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Abstract We devise a hybrid approach for solving linear systems arising from in-
terior point methods applied to linear programming problems. These systems are
solved by preconditioned conjugate gradient method that works in two phases. Dur-
ing phase I it uses a kind of incomplete Cholesky preconditioner such that fill-in
can be controlled in terms of available memory. As the optimal solution of the prob-
lem is approached, the linear systems becomes highly ill-conditioned and the method
changes to phase II. In this phase a preconditioner based on the LU factorization is
found to work better near a solution of the LP problem. The numerical experiments
reveal that the iterative hybrid approach works better than Cholesky factorization on
some classes of large-scale problems.

Keywords Interior point methods · Preconditioning · Ill-conditioned systems

1 Introduction

The most expensive part of an interior point method is computing the search di-
rection by solving one or more linear systems. Such systems are indefinite and can
be written in a symmetric form, which is known as augmented system. Normally,
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they are solved by direct methods. A common approach in interior point solvers
for linear programming reduces the augmented system to a smaller positive defi-
nite one, called normal equations system, and uses sparse Cholesky factorization to
solve them [2, 11, 18, 27]. Sometimes, the use of direct methods becomes prohibitive
due to storage and time limitations. In such situations iterative approaches are more
interesting.

The success of implementations using iterative methods depends on how to choose
an appropriate preconditioner since the matrix system becomes ill-conditioned as the
optimal solution of the problem is approached. Several preconditioners have been
used to solve the normal equations systems from interior point methods, see for ex-
ample [1, 29, 36, 39]. Some of them are based on incomplete Cholesky factorization
of the positive definite matrix. Typically, this class of preconditioners is efficient in
initial iterations, but it deteriorates as the interior point method converges to a solu-
tion. In general, the normal equations system is more ill-conditioned and dense than
augmented system and this has motivated the study of methods to solve the indefinite
system [7, 14, 17, 21, 26, 34]. An excellent survey about the solution of large-scale
systems in the augment systems form can be found in [6]. The preconditioner for the
augmented system proposed in [34] is based on LU factorization and it has an oppo-
site behavior when compared to incomplete Cholesky based ones. It performs better
near a solution of the linear programming problem when the matrices are highly ill-
conditioned.

We are proposing an iterative hybrid approach to solve the normal equations sys-
tem that arises in an interior point method for linear programming. The conjugate
gradient method is preconditioned during the initial interior points iterations (phase I)
using a kind of incomplete factorization called controlled Cholesky factorization
(CCF) proposed by Campos [9] and in the remaining iterations (phase II) using the
splitting preconditioner developed by Oliveira [33]. The amount of memory used by
CCF preconditioner is easily controlled during interior point iterations. As the sys-
tem becomes ill-conditioned more fill-in is allowed. When the CCF preconditioner
loses efficiency, the system is already highly ill-conditioned and it is a good indicator
that the splitting preconditioner will work better. An efficient heuristic is being de-
veloped to identify the change of phases. The hybrid approach is applied within the
PCx code [11], an interior point method implementation.

This article is organized as follows. In Sect. 2 we recall the basic ideas of primal-
dual interior point methods for linear programming. Section 3 discusses some of
approaches that have been used to solve the linear systems. A hybrid preconditioner
is presented in Sect. 4. Numerical experiments are shown in Sect. 5. In Sect. 6 the
conclusions are drawn and further developments are suggested.

2 Primal–dual interior point methods

Interior point algorithms are widely used for solving large-scale linear programming
problems. Consider the linear programming problem in the primal form,

min cT x

subject to Ax = b,

x ≥ 0
(1)
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where A ∈ R
m×n, b ∈ R

m, c ∈ R
n, x ∈ R

n and m ≤ n. The dual problem associated
with Problem (1) is

max bT y

subject to AT y + z = c,

z ≥ 0
(2)

where y ∈ R
m is a vector of free variables and z ∈ R

n is the vector of dual slack
variables. The Karush–Kuhn–Tucker optimality conditions for (1) and (2) are

Ax − b = 0,

AT y + z − c = 0,

XZe = 0,

(x, z) ≥ 0

where X = diag(x), Z = diag(z) and e ∈ R
n is the vector of all ones. One of the

most successful among the interior point methods is Mehrotra’s predictor-corrector
method [27, 29]. This method is based on Newton’s method applied to the modified
KKT conditions to retain the nonnegativity of the (x, z) components and incorpo-
rating a centering parameter. The search direction is obtained by solving two linear
systems, which have the same coefficient matrix but different right-hand sides. Firstly,
the affine-scaling directions are computed by solving

⎡
⎣

A 0 0
0 AT I

Z 0 X

⎤
⎦

⎡
⎣

�ax
k

�ay
k

�az
k

⎤
⎦ =

⎡
⎣

rp
rd
ra

⎤
⎦ (3)

where rp = b − Axk , rd = c − AT yk − zk and ra = −XkZke. Then, to compute the
centering corrector direction (�cx

k,�cy
k,�cz

k) the right-hand side vector of (3) is
set to rd = 0, rp = 0 and ra = μke − �aX

k�aZ
ke. Here μk is the centering parame-

ter, �aX
k = diag(�ax

k) and �aZ
k = diag(�az

k). The search direction is obtained
by adding the affine-scaling direction to the centering corrector direction. In order
to avoid this addition, the search directions are computed directly solving system (3)
with ra set to μke − �aX

k�aZ
ke − XkZke.

3 Linear system solution

The bulk of the work in interior point methods is the determination of search direc-
tions. Since both predictor-corrector systems share the same coefficient matrix, we
will restrict the discussion to that of one linear system like (3). In practice, the vari-
ables �z are eliminated and the system reduces to the augmented indefinite linear
system, which can be written in a symmetric form

[−�−1 AT

A 0

][
�x

�y

]
=

[
rd − X−1ra

rp

]
(4)
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where � = Z−1X. System (4) can be reduced to a smaller positive definite one called
normal equations system by eliminating the variables �x from the first equation,

(A�AT )�y = A�(rd − X−1ra) + rp. (5)

Direct or iterative methods can be applied to solve either system (4) or (5). The most
common approach used in interior point methods for linear programming solves the
normal equations system by a direct method like Cholesky factorization. This ap-
proach has the advantage of working with symmetric positive definite matrices. How-
ever, the presence of few dense columns in A causes loss of sparsity in A�AT . One
way around this problem is to use iterative methods. Since they require the matrix
only for computing matrix-vector products there is no need to compute A�AT ex-
plicitly, unless the preconditioner depends on it. The classical iterative method used
to solve the normal equations system is the preconditioned conjugate gradient [5, 29].
A preconditioned conjugate gradient was initially used in interior points methods in
1989 [1, 2]. However, to build the preconditioner such implementations often need
to compute A�AT , which is usually less sparse than A. Moreover, it is in general
more difficult to find a good preconditioner to the normal equations matrix than to
the augmented one, since the former is likely to be more ill-conditioned than the
latter.

For this reason, the augmented system strategy has been considered in several pa-
pers [7, 14, 17, 21, 26, 34] even though it is indefinite. The Cholesky factorization
cannot be applied since there is no numerically stable way to factor a general in-
definite matrix onto LDLT with D diagonal. Most interior point solvers use direct
methods like a Bunch–Parlett factorization [8] to solve the indefinite system. Another
alternative that has been used in interior point methods transforms the indefinite sys-
tem to quasidefinite one by the use of primal and dual regularization method [3]. In
this case, the Cholesky-like factorization LDLT with a diagonal D exists for any
symmetric row and column permutation of the matrix. This approach also has been
used with iterative methods [7]. For indefinite systems, the conjugate gradient method
is not guaranteed to converge. However, it was successfully applied with a convenient
preconditioner [7, 14]. The indefinite systems also have been used with precondi-
tioned conjugate gradient to solve quadratic programming problems [12, 20].

Most preconditioners for indefinite systems from interior point methods are devel-
oped for solving non-linear and quadratic programming problems and almost always
they are not efficient in solving large-scale linear programming problems. However,
a class of preconditioners called splitting preconditioners was designed specially for
indefinite systems arising from linear programming problems [34]. An important fea-
ture of this class is the option to reduce the preconditioned indefinite system to a
positive definite one like the normal equations system allowing the use of conjugate
gradient method. Since this class was developed for the last interior point iterations
a diagonal scaling preconditioner has been used in the initial iterations. We have im-
proved the robustness and performance of this approach implementing an efficient
preconditioner instead of the diagonal scaling one.
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4 Hybrid preconditioner

In general, matrix � changes significantly between interior point iterations and it
becomes highly ill-conditioned in the final iterations. For this reason it is difficult to
find a preconditioning strategy that produces good performance of iterative methods
over the entire course of the interior point iterations.

We are proposing to apply the conjugated gradient method for solving system (5)
preconditioned by a hybrid preconditioner matrix M ,

M−1(A�AT )M−T ȳ = M−1(A�(rd − X−1ra) + rp
)

(6)

where ȳ = MT �y. Our approach assumes the existence of two phases during inte-
rior point iterations. In the first one, the controlled Cholesky preconditioner is used to
build matrix M , this method is described in Sect. 4.1. After the change of phases, ma-
trix M will be built using the splitting preconditioner, which is presented in Sect. 4.2.

4.1 Controlled Cholesky factorization preconditioner

The Controlled Cholesky Factorization (CCF) preconditioner was designed for solv-
ing general positive definite systems [9] and it was successfully applied to solve linear
systems from implicit time-dependent partial differential equations [10]. This kind of
factorization has some desirable properties from an optimization viewpoint, such as
possibility to control fill-in with predictable memory requirements. However, it has
not been used in this context yet.

Consider the Cholesky factorization A�AT = LLT = L̃L̃T + R, where L is the
factor obtained when factorization is complete, L̃ when it is incomplete and R is a
remainder matrix. DefiningE = L − L̃ then the preconditioned coefficient matrix is

L̃−1(A�AT )L̃−T = (L̃−1L)(L̃−1L)T = (I + L̃−1E)(I + L̃−1E)T .

It is easy to see that when L̃ ≈ L ⇒ E ≈ 0 ⇒ L̃−1(A�AT )L̃−T ≈ I . It is assumed
that the matrix A�AT has been diagonally scaled to give a unit diagonal [15] in order
to improve robustness. The CCF is based on the minimization of the Frobenius norm
of E. Thus we consider the problem

minimize ‖E‖2
F =

m∑
j=1

cj with cj =
m∑

i=1

|lij − l̃ij |2.

Now cj can be split in two summations:

cj =
tj +η∑
k=1

|li
k
j − l̃i

k
j |2 +

m∑
k=tj +η+1

|li
k
j |2

where tj is the number of nonzero entries below the diagonal in the j th column of
matrix A�AT and η is the number of extra entries allowed per column. The first sum-
mation contains all tj +η nonzero entries of the j th column of L̃. The second one has
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only those remaining entries of the complete factor L which do not have correspond-
ing entries in L̃. Considering that l̃ij ≈ lij as η → m and lij is not computed, ‖E‖F

is minimized based on a heuristic, which consists of modifying the first summation.
By increasing η, that is, allowing more fill-in, cj will decrease simply because the
first summation contains more terms and the second fewer. This is the same nonse-
lective minimization that occurs when levels of fill-in are used. Moreover, ‖E‖F is
further minimized by choosing the tj + η largest entries of L̃ in absolute value al-
most annihilating the corresponding largest entries in L leaving only the smallest lij
in the second summation. This is a selective minimization similar to a drop tolerance
scheme [31]. The preconditioner L̃ is built by columns. Consequently it needs only
the j th column of A�AT at each time. The main features of the CCF preconditioner
are described as follows:

4.1.1 Choice of entries by value

The Controlled Cholesky preconditioner contains no more than a fixed number η

of nonzero entries in each column in addition to the number tj in that column of
the original matrix. In this approach, all nonzero entries of the j th column resulting
from those held for previous columns are computed, and then only the largest tj + η

nonzero entries in absolute value are selected. Thus, each time that a column of the
preconditioner is computed and stored, the larger entries are kept and the smaller ones
discarded. Therefore, a better approximation to the full decomposition is obtained in
the allowed storage space. CCF never considers the sparsity pattern of the original
matrix. The nonzero entries position kept for the preconditioner may or may not
cover all those of the original matrix since selection is made by value instead of
position. CCF gives good preconditioners with small storage needs in comparison
with preconditioners which conserve the sparsity pattern of the original matrix.

4.1.2 Generalization of improved ICF

Jones and Plassmann [24] developed an approach which allows a fixed number of
nonzero entries in each row or column of the preconditioner. It is taken to be the
number of nonzero entries in each row or column of the original coefficient matrix.
Nevertheless, only the largest entries in magnitude are kept, meaning that the original
sparsity pattern is ignored. Thus CCF can be seen as a generalization of the Jones and
Plassmann method since fill-in is allowed in CCF.

4.1.3 Avoiding loss of positive definiteness by exponential shift

Manteufell [28] proved that if the coefficient matrix V is symmetric positive definite
then there is a constant σ > 0 such that an incomplete factorization V + σI exists.
During computation of the j th column of L̃ the diagonal element can become very
small or even negative. In order to avoid loss of positive definiteness CCF discards
the entire factor L̃, it increases diagonal of A�AT by σi and it computes L̃ again.
Instead of defining a linear shift σi = 10−2i at the ith attempt for constructing the
preconditioner L̃, as used by Jones and Plassmann [24], CCF uses an exponential
shift σi = 5 · 10−42i−1 in order to have smaller diagonal perturbations.
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Table 1 Fill-in and drop-out
with CCF(η) η M Storage

−m diag(A�AT )−1/2 less than A�AT

0 L̃ equal to A�AT

m L more than A�AT

Table 2 Comparison between storage demands of ICD(0) and CCF(η). m: order of A�AT , t : number
of nonzero entries of A�AT (excluding those above diagonal), η: number of extra entries per column,
i, r : number of bytes for integer and real variables

Matrices Maximum bytes required For i = 4 and r = 8

A�AT (i + r)t + im + i 12t + 4m + 4

A�AT + L̃ICD(0) (i + 2r)t + im + i 20t + 4m + 4

A�AT + L̃CCF(η) (3i + 2r)t + ((2i + r)η + 2i)m + 2i 28t + (16η + 8)m + 8

4.1.4 Versatile preconditioner

In Table 1 features of a versatile preconditioning matrix M for system (6) are given.
This means that just a diagonal scaling is performed when η = −m. On the other hand
a complete Cholesky factorization is obtained if η = m. So, η can be chosen in the
interval [−m, m] in such a way that M will require less or more storage than A�AT .
In other words, fill-in (η > 0) and drop-out (η < 0) are both allowed with CCF.

4.1.5 Predictable storage

The coefficient matrix A�AT and the preconditioner L̃ are stored using the Harwell-
Boeing format [13]. Each matrix is stored into three vectors: one integer vector of
dimension m + 1 for column pointers, one integer vector of dimension t (number of
nonzero entries excluding those above diagonal) for row indices and one real vec-
tor of dimension t for elements. CCF needs other work vectors for building L̃. In
incomplete Cholesky decomposition (ICD) fill-in is determined by adding levels re-
sulting in uncontrolled storage demands. However, the storage required is predictable
in CCF, as shown in Table 2, because only the largest tj + η nonzero entries are kept
in each column of the preconditioner. The third column shows the amount of mem-
ory required when integer vectors using four bytes and real vectors of eight bytes are
used in the code.

CCF(η) demands more storage than ICD(0) when η > (1 − 2t − m)/(4m) ≈
−t/(2m), for i = 4 and r = 8 bytes. Nevertheless CCF(η) has a more versatile data
structure which allows the number of nonzero entries of L̃ to vary.

4.2 Splitting preconditioner

The splitting preconditioner was proposed for indefinite systems arising from interior
point methods [33] for linear programming problems. This preconditioner is a gener-
alization of those proposed by Resende and Veiga [37] in the context of the minimum
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cost network flow problem. The main appeal of this class of preconditioners is that
it works better near a solution of the linear programming problem. That is a very
welcome feature since the linear system is known to be very ill-conditioned close
to a solution and these systems are difficult to solve by iterative methods. Addition-
ally, the splitting preconditioner avoids the normal equations computation. However,
since the preconditioner is specially tailored for the final iterations of the interior
point methods, it fails to obtain convergence in the initial iterations for many linear
programming problems. We are using a version of the splitting preconditioner derived
as follows [34]:

Let A = [BN ]P where P is a permutation matrix such that B is nonsingular, then,

A�AT = B�BBT + N�NNT .

Now, multiplying it by �
− 1

2
B B−1 and post-multiplying by its transpose leads to

T = �
− 1

2
B B−1(A�AT )B−T �

− 1
2

B = I + WWT (7)

where W = �
− 1

2
B B−1N�

1
2
N .

Notice that the preconditioned matrix is positive definite and its eigenvalues are
greater or equal to one, that is, it has no eigenvalues in the neighborhood of zero.

Let Ñ = B−1N , which can be seen as a scaling of the linear programming prob-
lem. Close to a solution, at least n − m entries of � are small. Thus, with a suitable
choice of the columns of B , the diagonal entries of �−1

B and �N are very small
close to a solution. In this situation, W approaches the zero matrix, T approaches the
identity matrix and both the largest eigenvalue of T and κ2(T ) approach one.

The price paid for avoiding the normal equations system is to find B and solve
linear systems using it. However, the factorization QB = LU is typically easier to
compute than the Cholesky factorization. In fact, it is known [16] that the sparse
pattern of LT and U is contained in the sparse pattern of R, where AAT = RT R, for
any valid permutation Q. In practice, the number of nonzero entries of R is much
larger than the number of nonzero entries of L and U together.

4.2.1 Finding B

A strategy to form B is to minimize ‖W‖ since close to a solution the preconditioned
matrix approaches the identity since for a suitable choice of B’s columns the diagonal
entries of �−1

B and �N are very small. This problem is hard to solve but an approx-
imate solution can be obtained by selecting the first m linearly independent columns
of A� with smallest norm-1 to form B .

A nice property of the splitting preconditioner is that it can work with the selected
set of columns for some iterations. As a consequence, the preconditioner is very cheap
to compute for such iterations. It is important to notice that keeping the matrix B

from previous iterations does not mean to keep the same preconditioner since � will
change from an iteration to the next and the preconditioner depends on it too.

For this application, the most economical way to compute the LU factorization is
to work with the delayed update form. It fits very well to our problem because when
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a linearly dependent column appears, it is eliminated from the factorization and the
method proceeds with the next column in the ordering given by the heuristic.

One of the main drawbacks of a straightforward implementation of the splitting
preconditioner is the excessive fill-in in the LU factorization. The reason is that the
criterion for reordering the columns does not take the sparsity pattern of A into ac-
count. A good technique consists of interrupting the factorization when excessive
fill-ill occurs and reordering the independent columns found thus far by the number
of nonzero entries. The factorization is then started from scratch and the process is re-
peated until m independent columns are found. The implementation described in [34]
considers a factorization to have an excessive fill-in when it produces more nonzero
entries than the number of nonzero entries from the normal equations system.

Another factorization is already worth to be applied on the chosen set of inde-
pendent columns using standard techniques for computing an efficient sparse LU
factorization. This approach improves the results significantly for some problems. As
a welcome side effect, it is not necessary to store U in the factorizations that deter-
mine B .

One difficulty in determining the subset of independent columns is the number of
dependent columns visited in the process. The techniques developed [34] for deter-
mining the subset of columns and computing the splitting preconditioner are rather
sophisticated since the subset of columns from A that form B is not known a priori.
However, a careful implementation applied to the conjugate gradient method com-
pares favorably with the Cholesky factorization approach on large scale problems
whose Cholesky factorization contains too many nonzero entries.

4.3 Change of phases

The change of phases is a crucial point to improve the performance of this approach.
We are studying a criterion for it based upon the matrix condition number, which
can be estimated by Ritz values. Unfortunately these values vary extremely with the
problem that is being solved, and it becomes difficult to find a criterion that has good
performance for all problems.

We are using a heuristic to switch phases that seems to work fine for some test
problems. The CCF preconditioner changes to the split preconditioner when the ini-
tial gap (xT

0 z0) for the linear programming is reduced by a factor of 106 or the number
of inner iterations for solving the linear system reaches m/2, where m is the dimen-
sion of A�AT .

In the initial iteration, the number of nonzero entries allowed in CCF precondi-
tioner is set by the initial parameter η

η0 =
{−|A�AT |/m if |A�AT |/m > 10,

|A�AT |/m otherwise

where | · | denotes the number of nonzero entries matrix. If the matrix A�AT is dense,
the η0 parameter forces the preconditioner matrix to be the diagonal scaling. On the
other hand, if the A�AT matrix is sparse then a more dense preconditioner matrix is
allowed.

As the conjugate gradient loses efficiency the parameter η is increased. If the num-
ber of iterations to achieve convergence is greater than m/4, η is increased by 10. This
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process continues until η reaches ηmax or the change of phases is identified. The ηmax

value is set based on the amount of available memory.

5 Numerical experiments

The hybrid approach was added to PCx code. Procedures for solving linear systems
were coded in C, except the controlled Cholesky factorization, which was imple-
mented in FORTRAN. Multiple centrality corrections [19] are not allowed in iterative
approaches and this option was disabled. The remaining PCx’s default parameters are
adopted.

In all experiments we have used the preconditioned conjugate gradient method
with termination criteria set by the Euclidean residual norm ‖rk‖. For solving both
systems (affine direction) and (final direction) in phase I, the termination criteria is
set as ‖rk‖ < 10−4. When the optimality gap is less than 10−5 or change of phases is
detected then ‖rk‖ < 10−8. The limit of iterations is the system dimension.

5.1 Test problems

The problems used to test the hybrid approach are shown in Table 3. These experi-
ments were selected as a way to identify classes of problems where the hybrid pre-
conditioner has good performance. Some of them are public domain linear problems
available in NETLIB [32], STOCHLP [23], MISC [22, 30]. The KBAPAH2 prob-
lem [4] belongs to a highly ill-conditioned problems collection. The QAP models
tested here are from the QAPLIB collection [25] with the modification as described
by Padberg and Rijal [35]. Table 3 summarizes the test data. The number of rows,
columns and nonzero entries refer to preprocessed problems.

5.2 Computational results

The behavior of the hybrid approach is compared to the direct method and the in-
complete Cholesky factorization (ICF) [38]. The results are presented in Table 4. For
each test problem IT is the number of interior point iterations and the time indicated
is the total CPU time in seconds, on an Intel Xeon 2.80 GHz processor with 1 Gbyte
of RAM.

For problems where an optimal solution is reached, the number of outer itera-
tions for interior point methods using both approaches is about the same. In problems
NUG12, NUG15, QAP12 and QAP15 it is interesting to notice that an optimal solu-
tion is not obtained using the direct approach. This fact occurs due to the approach
in Cholesky factorization code, which replaces tiny diagonals with a large numerical
value. The CCF preconditioner uses a small diagonal perturbation (exponential shift)
to avoid this breakdown.

The SCSD8-2B-64, SCSD8-2C-64 and SCSD8-2R-432 instances have dense
columns in the matrix A. To avoid the density in the normal equations matrix, the di-
rect approach treats these columns separately. Nevertheless, the direct approach fails
due to a large residual error. The hybrid preconditioner reaches the optimal solution.
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Table 3 Test problems data

Problem Row Column Nonzeros A Collection

KBAPAH2 12 28 299 KBAPAH

ELS-19 4350 13186 50882 QAP

CHR22B 5587 10417 36520 QAP

CHR25A 8149 15325 53725 QAP

SCR15 2234 6210 24060 QAP

SCR20 5079 15980 61780 QAP

ROU20 7359 37640 152980 QAP

STE36A 27683 131076 512640 QAP

STE36B 27683 131076 512640 QAP

STE36C 27683 131076 512640 QAP

QAP12 2794 8856 33528 NETLIB

QAP15 5698 22275 85470 NETLIB

SCSD8-2B-64 5130 35910 112770 STOCHLP

SCSD8-2C-64 5130 35910 112770 STOCHLP

SCSD8-2R-432 8650 60550 190210 STOCHLP

NUG08 742 1632 5936 MISC

NUG12 2794 8856 33528 MISC

NUG15 5698 22275 85470 MISC

PDS-20 32276 106180 226494 MISC

PDS-40 64265 214385 457538 MISC

PDS-60 96503 332862 709178 MISC

PDS-80 126109 430800 916852 MISC

PDS-100 156243 514577 1096002 MISC

Table 5 provides an insight into the performance of the hybrid approach. |M| col-
umn indicates nonzero entries in the hybrid preconditioner matrix at last iteration.
The A�AT column shows only the nonzero entries of the matrix triangular part.
Matrix L column contains the number of nonzero entries in the complete Cholesky
factor.

The ICF fails to converge in almost all test problems mainly due to the criteria
used to avoid loss of positive definiteness. In this ICF code when diagonal element is
very small or negative it is substituted by 1.

The KABAPAH2 problem belongs to a degenerated problems collection in which
robust implementations such as PCx and HOPDM [18] fail to find the optimal solu-
tion. The hybrid approach succeeds to converge in eight iterations.

The PDS test problems do generate a very sparse A�AT matrix. On the other
hand, the Cholesky factorization generates a large number of fill-in entries. As the
dimension of the problem increases, the hybrid approach performs better compared
to the direct and the ICF approaches. Figure 1 illustrates this fact. For these instances
the criteria to change phases is not reached since the CCF preconditioner has good
performance during all interior point iterations. Moreover, the nonzero entries in CCF
preconditioner are not increased.
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Table 4 Comparisons between iterative hybrid and ICF and direct solver. F denotes failure; M denotes
memory exceeded

IT Time performance

Problem Hybrid Cholesky ICF Hybrid Cholesky ICF

KBAPAH2 8 13 F 0.0 0.0a F

ELS-19 31 30 F 290.1 497.1 F

CHR22B 32 28 F 26.2 29.1 F

CHR25A 32 31 F 87.4 91.9 F

SCR15 24 22 F 44.1 78.6 F

SCR20 21 21 F 234.0 910.6 F

ROU20 24 21 F 2288.4 5807.8 F

STE36A 37 M F 36545.7 M F

STE36B 27 M F 24327.1a M F

STE36C 41 M F 80142.3 M F

QAP12 21 46 F 449.1 340.6a F

QAP15 23 54 F 3247.1 2977.4a F

SCSD8-2B-64 7 F F 6.6 F F

SCSD8-2C-64 7 F F 6.4 F F

SCSD8-2R-432 18 F F 65.0 F F

NUG08 10 12 F 3.8 3.15 F

NUG12 21 51 F 349.1 609.1a F

NUG15 24 44 F 2971.1 3885.7a F

PDS-20 61 61 61 1258.3 1197.8 2579.8

PDS-40 78 74 77 2811.8 13246.1 6642.1

PDS-60 80 75 79 7254.2 41460.3 19335.8

PDS-80 83 81 83 11337.1 94756.1 31397.9

PDS-100 87 M 87 16540.4 M 48736.3

aDenotes that the problem was nearly solved

Table 6 shows the influence of the parameter η in the convergence of conjugate
gradient (ITCG) during the kth interior point iteration. A diagonal scaling precondi-
tioner is used in initial iterations (1–3). While conjugate gradient loses efficiency η is
increased allowing more fill-in in the CCF preconditioner. This procedure continues
until the criteria of change of phases is achieved. The |M| column reports the number
of nonzero entries of the CCF and splitting preconditioners.

The QAP test problems also lead to normal equations matrices that are not very
sparse. The Cholesky factorization has a large number of nonzero entries and it makes
the direct approach less effective. Using a negative parameter η it is possible to build
an efficient preconditioner of phase I with a small cost.

The STE36 problems have hundreds of thousands nonzero entries in the com-
plete Cholesky factor. No results for the problems PDS-100, STE36A, STE36B and
STE36C are reported for Cholesky approach because it would take a large amount of
time and memory to solve these problems.



Using a hybrid preconditioner for solving large-scale linear systems 161

Table 5 The influence of fill-in on the hybrid approach performance

Problem η0 |M| A�AT Matrix L

KBAPAH2 8 120 120 120

ELS-19 −31 63705 137825 3849458

CHR22B −27 19784 153680 1453225

CHR25A −30 28821 249324 2653126

SCR15 −26 27060 59009 1330759

SCR20 −32 1010537 166709 6672137

ROU20 −48 4995689 356689 20818131

STE36A −56 3219943 1564487 176625274

STE36B −56 2422737 1564487 176625274

STE36C −56 2486979 1564487 176625274

QAP12 −31 468892 60174 2138580

QAP15 −27 1493922 155986 8197968

SCSD8-2B-64 −138 5130 709145 27026045

SCSD8-2B-64 −138 5130 709145 27026045

SCSD8-2R-432 −226 8650 1956985 76779485

NUG08 −12 33849 9274 233032

NUG12 −20 658470 56405 2793152

NUG15 −26 1762211 150470 11053969

PDS-20 5 307339 169915 7089645

PDS-40 5 631026 341419 28195225

PDS-60 5 981789 523496 58118583

PDS-80 5 1271825 676093 94270275

PDS-100 5 1512937 1060567 120240013

Table 6 The influence of parameter η in phase I of the NUG12 problem

k η ITCG |M| k ITCG |M|

1 −20 616 2794 10 759 612068

2 −20 628 2794 11 876 608006

3 −20 2218 2794 12 464 603650

4 −10 1673 26994 13 385 628561

5 0 504 56405 14 495 640283

6 0 509 56405 15 281 629110

7 0 941 56405 16 315 620448

8 10 1174 83946 17 290 596487

9 20 1884 111433 18 234 629142

Change of phases

19 314 617925

20 527 632490

21 355 658470
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Fig. 1 PDS model—Hybrid versus Direct and ICF approaches

6 Conclusions

We have provided computational evidence that the hybrid approach works better than
direct approach for some classes of large linear programming problems. This fact
occurs when the Cholesky factor has a large number of fill-in entries. The precondi-
tioner used in the phase I has fewer nonzero entries than complete Cholesky factor.
Another feature that helps the hybrid approach to work better is that the number of LU
factorizations for building the preconditioner used in phase II is very small compared
to the number of iterations.

The performance of the hybrid approach will be improved if the optimal time of
changing phases could be identified. We are developing an efficient procedure for
this. One idea to be tested is merging the two preconditioners to identify the best
iteration to change the phases. Other factor to be considered to improve performance
is the adjustment of the optimal parameter η used in phase I. This parameter can be
increased during iterations as the systems become ill-conditioned.
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