown in Figure 9; (i) d was set at 3 and
n varied as 500, 1000, 2500 and 5000 — Figure 10 was obtained using results
from such data set. The results shown are the average obtained upon several
runs. Time to input and output data was not accounted.

Small values for d were adopted because we are not aware of real life ap-
plications which approximate polynomials of high degree. The values for the
independent variable are n equally spaced points in the range [0,1]. The de-
pendent variable was randomly generated using the uniform U(0, 1), normal
N(0,1) and exponential Ezp(1) distributions. Qualitatively, the results were
not noticeably influenced by the statistical distribution of the dependent vari-
able; hence, only results obtained with the U(0,1) distribution are reported.

From now on, we refer to the specialized (fast) IPMs as X-f, and the standard
(slow) IPMs as X-s, where X is the acronym used for the methods (L1P,
L1D, L1PD, L1PC, L1CL). We also included in the test a modification of
L1CL which takes the full step size («) along the direction; this approach
reduces the computational complexity of the iteration making it the same as
the interior point methods. We refer to this modification as L1CLF.

In order to ease visualization, all curves in Figures 9 and 10, other than

L1CL, have the same range on the y-axis. Performance of the simplex method
(LIAFK) was used as a yardstick.

Our main observation from Figures 9 and 10 can be summarized as follows:

13



e L1P-f was about 33% faster than L1P-s; in all cases except one, both lost to
L1AFK. Their performances were highly non-uniform and L1P-f presented
some problems of numerical instability as n grew.

e L1D-f (L1D-s) was nearly 43% (27%) faster than LIAFK. As either d or n
grew L1D became more attractive.

e L1PD-f was up to 37% faster than L1PD-s. For very small values of n
L1AFK performed better. However, as either d or n got larger (mainly n)
L1PD-f became the clear winner.

e L1PC’s behavior followed pretty much the same of L1PD, i.e., it became a
better choice over L1IAFK as d and n grew.

e L1CL was, by far, the slowest of all methods we tested. L1CL-f was between
2.6% and 11% faster than L1CL-s (being more advantageous as d grew).
Increasing n did not seem to favor L1CL-f.

e L1CLF obtained much better results than L1CL. However, a drawback, not
shown in the figures is the lost of robustness. It failed for 25% of the cases,
mainly for problems of large degree.

Let us now briefly discuss the number of iterations required by each of the
IPMs. The results reported on Table 1 are the average obtained upon all nu-
merical experiments with randomly generated data. In most cases the standard
implementation yielded the same number of iterations of the specialized one.
In cases where this did not happen we used the largest value. Nonetheless, the
difference was rarely larger than one. The only exception to this were L1P and
L1CLF, where larger differences occurred, and where some of the cases run
presented numerical problems. The number of iterations required by LIAFK
is not shown because it is a method based on a completely different approach.

Table 1
Number of Iterations Required by the IPMs.

Average Minimum Maximum
L1P 39.5 12 93
L1D 11.1 9 13
L1PD 10.7 9 15
L1PC 8.78 7 11
L1CL 8.5 6 14
L1CLF 16.8 6 30

Table 1 shows that L1D, L1PD, L1PC, and L1CL are efficient approaches with
regard to the number of iterations. On the other hand, L1P not only requires
more iterations to converge, but also shows a highly variable behavior (also
reflected on Figures 9 and 10).

While it may appear at first glance from Table 1 that L1CL is a competitive

14
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Fig. 9. CPU Time as a Function of d (degree of the fitting polynomial).

approach, one should keep in mind that it is computationally slow; it yields
a low number of iterations, but each iteration is computationally expensive.
This is due, as stressed earlier in this paper, to the fact that it employs an
expensive line search (O(n?)). One idea for future research is to explore other
possibilities of line search procedures, such as interpolation, instead of the
one proposed by Coleman and Li (1992b). We are aware that the theoretical
results might be no longer valid. However, the savings on the computation of
the step length may well compensate an eventual increment on the number of




CPU Time [secs] CPU Time [secs]

CPU Time [secs]

Primal
45 : : -
4l L1Ps —<— |
LIP-f -
35T LIAFK = 1
3t ,,/,"///»____,///:
25 | AT .
15 | /// E‘ i
1 i //// 7
05+ -
0 | 1 1
500 1000 2500 5000
Number of Observations
Primal-Dual
45 : : -
4l L1PDs —<— |
L1PD-f -
35T LIAFK = 1
25 o _
2 | =
05 = .
0 T L
500 1000 2500 5000
Number of Observations
Coleman-Li
L1CL-s —=—
LICL-f —+— -
LIAFK =
--H
500 1000 2500 5000

Number of Observations

CPU Time [secs)] Time [secs]

CPU Time [secs)]

4.5
4
35
3
25
2
15
1
0.5
0

500 1000

4.5
4
35
3
25
2
15
1
0.5

ot
500 1000

4.5
4
35
3
25
2
15
1
0.5

0
500 1000

2500
Number of Observations
Predictor-Corrector

i L1PCs <« _
LIPCA -+
LIAFK & 1

T
ER
\
\
\

2500
Number of Observations
Coleman-Li (step=1)

5000

i LICLF:s < |
LICLFf
s LIAFK = 1

2500
Number of Observations

Fig. 10. CPU Time as a Function of n (number of observations).

iterations. The modification proposed here strengthen this assumption since
when it works, it is very effective. Thus, another line search procedure should

add robustness and yet be inexpensive.

Although L1D required a slight larger number of iterations compared to L1PD
and L1PC, it obtained the smallest total running time — due to its less ex-

pensive iterations.



We have also run two experiments using (large) sets of real (financial) data®.
The first data set contains the “prime rate” ” (we refer to this set as PR).
The second data set contains the “federal fund rate” ® (we refer to it as FFR).
Both data sets have daily (weekends and holidays not counted) values for
over 40 years, totaling 10958 observed values. To avoid numerical problems we
normalized the independent values (i.e., the observed dates) in the range [0,1].
The results obtained are shown in Tables 2(a) and (b). Results for L1CL and
L1P are not presented, because the former took much more time to solve the
problem (due to the large n) and the latter incurred in numerical instability.
Finally, only the fast versions of the investigated IPMs were used.

Table 2
CPU Time [secs.] as a Function of the Degree d.

(a) Data set PR
d=1 d=2 d=3 d=4 d=5
L1D 1.84 2.88 3.18 2.89 2.94
L1PD 10.88 15.79 14.94 12.29 7.90
L1PC 13.23 27.62 15.05 18.66 8.21
L1CLF | 6.81 10.58 10.70 11.28 -
L1AFK | 16.73 2548 35.51 49.54 54.52

(b) Data set FFR
d=1 d=2 d=3 d=4 d=5
L1D 145 264 383 319 3.35
L1PD 8.75 1234 17.59 11.05 13.16
L1PC 7.12 1776 18.68 8.39 11.46
L1CLF | 742 739 933 9.89 1240
L1AFK | 14.21 20.30 29.82 37.51 42.79

From Tables 2(a) and (b) we can confirm two main conclusions: (i) L1D is
indeed a very efficient approach; and (i7) L1AFK performance gets much worse
than the TPMs as d increases. L1ICLF did well, however it failed to converge
for d = 5 in the PR data set.

With respect to the objective function’s value, none of the approaches is con-

6 Obtained at http://www.bog.frb.fed.us/releases/h15/data.htm, thanks to
the indication of Lawrence A. Austen.

" The prime rate is a 7-day rate with weekends and holidays containing the prior
business day’s value.

8 The federal funds rate is the cost of borrowing immediately available funds, pri-
marily for one day.
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sistently superior. For the same size of problems, the IPMs provided the best
solution in some cases, whereas for others the L1AFK did so. This observation
holds for both solutions computed by the IPMs, i.e., before the interpolation
and after it. It should be mentioned that, for both implementations of L1D
(slow and fast), the interpolation process provided a basis with a slightly
worse value for the objective function than the one already available (non-
basic). This did not occur in any other of the IPMs which obtain a slightly
better value (an issue for future research). Despite that, we believe that L1D
is, overall, the best option to solve the L, fitting problem.

Finally, we must remark that both L1PD and L1PC are very sensitive with
respect to the starting point and the parameters. For instance, if we use A =
2 in (7) as we do for L1P, the performance of these methods deteriorates
significantly. On the other hand, a careful choice of the starting point and
parameters could make one of them the method of choice for a given class of
problems.

5 Conclusions

We reviewed in this paper the main interior point approaches to L; fitting
problems: dual affine-scaling methods, primal-dual method, and its predictor-
corrector variant. A new approach closely related to the interior point family,
proposed by Coleman and Li (1992b), was also reviewed and a modification
for computing the step length tested. Furthermore, the primal affine-scaling
method was proposed.

Improvements were proposed for polynomial fitting problems, taking full ad-
vantage of its special structure. For such problems there is no need to store
matrices and the computational complexity is reduced. Numerical experiments
show that such improvements indeed lead to the expected reduction in com-
puter requirements.

We believe that simplex approaches for the L; polynomial fitting problem do
not permit such an elegant use of the problem structure as the one developed
in this paper for interior point methods. This is indeed a surprising feature;
usually simplex based methods lead to very good use of structures, while inte-
rior point methods enable only modest exploitations — network flow problems
are a good example of the typical situation (Resende and Veiga, 1993).

The computation of H (Fig. 8) is the most expensive procedure of these meth-
ods. It is possible to implement this procedure in a parallel environment reduc-
ing the complexity of the iterations. In order to do that it would be necessary
to store matrix the V. We were not tempted to follow this path due to the
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small computational times.

The improved dual affine-scaling approach (L1D-f) performed better than all
other methods, for the extensive numerical experiments carried out. Some
comments about the better performance of L1D-f are in order. The predictor-
corrector variant is considered the best option for the general linear program-
ming problem (e.g., Lustig, Marsten and Shanno, 1992). However, the prob-
lems solved in the general context are typically of larger dimension than the L,
fitting problems. Moreover, the very special formulation of the dual problem
(3) also deserves some comments.

(¢) It allows the possibility to chose good starting points.

(i7) This formulation gives complete freedom with respect to the primal vari-
ables, since x and r are free in L1D (Figure 2) — what is perhaps a more
important property.

(i73) Of all the methods studied, L1D-f is the one with smallest overhead on
the iterations.

Comments (i) and (74) explain the small number of iterations. Together with
the small overhead, this help us to understand the somewhat surprising results
obtained.

An important feature of all interior point methods for the L; fitting problem
is that they are easy to implement. On the other hand, building specialized
simplex methods requires much more work. 1D, in addition to being the best
overall approach, is the easiest one to implement. Indeed, using programming
tools such as Matlab and Mathematica its implementation can be a trivial
task.
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