Orbital stability of periodic traveling-wave solutions for the log-KdV equation

Fábio Natali a, Ademir Pastor b,*, Fabrício Cristófani a

a Departamento de Matemática - Universidade Estadual de Maringá, Avenida Colombo, 5790, CEP 87020-900, Maringá, PR, Brazil
b IMECC-UNICAMP, Rua Sérgio Buarque de Holanda, 651, CEP 13083-859, Campinas, SP, Brazil

Received 26 July 2016; revised 28 March 2017
Available online 18 April 2017

Abstract

In this paper we establish the orbital stability of periodic waves related to the logarithmic Korteweg–de Vries equation. Our motivation is inspired in the recent work [3], in which the authors established the well-posedness and the linear stability of Gaussian solitary waves. By using the approach put forward recently in [20] to construct a smooth branch of periodic waves as well as to get the spectral properties of the associated linearized operator, we apply the abstract theories in [13] and [25] to deduce the orbital stability of the periodic traveling waves in the energy space.

© 2017 Elsevier Inc. All rights reserved.

MSC: 76B25; 35Q51; 35Q53

Keywords: Orbital stability; Log-KdV equation; Periodic waves

1. Introduction

Results of well-posedness and orbital stability of periodic traveling waves related to the logarithmic Korteweg–de Vries (log-KdV henceforth) equation

* Corresponding author.
E-mail addresses: fmnatali@hotmail.com (F. Natali), apastor@ime.unicamp.br (A. Pastor), fabriciognr@gmail.com (F. Cristófani).

http://dx.doi.org/10.1016/j.jde.2017.04.004
0022-0396/© 2017 Elsevier Inc. All rights reserved.
\[u_t + u_{xxx} + (u \log(u^2))_x = 0, \]
\hspace{1cm} (1.1)

will be shown in this manuscript. Here, \(u = u(x, t) \) denotes a real-valued function of the real variables \(x \) and \(t \). Equation (1.1) is a dispersive equation and it models solitary waves in anharmonic chains with Hertzian interaction forces (see [3,11,16], and [21]).

Depending on the boundary conditions imposed on the physical problem, it is natural to consider special kind of solutions called traveling waves, which imply a balance between the effects of the nonlinearity and the frequency dispersion. In our context, such waves are of the form \(u(x,t) = \phi(x - \omega t) \), where \(\omega \in \mathbb{R} \) indicates the wave speed and \(\phi = \phi_\omega(\xi) \) is a smooth real function. By substituting this kind of solution into (1.1) we obtain the nonlinear second order differential equation

\[-\phi'' + \omega \phi - \phi \log \phi^2 + A = 0, \]
\hspace{1cm} (1.2)

where \(A \) is a constant of integration.

As is well known, if \(A = 0 \), (1.2) admits a solution given by the Gaussian solitary wave profile (see, for instance, [4] or [7])

\[\phi_\omega(x) = e^{\frac{1}{2} + \frac{\omega}{2}} e^{-\frac{x^2}{2}}, \quad \omega \in \mathbb{R}. \]
\hspace{1cm} (1.3)

The spectral stability related to this solution was studied in [3], where the authors studied the linear operator, arising from the linearization of (1.1) around (1.3), in the space \(L^2(\mathbb{R}) \). In particular, they shown that such an operator has a purely discrete spectrum consisting of a double eigenvalue at zero and a symmetric sequence of simple purely imaginary eigenvalues. In addition, the associated eigenfunctions do not decay like Gaussian functions but have algebraic decay. Also, by using numerical approximations, they also shown that the Gaussian initial data do not spread out and preserve their spatial Gaussian decay in the time evolution of the linearized equation.

It should be noted that the nonlinear orbital stability of (1.3) was also dealt with in [3]. However, in view of the lack of uniqueness and continuous dependence, this is a conditional result. Indeed, the authors establish the orbital stability (in the energy space) provided that uniqueness and continuous dependence upon the data hold in a suitable subspace of \(H^1(\mathbb{R}) \).

Our first concern in this paper is to study the Cauchy problem

\[
\begin{cases}
 u_t + u_{xxx} + (u \log(u^2))_x = 0, \\
 u(x, 0) = u_0(x),
\end{cases}
\]
\hspace{1cm} (1.4)

where \(u_0 \) belongs to the periodic Sobolev space \(H^1_{per, 1}([0, L]) \). Most of our arguments will be based on the approach introduced by Cazenave and Haraux [7] for the logarithmic Schrödinger equation

\[iu_t + \Delta u + \log(|u|^2)u = 0, \]
\hspace{1cm} (1.5)

where \(u : \mathbb{R}^n \times \mathbb{R} \to \mathbb{C} \) is a complex-valued function. We point out that, in [3], the authors gave a very simple manner of how to use the arguments in [7] in order to obtain the well-posedness of (1.4) posed in \(Y \) (see (1.11)).
The logarithmic nonlinearity in (1.4) brings a rich set of difficulties since the function \(x \in \mathbb{R} \mapsto x \log(|x|) \) is not differentiable at the origin. The lack of smoothness interferes, for instance, in questions concerning the local solvability because it is not possible to apply the contraction argument to deduce the existence of solutions. In order to get a grip on the absence of regularity, the idea is (see [3,5,6], and [7]) to solve a regularized or approximate problem. Provided we can obtain suitable uniform estimates for the approximate solutions, they converge, in a weak sense, to the solution of the original problem and it gives the existence of weak solutions in an appropriate Banach space.

Another difficulty coming from the non-smoothness of the nonlinearity, is the strain in establishing the uniqueness of solutions. Indeed, energy methods, as well as, contraction arguments can not be applied in these cases since we need, to this end, to assume that the nonlinearity is, at least, locally Lipschitz. It is clear that the function \(x \in \mathbb{R} \mapsto x \log(|x|) \) does not satisfy such a property at the origin. We emphasize, however, that the uniqueness for the Cauchy problem associated with (1.5) was given in [7] by combining energy estimates with a suitable Gronwall-type inequality.

To begin with our results, let us first observe that (1.1) conserves (at least formally) the energy

\[
E(v) = \frac{1}{2} \int \left(v_x^2 + v^2 - v^2 \log(v^2) \right) dx, \tag{1.6}
\]

the mass

\[
F(v) = \frac{1}{2} \int v^2 dx, \tag{1.7}
\]

and the charge

\[
M(v) = \int v dx. \tag{1.8}
\]

The above integrals must be understood on the whole real line or on the interval \([0, L]\), in the periodic setting.

Following the arguments in [3], we obtain for any initial data \(u_0 \in X = H^1_{\text{per}}([0, L]) \) the existence of a global solution \(u \in L^\infty(\mathbb{R}; X) \) of (1.4) satisfying the inequalities

\[
F(u(t)) \leq F(u_0), \quad E(u(t)) \leq E(u_0), \quad \text{for all } t \in \mathbb{R}. \tag{1.9}
\]

In addition, by supposing the complementary condition

\[
\partial_t (\log |u|) \in L^\infty(\mathbb{R}; L^\infty_{\text{per}}([0, L])), \tag{1.10}
\]

one has that the solution \(u \) exists in \(C(\mathbb{R}; X) \), is unique, satisfies \(M(u(t)) = M(u_0) \), \(F(u(t)) = F(u_0) \) and \(E(u(t)) = E(u_0) \), for all \(t \in \mathbb{R} \), and the map data-solution \(u_0 \in X \mapsto u \in C([-T, T]; X) \) is continuous, for all \(T > 0 \).

If one works with (1.4) on the whole real line, the energy (1.6) makes sense only for functions in the class

\[
Y := \{ u \in H^1(\mathbb{R}); \; u^2 \log |u| \in L^1(\mathbb{R}) \}. \tag{1.11}
\]
This lead the authors in [3] to study (1.4) in \(Y \). On the other hand, in view of the log-Sobolev inequality (see [10, Theorem 4.1]),

\[
\int_0^L |v|^2 \log(|v|^2) dx \leq C \left[\int_0^L v_x^2 dx + \log \left(\frac{1}{L} \int_0^L v^2 dx \right) \right],
\]

(1.12)

such a restriction is not needed in the periodic framework. Thus the space \(X \) seems to be the natural energy space to study (1.4).

Our main result concerning local well-posedness will be presented in Theorem 2.1 below. However, a few words of explanation are in order. The first one concerns the existence of global weak solutions. As we have already mentioned above, this result will follow from an adaptation of the arguments in [3] in the periodic setting. Since the solution \(u \) will be obtained as a weak limit of bounded sequences defined in a reflexive space, one can use Fatou’s Lemma to deduce the “conserved inequalities” in (1.9). The assumption (1.10) then enable us to deduce the uniqueness of local solutions and consequently equalities in (1.9). Another issue concerns the uniqueness of solutions. The assumption (1.10), is a rather strong requirement. Note, however, that this condition holds if \(u(x, t) = \phi(x - \omega t) \), where \(\phi \) is an \(L \)-periodic and positive function. Differently, in the non-periodic scenario, if \(\phi \) is as in (1.3) then \(u(x, t) = \phi(x - \omega t) \) does not satisfy (1.10).

Next, we turn attention to the existence and orbital stability of periodic waves. We prove the existence of periodic solutions for (1.2) by using an extension of the abstract framework developed in [20]. The approach for proving the orbital stability of such traveling waves is divided into two basic cases. In the first one we assume \(A = 0 \) and establish the orbital stability by a direct application of the abstract theory due to Grillakis, Shatah and Strauss in [13]. In the second one, we assume \(A \neq 0 \) and use an adaptation of the arguments in [13] to deduce the orbital stability of a smooth surface \((\omega, A) \in \mathcal{O} \leftrightarrow \psi_{(\omega, A)} \) of \(L \)-periodic traveling waves. Some arguments in our approach were borrowed from [17], where, following close the arguments in [1] and [13], the author have established a general criterion to obtain the orbital stability of periodic waves associated with the generalized Korteweg–de Vries equation (gKdV henceforth),

\[
u_t + u_{xxx} + (f(u))_x = 0,
\]

(1.13)

where \(f : \mathbb{R} \to \mathbb{R} \) is a smooth real-valued function.

One may note that the functional \(E \) is not smooth at the origin. Nevertheless, as we will see below, our periodic waves are strictly positive or negative. Thus, at least in a neighborhood of such waves, \(E \) is smooth and this allows us to use the abstract theories mentioned above.

As is well known, there are two key ingredients in the nonlinear stability theory. The first one is, for a fixed \(L > 0 \), the existence of an open set \(\mathcal{O} \subset \mathbb{R}^n \), and a smooth branch \(\mu \in \mathcal{O} \leftrightarrow \psi_{\mu} \), such that \(\psi_{\mu} \) is \(L \)-periodic and solves (1.2), for all \(\mu \in \mathcal{O} \). In our case, we will see that \(L \) belongs to a convenient open interval contained in \(\mathbb{R} \) and \(\mu \) is either \(\omega \) (in the case \(A = 0 \)) or \((\omega, A) \) (in the case \(A \neq 0 \)).

The second ingredient is the knowledge of the non-positive spectrum of the linearized operator around the periodic traveling wave in question. Usually, this turns out to be a Hill’s operator as

\[
\mathcal{L} = -\partial_x^2 + g'(\mu, \psi_{\mu}).
\]

(1.14)
Here, to study the spectrum of L, we analyze the behavior of the energy-to-period map and use the recent theory developed in [20] (see also [22]), where the authors presented a new method based on the classical Floquet theorem to establish a characterization of the first three eigenvalues of L by knowing one of its eigenfunctions. In particular, we show the operator L appearing in our context has only one negative eigenvalue which is simple and zero is a simple eigenvalue with

$$\ker(L) = \text{span}\{\psi_\mu\}.$$

Moreover, the remainder of the spectrum is discrete and bounded away from zero. For the precise statements we refer the reader to Section 4.

This paper is organized as follows: In Section 2 is proved the well-posedness and the existence of the conservation laws related to the model (1.1). Existence of periodic waves for a general ODE is treated in Section 3. In Section 4 we apply the method developed in Section 3 to study the existence of periodic traveling waves for (1.2). The orbital stability of such waves is then established.

2. Well posedness results – verbatim of [3]

In this section we sketch the proof of the local well-posedness theory by using the leading arguments in [3] and [4] (see also [5] and [7]). The main different point here is that instead of proving the well-posedness in a class similar to that in (1.11), we establish our result in the whole energy space X. Here and throughout this section, $L > 0$ will be a fixed number representing the period of the functions in question. The next theorem gives a result on the existence of (weak) solutions to (1.4) in the energy space X.

Theorem 2.1. For any $u_0 \in X$, there exists a global solution $u \in L^\infty(\mathbb{R}; X)$ of (1.4) such that

$$F(u(t)) \leq F(u_0), \ E(u(t)) \leq E(u_0), \text{ for all } t \in \mathbb{R}. \quad (2.1)$$

Moreover, if

$$\partial_t (\log |u|) \in L^\infty(\mathbb{R}; L^\infty_{\text{per}}([0, L])), \quad (2.2)$$

then the solution u exists in $C(\mathbb{R}; X)$, is unique, for all $t \in \mathbb{R}$, it satisfies $M(u(t)) = M(u_0)$, $F(u(t)) = F(u_0)$ and $E(u(t)) = E(u_0)$ and, for all $T > 0$, the map data-solution $u_0 \in X \mapsto u \in C([-T, T]; X)$ is continuous.

To begin with, let us recall the following well-posedness result associated with the (generalized) KdV equation in the periodic setting.

Theorem 2.2. The initial-value problem

$$\begin{cases}
 u_t + u_{xxx} + f'(u)u_x = 0, & t \in \mathbb{R}, \\
 u(x, 0) = u_0(x), & x \in [0, L],
\end{cases} \quad (2.3)$$

is locally well-posed provided f is a C^∞-function and the initial data u_0 belongs to $H^s_{\text{per}}([0, L])$, $s > 1/2$. More precisely, there exist $T_0 = T_0(\|u_0\|_{H^s_{\text{per}}}) > 0$ and a unique solution, defined in $[-T_0, T_0]$, satisfying (2.3) in the sense of the associated integral equation.
Proof. See Theorem 1.3 in [15]. □

In addition, the smoothness of the function \(f \) in Theorem 2.2 enable us to establish that

\[
M(u(t)) = M(u_0), \quad F(u(t)) = F(u_0), \quad \text{for all} \ t \in [-T_0, T_0],
\]

and

\[
\tilde{E}(u(t)) = \tilde{E}(u_0), \quad \text{for all} \ t \in [-T_0, T_0],
\]

where \(\tilde{E} \) is the modified energy defined as

\[
\tilde{E}(u) = \frac{1}{2} \int_0^L v^2(x) dx - \int_0^L W(v) dx, \quad W(v) := \int_0^v f(s) ds.
\]

As a consequence of the above conservation laws, we deduce if \(u_0 \) belongs to \(H^1_{per}([0, L]) \), then the solution obtained in Theorem 2.2 can be extended globally-in-time.

It is obvious that \(f(u) = u \log |u| \) does not satisfy the assumption in Theorem 2.2. The contrivance then is to regularize the nonlinearity. To do so, for any \(\varepsilon > 0 \), let us define the family of regularized nonlinearities in the form

\[
f_{\varepsilon}(u) = \begin{cases} f(u), & |u| \geq \varepsilon, \\ p_{\varepsilon}(u), & |u| \leq \varepsilon, \end{cases}
\]

where \(f(u) = u \log(|u|) \) and \(p_{\varepsilon} \) is the polynomial of degree 13 defined by

\[
p_{\varepsilon}(u) := \left(\log(\varepsilon) - \frac{1}{2} \right) u + \sum_{i=1}^{6} \frac{a_i}{\varepsilon^{2i}} u^{2i+1},
\]

with \(a_i \in \mathbb{R}, 1 \leq i \leq 6 \), determined by using the equality \(\partial_u^k p_{\varepsilon}(\varepsilon) = \partial_u^k f(\varepsilon) \), for all \(0 \leq k \leq 6 \).

Next, we consider the approximate Cauchy problem

\[
\begin{aligned}
&u_{\varepsilon}''(x, t) + u_{\varepsilon}''(x, t) + f_{\varepsilon}'(u_{\varepsilon}(x, t)) u_{\varepsilon}'(x, t) = 0, \quad t \in \mathbb{R}, \\
u_{\varepsilon}(x, 0) = u_0(x),
\end{aligned}
\]

and assume that \(u_0 \in H^1_{per}([0, L]) \). Theorem 2.2 implies the existence of global solutions \(u^\varepsilon \) in \(C(\mathbb{R}; H^1_{per}([0, L])) \). The remainder of the proof follows similarly from the arguments in [3]. Indeed, in order to pass the limit in (2.8) and proving the existence of weak solutions associated with the original problem (1.4), it makes necessary to obtain uniform estimates, independent of \(\varepsilon > 0 \), for the regularized solution \(u^\varepsilon \). After that, by using some compactness tools, we are in position to obtain the solution \(u \) as a weak limit of the sequence \(u^\varepsilon \). The uniqueness of solutions is proved once we assume that \(u \) satisfies \(\partial_u(\log |u|) \in L^\infty(\mathbb{R}; L^\infty_{per}([0, L])) \). Thus, the solution \(u \) exists in \(C(\mathbb{R}; X) \), is unique and satisfies \(F(u(t)) = F(u_0), M(u(t)) = M(u_0) \) and \(E(u(t)) = E(u_0) \) for all \(t \in \mathbb{R} \). The existence of the conserved quantities can be determined by following the arguments in [4, Theorem 3.3.9] for the general nonlinear Schrödinger equation and compact embedding results. Theorem 2.1 is thus proved.
3. Existence of periodic traveling waves and spectral analysis – an extension of [20]

3.1. Existence of periodic waves

Our purpose in this subsection is to study the existence of periodic solutions for nonlinear ODE’s written in the form

$$-\phi'' + g(\mu, \phi) = 0, \quad (3.1)$$

where $g : \mathcal{P} \times \mathbb{R} \to \mathbb{R}$. It is assumed that $\mathcal{P} \subset \mathbb{R}^n$, $n \geq 1$, is an open set, $g(\cdot, \phi)$ is smooth in \mathcal{P} and $g(\mu, \cdot)$ is, at least, locally lipschitzian. This implies that a uniqueness theorem for the initial-value problem associated to (3.1) holds.

The subject-matter here follows from the approach in [20] but, for the sake of completeness, we shall give the main steps. Equation (3.1) is conservative, and thus its solutions are contained on the level curves of the energy

$$\mathcal{E}(\phi, \xi) := -\frac{\xi^2}{2} + G(\mu, \phi),$$

where $\xi = \phi'$ and $\partial G / \partial \phi = g$ with $G(\mu, 0) = 0$.

We assume the following.

(H1) For any $\mu \in \mathcal{P}$, the function $g(\mu, \cdot)$ has two consecutive zeros $r_1 < r_2$, such that the corresponding equilibrium points $(\phi, \xi) = (r_1, 0)$ and $(\phi, \xi) = (r_2, 0)$ are saddle and center, respectively.

(H2) The level curve $\mathcal{E}(\phi, \xi) = \mathcal{E}(r_1, 0)$ contains a simple closed curve Γ that contains $(r_2, 0)$ in its interior.

(H3) For (ϕ, ξ) inside Γ and $\mu \in \mathcal{P}$, the function $g(\mu, \phi)$ is of class C^1 and $g'(\mu, r_2) < 0$, where g' denotes the derivative of g with respect to ϕ.

The orbits of (3.1) inside Γ are periodic, turn around $(r_2, 0)$, and are contained on the level curves $\mathcal{E}(\phi, \xi) = B$, for $\mathcal{E}(r_1, 0) < B < \mathcal{E}(r_2, 0)$. Moreover, we may suppose, without loss of generality, that the initial condition of such solutions $(\phi(0), \phi'(0)) = (\phi(0), 0)$ is inside Γ with $\phi(0) > r_2$ and $g(\mu, \phi(0)) < 0$. Then, $x = 0$ is local maximum of ϕ and, due to the symmetry of the problem, the corresponding solutions of (3.1) are periodic and even.

Theorem 3.1. Assume that (H1)–(H3) hold. For every $\mu \in \mathcal{P}$ and $B \in \mathbb{R}$ satisfying $\mathcal{E}(r_1, 0) < B < \mathcal{E}(r_2, 0)$, equation (3.1) has an (even) L-periodic solution, say, ϕ. Moreover, $\phi = \phi_{\mu, B}$ and $L = L_{\mu, B}$ are continuously differentiable with respect to μ and B.

Let $\alpha = \alpha(\mu)$ denote the period of the solutions of the linearization of (3.1) at the equilibrium point $(r_2, 0)$. If, in addition,

$$L_B := \frac{\partial L}{\partial B} < 0, \quad (3.2)$$

then L ranges over the interval $(\alpha(\mu), +\infty)$.

Proof. For every \(\mu \in \mathcal{P} \) and \(B \) satisfying \(E(r_1, 0) < B < E(r_2, 0) \), the earlier arguments show that (3.1) has one \(L \)-periodic solution \(\phi \), lying on the levels of energy \(B \). The continuous differentiability of such solutions with respect to \(\mu \) is a consequence of the general ODE theory. For the continuous differentiability of \(L \) with respect to the parameters, we refer the reader to [8] (see also [2,9] or [24]). Alternatively, in what follows, we derive a suitable way of how to compute \(L \). Fix \(\mu \in \mathcal{P} \), the period of \(\phi \) is given by the line integral

\[
L = \int_{\Lambda} \frac{1}{|v|} \, ds, \tag{3.3}
\]

where \(\Lambda \) is the graph of \((\phi, \xi)\) in the energy level \(B \), \(v(\phi, \xi) = (\xi, g(\phi)) \in \mathbb{R}^2 \) is the vector field associated with (3.1), and \(| \cdot |\) denotes the Euclidean norm. The upper part of \(E(\phi, \xi) = B \) can be written as \(\xi = \sqrt{2G(\phi) - 2B} \), where, for short, \(G(\phi) = G(\mu, \phi) \). Thus,

\[
L = 2 \int_{b_1}^{b_2} \frac{1}{\xi(\phi)} \, d\phi = 2 \int_{b_1}^{b_2} \frac{1}{\sqrt{2G(\phi) - 2B}} d\phi,
\]

where \(b_1, b_2 \) are the roots of \(E(\phi, 0) = B \). Now, we will look for a suitable parametrization of \(\Lambda \). The linearization of (3.1) at the equilibrium point \((r_2, 0)\) is

\[-y'' + g'(r_2) y = 0,
\]

where, for simplicity, we write \(g'(r_2) \) instead of \(g'(\mu, r_2) \). The solutions of this equation are periodic with period

\[
\alpha = \frac{2\pi}{\sqrt{-g'(r_2)}}, \tag{3.4}
\]

and their orbits are ellipses around the origin:

\[
g'(r_2) \frac{y_2^2}{2} - \frac{y_2'^2}{2} = d.
\]

For \(d = -1/2 \), this ellipse can be parameterized by the smooth curve \(\gamma(t) \), \(t \in [0, 2\pi] \), given by

\[
\gamma(t) = \left(\frac{1}{\sqrt{-g'(r_2)}} \cos t, \sin t \right).
\]

The appropriate parameterization of \(\Lambda \) can be obtained through the deformation of the ellipse into the curve \(\Gamma \). Consider the system \((F, G, H) = (0, 0, 0)\), where

\[
F = \phi - r_2 - \frac{1}{\sqrt{-g'(r_2)}} r \cos t,
\]

\[
G = \xi - r \sin t,
\]

\[
H = -\xi^2 + 2G(\mu, \phi) - 2B.
\]
An application of the Implicit Function Theorem reveals one can obtain \(\phi, \xi, \) and \(r \) as functions of the variables \((t, \mu, B)\), since the determinant of the Jacobian matrix

\[D := \det \frac{\partial(F, G, H)}{\partial(r, \phi, \xi)} = 2 \left(\frac{1}{\sqrt{-g'(r_2)}} \cos t, \sin t \right) \cdot (g(\phi), -\xi) \]

is negative. Here, “\(\cdot \)” denotes the usual inner product of \(\mathbb{R}^2 \). In addition, one has

\[\frac{\partial \phi}{\partial t} = \frac{2 \xi r}{D \sqrt{-g'(r_2)}} \quad \text{and} \quad \frac{\partial \xi}{\partial t} = \frac{2 rg(\phi)}{D \sqrt{-g'(r_2)}}. \]

Therefore, from (3.3) one has that

\[L = \frac{2}{\sqrt{-g'(r_2)}} \int_0^{2\pi} \frac{-r}{D} dt. \quad (3.5) \]

Under assumption (3.2), by using (3.5) it is easy to see that \(L \) is restricted to the interval \((\alpha, +\infty)\). Indeed, since the solutions converge uniformly on compact intervals to \(\Gamma \) (in the phase space), it is easy to see that \(L \) goes to infinity as \(B \) goes to \(\mathcal{E}(r_1, 0) \).

It remains to show that \(L \to \alpha \) as \(B \to \mathcal{E}(r_2, 0) \). Since

\[g(\phi) = g'(r_2)(\phi - r_2) + O((\phi - r_2)^2), \quad \phi - r_2 = \frac{1}{\sqrt{-g'(r_2)}} r \cos t, \quad \text{and} \quad \xi = r \sin t, \]

we obtain that \(D \) satisfies

\[D = -2r + O((\phi - r_2)^2). \]

Therefore, because \(\phi \to r_2 \), as \(B \to \mathcal{E}(r_2, 0) \), we deduce that

\[L = \frac{2}{\sqrt{-g'(r_2)}} \int_0^{2\pi} \frac{-r}{D} dt \to \alpha = \frac{2\pi}{\sqrt{-g'(r_2)}}, \]

as \(B \to \mathcal{E}(r_2, 0) \). The proof of the theorem is thus completed. \(\Box \)

Remark 3.2. Theorem 3.1 is still true if we drop the assumptions (H1)–(H3) and assume weaker conditions. In fact, it suffices to assume that \(g(\mu, \cdot) \) has a zero, say, \(r_2 \), which is a local maximum of \(G(\mu, \cdot) \). In this case, all orbits in a neighborhood of \((r_2, 0)\) must be periodic orbits symmetric with respect to the \(\phi \)-axis in the \((\phi, \xi)\)-plane (see e.g., [14, p. 178]).

The proof of Theorem 3.1 yields an alternative formula of how to compute the period of the solutions. In order to apply it, we set
\[\phi = r_2 + \frac{r(t)}{\sqrt{-g'(r_2)}} \cos t, \]
\[\xi = r(t) \sin t, \]
\[D = \frac{2g(\phi)}{\sqrt{-g'(r_2)}} \cos t - 2\xi \sin t, \]

with \(g(\phi) = g(\mu, \phi), \mu \in \mathcal{P}, \) and \(r(t) \) the solution of the first order initial-value problem

\[
\begin{cases}
Dr' = 2r \left(\frac{g(\phi)}{\sqrt{-g'(r_2)}} \sin t + \xi \cos t \right), \\
r(0) = \sqrt{-g'(r_2)} (\phi(0) - r_2),
\end{cases}
\]

where \(\phi(0) > r_2, \) is the initial condition of \(\phi. \) Thus, we have proved the following.

Corollary 3.3. Let \(r(t) \) and \(D(t) \) be defined as above and let \(\phi, \) be a periodic solution of (3.1) with initial condition \(\phi(0). \) Then, the period of \(\phi \) is given by

\[L = \frac{2}{\sqrt{-g'(r_2)}} \int_0^{2\pi} \frac{-r(t)}{D(t)} dt. \]

The next result shows that, if \(L \) is suitably fixed, then we can find \(L \)-periodic solutions of (3.1) when \(\mu \) varies in an open subset of \(\mathcal{P}. \)

Corollary 3.4. Assume that (3.2) holds and let \(\mu_0 \in \mathcal{P} \) be fixed. Let \(L \) be any real number satisfying \(L > \alpha(\mu_0), \) where \(\alpha(\mu) \) was introduced in Theorem 3.1. Then, there exists a neighborhood \(\mathcal{O} \subset \mathcal{P} \) of \(\mu_0 \) such that for all \(\mu \in \mathcal{O}, \) equation (3.1) has an \(L \)-periodic solution, say, \(\psi_\mu. \)

In particular, if \(\alpha = \alpha(\mu) \) does not depend on \(\mu \in \mathcal{P} \) then we can take \(\mathcal{O} = \mathcal{P}. \)

Proof. Fixed \(\mu_0 \in \mathcal{P} \) and \(L > \alpha(\mu_0), \) Theorem 3.1 immediately implies that (3.1) has an \(L \)-periodic solution. The continuity of the function \(\mu \mapsto \alpha(\mu) \) gives that \(L > \alpha(\mu) \) in a neighborhood of \(\mu_0. \) Another application of Theorem 3.1 yields the desired. \(\square \)

3.2. Spectral properties

Before going further, let us recall some basic facts on Floquet’s theory (see e.g., [19] or [12]). Let \(Q \) be a smooth \(L \)-periodic function. Let \(\mathcal{L} \) be the Hill’s operator defined in \(L^2_{per}([0, L]), \) with domain \(D(\mathcal{L}) = H^2_{per}([0, L]), \) by

\[\mathcal{L} = -\partial_x^2 + Q(x). \]

The spectrum of \(\mathcal{L} \) is formed by an unbounded sequence of real eigenvalues

\[\lambda_0 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \lambda_4 \leq \cdots \leq \lambda_{2n-1} \leq \lambda_{2n} \cdots, \]
where equality means that \(\lambda_{2n-1} = \lambda_{2n} \) is a double eigenvalue. In addition, the spectrum is characterized by the number of zeros of the eigenfunctions in the following way: if \(p \) is an eigenfunction associated to either \(\lambda_{2n-1} \) or \(\lambda_{2n} \), then \(p \) has exactly \(2n \) zeros in the half-open interval \([0, L)\). In particular, the eigenfunction associated to the eigenvalue \(\lambda_0 \) has no zeros in \([0, L)\).

Now, let \(p(x) \) be a nontrivial \(L \)-periodic solution of the equation

\[
\mathcal{L} f = -f'' + Q(x) f = 0. \tag{3.9}
\]

Let \(y(x) \) be another solution of (3.9) linearly independent of \(p(x) \). Then there exists a constant \(\theta = \theta_y \) (depending on \(y \)) such that (see [19, p. 5])

\[
y(x + L) = y(x) + \theta p(x).
\]

Consequently, \(\theta = 0 \) is a necessary and sufficient condition to all solutions of (3.9) be \(L \)-periodic. In particular, if \(\theta_y \neq 0 \) then \(\theta_z \neq 0 \) for all solution \(z(x) \) linearly independent of \(p(x) \). This criterion is very useful to detect when the kernel of the operator \(\mathcal{L} \) is one-dimensional.

Now we turn attention back to equation (3.1). Let \(\phi = \phi_{\mu,B} \) be any periodic solution of (3.1) of minimal period \(L \). Let \(\mathcal{L}_{\mu,B} \) be the linearized operator arising from the linearization of (3.1) at \(\phi \), that is,

\[
\mathcal{L}_{\mu,B}(y) := -y'' + g' (\mu, \phi) y, \quad \mu \in \mathcal{P}. \tag{3.10}
\]

By taking the derivative with respect to \(x \) in (3.1), it is evident that \(\phi' \) belongs to the kernel of the operator \(\mathcal{L}_{\mu,B} \). In addition, from our construction, \(\phi' \) has exactly two zeros in the half-open interval \([0, L)\), which implies that zero is the second or the third eigenvalue of \(\mathcal{L}_{\mu,B} \).

Lemma 3.5. Assume that (H1)–(H3) and (3.2) hold. Then, the operator \(\mathcal{L}_{\mu,B} \), defined in \(L^2_{\text{per}}([0, L]) \), with domain \(H^2_{\text{per}}([0, L]) \), has exactly one negative eigenvalue, a simple eigenvalue at zero and the rest of the spectrum is positive and bounded away from zero.

Proof. See Lemma 4.2 in [17]. \(\square \)

Remark 3.6. It is fundamental to note that in [17] the author has not considered the sign minus in front the second order derivative in (3.1), that is, he has considered an ODE of the form \(\phi'' + g(\phi) = 0 \). As a result, the assumption \(\frac{\partial \mathcal{L}}{\partial B} > 0 \) in [17] is equivalent to (3.2) in our case.

Remark 3.7. Note also that Lemma 4.2 in [17] establishes that zero is a simple eigenvalue of \(\mathcal{L}_{\mu,B} \) if and only if \(\frac{\partial \mathcal{L}}{\partial B} \neq 0 \). Thus, if \(y \) is any solution of \(\mathcal{L}_{\mu,B}(y) = 0 \) linearly independent of \(\phi' \) and \(\theta_y \) is the constant defined as above then \(\frac{\partial \mathcal{L}}{\partial B} \neq 0 \) if and only if \(\theta_y \neq 0 \). We will see below that \(\theta_y \), for some particular \(y \), is exactly \(\frac{\partial \mathcal{L}}{\partial B} \).

Under assumptions (H1)–(H3), Lemma 3.5 implies that condition (3.2) is enough to describe the non-positive spectrum of \(\mathcal{L}_{\mu,B} \). In general, the monotonicity of \(B \mapsto L \) is not easily obtained. In what follows, we establish the equality of \(\frac{\partial \mathcal{L}}{\partial B} \) and the constant \(\theta \) introduced above. Such a criterion is particularly useful when dealing with numerics and computational arguments.
As above, let $\phi = \phi_{\mu, B}$ be any L-periodic solution of (3.1) provided by Theorem 3.1. Let \tilde{y} be the unique solution of the initial-value problem

\begin{equation}
\begin{cases}
- y'' + g'(\mu, \phi(x))y = 0, \\
y(0) = -\frac{1}{\phi''(0)}, \\
y'(0) = 0.
\end{cases}
\tag{3.11}
\end{equation}

Since ϕ' is an L-periodic solution of the equation in (3.11) and the Wronskian of \tilde{y} and ϕ' is 1, there is a constant $\theta = \theta_{\tilde{y}}$ such that

\begin{equation}
\tilde{y}(x + L) = \tilde{y}(x) + \theta \phi'(x).
\tag{3.12}
\end{equation}

By taking the derivative in this last expression and evaluating at $x = 0$, we obtain

\begin{equation}
\theta = \frac{\tilde{y}'(L)}{\phi''(0)}.
\tag{3.13}
\end{equation}

Now we can give the equality between $\frac{\partial L}{\partial B}$ and θ.

Theorem 3.8. We have $\frac{\partial L}{\partial B} = \theta$, where θ is the constant in (3.13).

Proof. Consider \tilde{y} and ϕ' as above. Since ϕ' is odd and periodic one has $\phi'(0) = \phi'(L) = 0$. Thus, the smoothness of ϕ in terms of the parameter B enables us to take the derivative with respect to B on $\phi'(L) = 0$ to obtain (recall that $\phi'(L) = \phi'_{\mu, B}(L_{\mu, B})$)

\begin{equation}
\phi''(L) \frac{\partial L}{\partial B} + \frac{\partial \phi'(L)}{\partial B} = 0.
\tag{3.14}
\end{equation}

Next, we turn back to equation (3.1) and multiply it by ϕ' to deduce, after integration, the quadrature form

\begin{equation}
-\frac{\phi'^2(x)}{2} + G(\mu, \phi(x)) = B, \quad \text{for all } x \in [0, L].
\tag{3.15}
\end{equation}

Deriving equation (3.15) with respect to B and taking $x = 0$ in the final result, we obtain from (3.1) that $\frac{\partial \phi(0)}{\partial B} = \frac{1}{\phi''(0)}$. In addition, since ϕ is even one has that $\frac{\partial \phi}{\partial B}$ is also even and thus $\frac{\partial \phi'(0)}{\partial B} = 0$. The existence and uniqueness theorem for ordinary differential equations applied to the problem (3.11) enables us to deduce that $\tilde{y} = -\frac{\partial \phi}{\partial B}$. These informations combined with (3.14) gives the desired result in view (3.13) and the fact that ϕ'' is even. \qed

As a consequence of Theorem 3.8, Lemma 3.5 can be reformulated as follows.

Corollary 3.9. Assume that (H1)–(H3) hold and suppose that $\theta < 0$, where θ is as in (3.13). Then, the operator $L_{\mu, B}$, defined in $L^2_{\text{per}}([0, L])$, with domain $H^2_{\text{per}}([0, L])$, has exactly one negative eigenvalue, a simple eigenvalue at zero and the rest of the spectrum is positive and bounded away from zero.
Next we will see that, under our assumptions, θ does not change sign when μ and B vary. Given any periodic solution $\phi := \phi_{\mu,B}$, we denote by $\theta_{\mu,B} = \theta_{\gamma_{\mu,B}}$ the corresponding constant as in (3.13).

Definition 3.10. Let Q be a smooth L-periodic function. Let L be the Hill’s operator defined in $L^2_{\text{per}}([0, L])$ with domain $D(L) = H^2_{\text{per}}([0, L])$ by

$$L = -\partial_x^2 + Q(x).$$

The inertial index of L, denoted by $\text{in}(L)$, is the pair (n, z), where n denotes the dimension of the negative subspace of L and z denotes the dimension of $\ker(L)$.

Definition 3.11. Assume that $Q(x) = Q_\mu(x)$ is periodic and depends on the parameter $\mu \in \Omega$, for some open set $\Omega \subset \mathbb{R}^n$. The family of linear operators $L_\mu := -\partial_x^2 + Q_\mu(x)$, is said to be isoinertial if $\text{in}(L_\mu)$ is constant, for any $\mu \in \Omega$.

Theorem 3.12. Assume that (H1)–(H3). Let $\phi_{\mu,B}$ be the family of solution provided by Theorem 3.1 and assume that $g'(\mu, \phi_{\mu,B}(x))$ is of class C^1. Then the family of linear operators $L_{\mu,B} = -\partial_x^2 + g'(\mu, \phi_{\mu,B}(x))$, is isoinertial. In particular, if $\theta_{\mu_0,B_0} < 0$ for some (μ_0, B_0), then $\theta_{\mu,B} < 0$ for any (μ, B).

Proof. Fix any pair (μ_0, B_0) according to Theorem 3.1. Let $L_0 := L_{\mu_0,B_0}$ be the period of ϕ_{μ_0,B_0}. For any other pair (μ, B), let $M_{\mu,B} : H^2_{\text{per}}([0, L_0]) \to L^2_{\text{per}}([0, L_0])$ be the operator defined as

$$M_{\mu,B}(y) := -y'' + \tau^2 g'(\mu, \phi_{\mu,B}(\tau x)) y,$$

where

$$\tau = \frac{L_{\mu,B}}{L_0}. \quad (3.16)$$

Let η_τ be the dilatation that maps L_0-periodic functions into $L_{\mu,B}$-periodic functions, that is,

$$\eta_\tau : L^2_{\text{per}}([0, L_0]) \to L^2_{\text{per}}([0, L_{\mu,B}])$$

$$h(x) \mapsto h\left(\frac{x}{\tau}\right).$$

Then, it is easy to see that

$$\eta_\tau^{-1} L_{\mu,B} \eta_\tau \left(y(x)\right) = \eta_\tau^{-1} L_{\mu,B} \left(y \left(\frac{x}{\tau}\right)\right)$$

$$= \eta_\tau^{-1} \left(-\frac{1}{\tau^2} y'' \left(\frac{x}{\tau}\right) + g'(\mu, \phi_{\mu,B}(x)) y \left(\frac{x}{\tau}\right)\right)$$

$$= \frac{1}{\tau^2} \left(-y''(x) + \tau^2 g'(\mu, \phi_{\mu,B}(\tau x)) y(x)\right)$$

$$= \frac{1}{\tau^2} M_{\mu,B}(y(x)).$$
Therefore, if λ belongs to the resolvent set, $\rho(L_{\mu,B})$, of $L_{\mu,B}$, then

$$
(M_{\mu,B} - \tau^2\lambda I)^{-1} = \left[\frac{1}{\tau^2} M_{\mu,B} - \lambda I \right]^{-1} = \left[\frac{1}{\tau^2} \eta^{-1}_{\tau} L_{\mu,B} \eta_{\tau} - \lambda I \right]^{-1}
$$

$$
= \frac{1}{\tau^2} \eta_{\tau}^{-1} (L_{\mu,B} - \lambda I)^{-1} \eta_{\tau},
$$

that is, the resolvent sets of $L_{\mu,B}$ and $M_{\mu,B}$ satisfy the relation

$$
\rho(M_{\mu,B}) = \tau^2 \rho(L_{\mu,B}),
$$

where τ is given in (3.16). In particular, the operators $L_{\mu,B}$ and $M_{\mu,B}$ have the same inertial index. Now, we observe that the potential of the operator $M_{\mu,B}$ is continuously differentiable in all the variables, and periodic with period L_0 for every pair (μ, B). Therefore, Theorem 3.1 in [23] implies that $M_{\mu,B}$ is an isoinertial family of operators and

$$
in(L_{\mu,B}) = in(M_{\mu,B}) = in(M_{\mu_0,B_0}) = in(L_{\mu_0,B_0}).
$$

The proof of the theorem is now completed. □

Remark 3.13. Theorem 3.12 establishes that in order to calculate the inertial index of $L_{\mu,B}$ it suffices to calculate it for any fixed pair (μ_0, B_0).

Remark 3.14. If conditions (H1)–(H3) are not met and instead we are in the conditions of Remark 3.2, then we still can apply Theorem 3.12 for the periodic solutions in a small neighborhood of $(r_2, 0)$.

4. Stability of periodic waves for the log-KdV equation

In this section, we use the theory put forward in last section in order to establish the existence and orbital/linear stability of periodic traveling waves for (1.1).

To begin with, we observe that (1.2) is of the form (3.1) with

$$
g(\omega, A, \phi) = \omega \phi - \phi \log \phi^2 + A. \quad (4.1)
$$

It is clear that g is smooth with respect to $(\omega, A) \in \mathbb{R}^2$ and locally lipschitzian in ϕ. As we already said, we divide our analysis into two cases.

4.1. First case: $A = 0$

As we have pointed out at the introduction, (1.2) admits the solitary-wave solution given in (1.3). Thus, the dynamics associated with (1.2) is a little bit richer. Here, the function g in (4.1) reduces to $g(\omega, 0, \phi) := g_\omega(\phi) = \omega \phi - \phi \log \phi^2$. It is easily seen that g_ω possesses three zeros, namely, 0 and $\pm e^{\omega/2}$. In order to see that g_ω satisfies assumption (H1) and get (positive) solutions, we take $r_1 = 0$ and $r_2 = e^{\omega/2}$. Since r_1 and r_2 are, respectively, local minimum and maximum of the function (see Fig. 4.1)
Fig. 4.1. Left: Graphs of the functions $g = g_\omega$ and $G = G_\omega$ for $\omega = 1$. Right: Phase space of the equation $-\phi'' + \omega \phi - \phi \log \phi^2 = 0$. The orbits in blue are those for which ϕ is periodic and does not change sign. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

$$G(\omega, 0, \phi) := G_\omega(\phi) = \frac{\omega + 1}{2} \phi^2 - \frac{1}{2} \phi^2 \log \phi^2,$$

it follows that $(r_1, 0)$ is a degenerate saddle point and $(r_2, 0)$ is a center point (see e.g., [14, p. 179]). This shows that assumption (H1) is fulfilled, for all $\omega \in \mathbb{R}$.

The energy function here is given by

$$\mathcal{E}(\phi, \xi) = -\frac{\xi^2}{2} + G_\omega(\phi) = -\frac{\xi^2}{2} + \frac{\omega + 1}{2} \phi^2 - \frac{1}{2} \phi^2 \log \phi^2.$$

Since the solitary-wave solution (1.3) satisfies

$$-\frac{(\phi')^2}{2} + \frac{\omega + 1}{2} \phi^2 - \frac{1}{2} \phi^2 \log \phi^2 = 0,$$

we deduce that $\mathcal{E}(\phi, \phi') = \mathcal{E}(0, 0) = 0$. This means, we can take the closed curve Γ, in assumption (H2), to be the orbit of the soliton (1.3) together with the equilibrium point $(r_1, 0) = (0, 0)$ (see Fig. 4.1). Since the origin belongs to Γ, it is clear that g_ω is smooth in the region inside Γ and $g'_\omega(r_2) = -2 < 0$, for all $\omega \in \mathbb{R}$. As a conclusion, g_ω satisfies assumptions (H1)–(H3) with $\mathcal{P} = \mathbb{R}$.

Next we will see that Theorem 3.1 and Corollary 3.4 can be applied to prove the existence of positive L-periodic solutions, where the period L ranges over the interval $(\alpha, +\infty)$, with $\alpha = 2\pi/\sqrt{-g'_\omega(r_2)} = \pi \sqrt{2}$. More precisely, we have.

Proposition 4.1. Let $L \in (\sqrt{2}\pi, +\infty)$ be fixed. Then, for any $\omega \in \mathbb{R}$, equation

$$-\phi'' + \omega \phi - \phi \log \phi^2 = 0$$

(4.2)
possesses an L-periodic solution, which is even and strictly positive.

In order to prove Proposition 4.1 we shall need the following result.

Lemma 4.2. Consider the differential equation

$$x''(t) + g(x(t)) = 0.$$

Assume there exist $-\infty \leq a^* < 0 < b^* \leq +\infty$ and a positive smooth function $h(x)$ such that

$$g(x) = xh(x), \quad a^* < x < b^*, \quad (4.3)$$

and

$$0 < G(a^*) = G(b^*) = c^* \leq \infty, \quad (4.4)$$

where

$$G(x) = \int_0^x g(s)ds.$$

If

$$g(0) = 0, \quad g'(0) > 0, \quad g''(x) > 0, \quad g'''(x) \leq 0, \quad x \in (a^*, b^*), \quad (4.5)$$

then the energy-to-period map $c \in (0, c^*) \mapsto T(c)$ is differentiable and $T'(c) > 0, \quad c \in (0, c^*).$

Proof. Combine Corollary 2.5 and Proposition 3.1 (ii) in [9].

Now we can prove Proposition 4.1.

Proof of Proposition 4.1. First of all, we observe if ϕ_0 is an L-periodic solution of

$$-\phi''_0 - \phi_0 \log \phi_0^2 = 0, \quad (4.6)$$

then $\psi_\omega = e^{\omega t/2} \phi_0$ is an L-periodic solution of (4.2) for any $\omega \in \mathbb{R}$. Thus in view of Theorem 3.1 and Corollary 3.4 it suffices to show that the L-periodic solutions of (4.6) satisfies

$$\frac{\partial L}{\partial B} < 0, \quad B \in (0, 1/2). \quad (4.7)$$

Note that $\mathcal{E}(0, 0) = 0$ and $\mathcal{E}(0, r_2) = \mathcal{E}(0, 1) = 1/2$. By rewriting (4.6) as

$$\phi''_0 + \phi_0 \log \phi_0^2 = 0, \quad (4.8)$$

we then see that it suffices to prove that the L-periodic solutions of (4.8) satisfies...
\[\frac{\partial L}{\partial B} > 0, \quad B \in (-1/2, 0). \] (4.9)

In order to set our problem in the framework of Lemma 4.2 we change variable by putting \(\phi_0 = \psi_0 + 1 \) and note that \(\phi_0 \) is an \(L \)-periodic solution of (4.8) if and only if \(\psi_0 \) is an \(L \)-periodic solution of

\[\psi_0'' + (\psi_0 + 1) \log(\psi_0 + 1)^2 = 0. \] (4.10)

Let \(g(x) = (x + 1) \log(x + 1)^2 \). It is clear that

\[G(x) = \int_0^x g(s)ds = -\frac{(x + 1)^2}{2} + \frac{(x + 1)^2}{2} \log(x + 1)^2 + \frac{1}{2}. \]

Consequently, in order to obtain (4.9) it suffices to show that the \(L \)-periodic solutions of (4.10) satisfies

\[\frac{\partial L}{\partial B} > 0, \quad B \in (0, 1/2). \] (4.11)

Here we now use Lemma 4.2. Note that in the notation of Lemma 4.2, \(a^* = -1 \), \(b^* = -1 + e^{1/2} \), and \(c^* = 1/2 \). In addition, on \((a^*, b^*) \), we have

\[g(x) = x \left(\log(x + 1)^2 + \frac{1}{x} \log(x + 1)^2 \right) \equiv x h(x). \]

In order to see that \(h(x) \) is positive (for \(x > -1 \)), note that \(h(-1) = 0 \) and

\[h'(x) = \frac{1}{(x + 1)} \left(2 + \frac{2}{x} - \frac{(x + 1)}{x^2} \log(x + 1)^2 \right). \]

Hence \(h(x) > 0 \) if and only if \(h'(x) > 0 \), that is, if and only if \(x > \log(x + 1) \), which is true for any \(x > -1 \). It remains to show (4.5). But this immediately follows because \(g'(x) = 2 + \log(x + 1)^2 \), \(g''(x) = 2/(x + 1) \), and \(g'''(x) = -2/(x + 1)^2 \). An application of Lemma 4.2 completes the proof of the proposition. \(\square \)

With Corollary 3.4 and Proposition 4.1 in hand we can establish, for each \(L > \sqrt{2\pi} \), the existence of a smooth curve of \(L \)-periodic solutions. More precisely we have the following.

Proposition 4.3. Let \(L \in (\sqrt{2\pi}, +\infty) \) be fixed. Let \(\phi_0 \) be the positive \(L \)-periodic solution obtained in Proposition 4.1 with \(\omega = 0 \). Then,

\[\omega \in \mathbb{R} \mapsto \psi_\omega = e^{\omega/2} \phi_0 \in H^2_{per}(0, L) \]

is a smooth family of positive \(L \)-periodic solutions for (4.2).

It is easily seen that if \(\phi \) is a solution of (4.2), so is \(-\phi\). Thus, in view of Proposition 4.3 we may also obtain a smooth curve of negative \(L \)-periodic solutions. More precisely.
Proposition 4.4. Let \(L \in (\sqrt{2} \pi, +\infty) \) be fixed. Let \(\phi_0 \) be the positive \(L \)-periodic solution obtained in Proposition 4.1 with \(\omega = 0 \). Then,

\[
\omega \in \mathbb{R} \mapsto \psi_\omega = -e^{\omega/2} \phi_0 \in H^2_{\text{per}}([0, L])
\]

is a smooth family of negative \(L \)-periodic solutions for (4.2).

Attention is now turned to the orbital stability of the periodic traveling waves in Propositions 4.3 and 4.4. So, in what follows in this section, we fix \(L \in (\sqrt{2} \pi, +\infty) \) and let \(\psi_\omega, \omega \in \mathbb{R} \), be either a positive solution as in Proposition 4.3 or a negative solution as in Proposition 4.4. Recall that the quantities \(E \) and \(F \), defined in (1.6) and (1.7), are conserved by the flow of (1.1) and are invariant under the action of the group of translations \(T(s) f(\cdot) = f(\cdot + s), s \in \mathbb{R} \). Note also that functional \(E \) is not smooth at the origin on \(H^1_{\text{per}}([0, L]) \). Nevertheless, the arguments above imply that \(\psi_\omega^2 \) is strictly positive, for any \(\omega \in \mathbb{R} \), guaranteeing thus the smoothness of the functional \(E \) around any periodic traveling wave \(\psi_\omega \). This is enough to apply the abstract theory in [13], because the orbital stability is determined for initial data sufficiently close to \(\psi_\omega \).

The space we shall be working with is the Hilbert space \(X := H^1_{\text{per}}([0, L]) \). Before going into details, let us recall that periodic traveling-wave solutions are of the form \(u(x, t) = \phi(x - \omega t), \omega \in \mathbb{R} \), where \(\phi \) is a solution of (1.2). Now, we present the definition of orbital stability.

Definition 4.5. We say that an \(L \)-periodic solution \(\phi \) is orbitally stable in \(X \), by the periodic flow of (1.1), if for any \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that for any \(u_0 \in X \) satisfying \(\|u_0 - \phi\|_X < \delta \), the solution of (1.1) with initial data \(u_0 \) exists globally and satisfies

\[
\inf_{y \in \mathbb{R}} \|u(\cdot, t) - \phi(\cdot + y)\|_X < \varepsilon,
\]

for all \(t \in \mathbb{R} \).

Roughly speaking, we say that \(\phi \) is orbitally stable if for any initial data close enough to \(\phi \), the corresponding solution remains close enough to the orbit of \(\phi \) generated by translations,

\[
O_\phi := \{\phi(\cdot + y); y \in \mathbb{R}\}. \tag{4.12}
\]

Define the functional \(H = E + \omega F \). Thus, in a neighborhood of \(\psi_\omega \), \(H \) is smooth. This allows us to calculate the Fréchet derivative of \(H \) at \(\psi_\omega \) to deduce, from (1.2), that \(\psi_\omega \) is a critical point of \(H \), that is,

\[
H'(\psi_\omega) = (E + \omega F)'(\psi_\omega) = -\psi''_\omega + \omega \psi_\omega - \psi_\omega \log \psi^2_\omega = 0.
\]

Also, in a neighborhood of \(\psi_\omega \), we can rewrite equation (1.1) as an abstract Hamiltonian system, namely,

\[
u_t = JE'(u), \tag{4.13}
\]

with \(J = \partial_x \). Although \(J \) is not onto on \(L^2_{\text{per}}([0, L]) \), we can still apply the theory in [13] because, as is well known by now, such an assumption must be imposed only for proving an instability result. As we will see below, our results show the stability of the traveling waves \(\psi_\omega \).
Next, consider the linearized operator $L_{\psi\omega} := H''(\psi\omega)$, that is,

$$L_{\psi\omega}(v) = H''(\psi\omega)v = -v'' + (\omega - 2 - \log \psi^2 v).$$ \hspace{1cm} (4.14)

One has that $L_{\psi\omega}$ is an unbounded operator defined on $L^2_{\text{per}}([0, L])$ with domain $H^2_{\text{per}}([0, L])$.

Finally, we recall if (S1), (S2), and (S3) below hold, then the stability theory presented in [13] states that $\psi\omega$ is orbitally stable.

(S1) There is an open interval $I \subset \mathbb{R}$ and a smooth branch of periodic solutions, $\omega \in I \subset \mathbb{R} \mapsto \psi\omega \in H^1_{\text{per}}([0, L])$.

(S2) The operator $L_{\psi\omega}$, defined in (4.14), has only one negative eigenvalue which is simple and zero is a simple eigenvalue whose eigenfunction is $T'(0)\psi\omega = \psi'_\omega$, $\omega \in I$. Moreover, the rest of the spectrum of $L_{\psi\omega}$ is positive and bounded away from zero.

(S3) If $d : I \rightarrow \mathbb{R}$ is the function defined as $d(\omega) = H(\psi\omega)$, then

$$d''(\omega) = \frac{d}{d\omega} F(\psi\omega) > 0, \quad \text{for all } \omega \in I.$$ \hspace{1cm} (4.15)

Finally, we are in position to prove our stability result.

Theorem 4.6. Suppose that uniqueness and continuous dependence hold according to Theorem 2.1. Fix $L \in (\sqrt{2\pi}, +\infty)$ and let $\omega \in \mathbb{R} \mapsto \psi\omega \in H^2_{\text{per}}([0, L])$, be the smooth family of L-periodic solution given in either Proposition 4.3 or Proposition 4.4. Then $\psi\omega$ is orbitally stable in X by the periodic flow of (1.1).

Proof. We let $\psi\omega$ be any L-periodic wave given in Proposition 4.3. The case for $\psi\omega$ as in Proposition 4.3 is similar. As argued above, we need to show that (S1), (S2) and (S3) hold.

Step 1: (S1) holds. The existence of such a smooth branch follows from Proposition 4.3. Moreover, we have $I = \mathbb{R}$.

Step 2: (S2) holds. This immediately follows from the proof of Proposition 4.1 and Lemma 3.5.

Step 3: (S3) holds. In order to conclude the orbital stability, it remains to prove that

$$d''(\omega) = \frac{1}{2} d^2 \int_0^L \psi^2_\omega dx > 0.$$ \hspace{1cm} (4.15)

But since $\psi\omega = e^{\omega/2}\varphi_0$, we immediately deduce

$$d''(\omega) = \frac{1}{2} \left(\int_0^L \varphi_0^2 dx \right) \frac{d}{d\omega} e^{\omega} > 0.$$

This proves (4.15) and concludes the proof of Theorem 4.6. \hfill \Box
4.2. Second case: \(A \neq 0 \)

Next, we assume \(A \neq 0 \). Here the function \(g \) reads as in (4.1) and

\[
G(\omega, A, \phi) = \frac{\omega + 1}{2} \phi^2 - \frac{1}{2} \phi^2 \log \phi^2 + A\phi.
\]

First of all let us take a look at the zeros of \(g \). It is clear that \(g(\omega, A, \phi) = 0 \) is equivalent to \(g_\omega(\phi) = -A \), with \(g_\omega(\phi) \) given in the beginning of the last subsection. A simple analysis reveals that \(x_0 = e^{\omega/2} - 1 \) and \(-x_0\) are the only critical points of \(g_\omega \). In addition, for all \(\omega \in \mathbb{R} \),

\[
\lim_{x \to +\infty} g_\omega(x) = -\infty \quad \text{and} \quad \lim_{x \to -\infty} g_\omega(x) = +\infty.
\]

Since \(g_\omega(x_0) = 2e^{\omega/2} - 1 \) and \(g_\omega(x) = -g_\omega(-x) \), we deduce three different scenarios for the zeros of \(g \).

Case 1: \(|A| < 2e^{\omega/2} - 1 \). Here, there exist exactly three real numbers \(r_0 < r_1 < r_2 \) satisfying

\[
g_\omega(r_0) = g_\omega(r_1) = g_\omega(r_2) = -A,
\]

which means that \(r_0, r_1 \) and \(r_2 \) are three zeros of \(g(\omega, A, \cdot) \), for any \(\omega \in \mathbb{R} \) and \(-2e^{\omega/2} - 1 < A < 2e^{\omega/2} - 1 \). Note that \(r_1 > 0 \) if \(A < 0 \) and \(r_1 < 0 \) if \(A > 0 \) (see Fig. 4.2). Also, the fact that \(x_0 > 0 \) implies that \(r_2 > 0 \). In addition, because, for \(\phi \) in a neighborhood of \(r_2 \), \(g(\omega, A, \phi) > 0 \) if \(\phi < r_2 \) and \(g(\omega, A, \phi) < 0 \) if \(\phi > r_2 \), it follows that \(r_2 \) is a local maximum of \(G(\omega, A, \cdot) \). A similar analysis shows that \(r_0 \) is also a local maximum of \(G(\omega, A, \cdot) \).

Case 2: \(|A| = 2e^{\omega/2} - 1 \). In this case, there exist unique \(r_1 < 0 < r_2 \) such that \(g_\omega(r_1) = g_\omega(r_2) = -A \). Thus \(g(\omega, A, \cdot) \) has exactly two zeros if \(\omega \in \mathbb{R} \) and \(|A| = 2e^{\omega/2} - 1 \) (see Fig. 4.3).
Fig. 4.3. Left: Graphs of the functions \(g \) (red) and \(G \) (blue) for \(\omega \in \mathbb{R} \) and \(A = 2e^{\omega/2} - 1 \). Right: Graphs of the functions \(g \) (red) and \(G \) (blue) for \(\omega \in \mathbb{R} \) and \(A = -2e^{\omega/2} - 1 \). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4.4. Left: Graphs of the functions \(g \) (red) and \(G \) (blue) for \(\omega \in \mathbb{R} \) and \(|A| > 2e^{\omega/2} - 1, A < 0 \). Right: Graphs of the functions \(g \) (red) and \(G \) (blue) for \(\omega \in \mathbb{R} \) and \(|A| > 2e^{\omega/2} - 1, A > 0 \). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Case 3: \(|A| > 2e^{\omega/2} - 1\). In this final case, there exists a unique real number \(r_2 \) satisfying \(g_\omega (r_2) = -A \), that is, \(g(\omega, A, \cdot) \) has a unique zero if \(\omega \in \mathbb{R} \) and \(|A| > 2e^{\omega/2} - 1 \). Moreover, \(r_2 < 0 \) if \(A < 0 \) and \(r_2 > 0 \) if \(A > 0 \) (see Fig. 4.4). Also in this case, because, for \(\phi \) in a neighborhood of \(r_2 \), \(g(\omega, A, \phi) > 0 \) if \(\phi < r_2 \) and \(g(\omega, A, \phi) < 0 \) if \(\phi > r_2 \), we conclude that \(r_2 \) is a local maximum of \(G(\omega, A, \cdot) \).

In view of the above discussion in Cases 1 and 3, if \((\omega, A)\) belongs to either

\[
\mathcal{P}_1 = \{ (\omega, A) \in \mathbb{R}^2 ; \omega \in \mathbb{R}, \ |A| < 2e^{\omega/2} - 1 \}
\]

or
\[\mathcal{P}_3 = \{(\omega, A) \in \mathbb{R}^2; \omega \in \mathbb{R}, |A| > 2e^{\omega/2-1}\}, \quad (4.17) \]

ten the function \(g(\omega, A, \cdot) \) always has a real zero \(r_2 \), for which \(G(\omega, A, \cdot) \) assumes a local maximum. As a consequence of Remark 3.2, we obtain the following.

Theorem 4.7. Assume that \((\omega, A) \) belongs to either \(\mathcal{P}_1 \) or \(\mathcal{P}_3 \). Then, equation (1.2) possesses an even periodic solution \(\phi_{(\omega, A)} \). Moreover, we have the following.

(i) If \((\omega, A) \in \mathcal{P}_1 \) with \(A < 0 \) then all solutions that turn around \((r_2, 0) \) are strictly positive and the solutions that turn around \((r_0, 0) \) are strictly negative, provided they belong to a small open neighborhood of \((r_0, 0) \).

(ii) If \((\omega, A) \in \mathcal{P}_1 \) with \(A > 0 \) then all solutions that turn around \((r_0, 0) \) are strictly negative and the solutions that turn around \((r_2, 0) \) are strictly positive, provided they belong to a small open neighborhood of \((r_2, 0) \).

(iii) If \((\omega, A) \in \mathcal{P}_3 \) with \(A < 0 \) then the solutions that turn around \((r_2, 0) \) are strictly negative, provided they belong to a small open neighborhood of \((r_2, 0) \).

(iv) If \((\omega, A) \in \mathcal{P}_3 \) with \(A > 0 \) then the solutions that turn around \((r_2, 0) \) are strictly positive, provided they belong to a small open neighborhood of \((r_2, 0) \).

The phase spaces for \((\omega, A) \) in \(\mathcal{P}_1 \) or \(\mathcal{P}_3 \) are shown in Figs. 4.5 and 4.6 below.

Remark 4.8. It is clear if \(|A| = 2e^{\omega/2-1} \) in Case 2, we also obtain periodic solutions that do not change sign. However, in this situation \((\omega, A) \) does not belong to an open set of \(\mathbb{R}^2 \).

Remark 4.9. Having disposed Theorem 4.7, a few words of explanation are in order. Here, contrary to the case where \(A = 0 \), we have no control of how large the period of \(\phi_{(\omega, A)} \) may be. There is the possibility that solutions, even those turning around the critical center points, change its sign. Recall in the case \(A = 0 \), we obtain \(L \)-periodic solutions that do not change sign for any \(L > \sqrt{2\pi} \).

Now we can construct the smooth family of periodic solutions we need.

Theorem 4.10. Fix \((\omega_0, A_0) \) according to Theorem 4.7 and let \(L_0 \) be the period of \(\phi_{(\omega_0, A_0)} \). Then there are an open neighborhood \(\mathcal{O} \) of \((\omega_0, A_0)\) and a family,

\[(\omega, A) \in \mathcal{O} \mapsto \psi_{(\omega, A)} \in H^2_{\text{per},e}(\mathcal{O}), \]

of \(L_0 \)-periodic solutions of (3.1), which depends smoothly on \((\omega, A) \in \mathcal{O} \).

Proof. Here the equation does not fit in the framework of Lemma 4.2. So, instead of calculating the derivative of the energy-to-period map as in Proposition 4.1, we shall give the conditions we need in terms of \(\theta \). In view of Theorems 3.8 and 3.12 this is enough to our purpose. To calculate the value of \(\theta \) in (3.13), we need to obtain the value of \(\tilde{y}'(L_0) \) by solving the linear equation (3.11) with \(g(\omega_0, A_0, \phi) = \omega_0 \phi - \log(\phi^2) \phi + A_0 \). To fix ideas, let us consider \(\omega_0 = 1 \) and \(A_0 = 1 \). In this case, one has \((\omega_0, A_0) \in \mathcal{P}_1 \) and the zeros of the function \(g(\omega_0, A_0, \cdot) \) are \(r_0 = -1, r_1 = -0.28 \) and \(r_2 = 2.09 \). To obtain strictly positive solutions with a local maximum
at $x = 0$, the initial condition of $\phi_{(1,1)}$ must satisfy $2.09 < \phi_{(1,1)}(0) < 3.51$. Collecting these informations and taking $\phi_{(1,1)}(0) = 3$, we are able to see that $\phi = \phi_{(1,1)}$ satisfies

\[
\begin{cases}
-\phi'' + \phi - \phi \log \phi^2 + 1 = 0, \\
\phi(0) = 3, \\
\phi'(0) = 0.
\end{cases}
\] (4.18)
The period L_0 of ϕ can be determined by (3.8) as $L_0 \approx 4.18$. Solving numerically the initial-value problems (4.18) and (3.11), we can compute the constant θ given by (3.13) as $\theta \approx -0.08$, which allows us to apply Corollary 3.4. In Table 1, we present some different values of θ using the discussion established in Theorem 4.7.

This completes the proof of the theorem. □

The spectral properties related to the linearized operator

$$\mathcal{L} = \mathcal{L}(v) = -v'' + (\omega - 2 - \log(\psi^2_{(\omega, A)}))v,$$

(4.19)
is deduced by combining the arguments in the proof of Theorem 4.10 with the approach treated in Section 3. More precisely.

Proposition 4.11. For $(\omega, A) \in \mathcal{O}$, let $\psi_{(\omega, A)}$ be the L_0-periodic solution determined in Theorem 4.10. The closed, unbounded and self-adjoint operator \mathcal{L} in (4.19) defined in $L^2_{\text{per}}([0, L_0])$ with domain $H^2_{\text{per}}([0, L_0])$ has a unique negative eigenvalue whose associated eigenfunction is even. Zero is a simple eigenvalue with associated eigenfunction $\psi'_{(\omega, A)}$. Moreover, the rest of the spectrum is bounded away from zero.

Next, we present the orbital stability of the waves constructed above. First of all, we should note we cannot directly apply the stability criterion in [13], because our waves are not critical points of the functional $E + \omega F$ at all. Hence, our result is obtained by adapting the arguments in [1,13], and [17]. So, in what follows, we let $\psi = \psi_{(\omega_0, A_0)}$ be any periodic solution given in Theorem 4.10, with minimal period L_0. Also, define

$$\eta := \frac{\partial}{\partial \omega} \psi_{(\omega, A)} \big|_{(\omega_0, A_0)}, \quad \beta := \frac{\partial}{\partial A} \psi_{(\omega, A)} \big|_{(\omega_0, A_0)},$$

and set

$$M_\omega(\psi) = \frac{\partial}{\partial \omega} \int_0^{L_0} \psi_{(\omega, A)}(x)dx \big|_{(\omega_0, A_0)}, \quad M_A(\psi) = \frac{\partial}{\partial A} \int_0^{L_0} \psi_{(\omega, A)}(x)dx \big|_{(\omega_0, A_0)},$$

and

$$F_\omega(\psi) = \frac{1}{2} \frac{\partial}{\partial \omega} \int_0^{L_0} \psi^2_{(\omega, A)}(x)dx \big|_{(\omega_0, A_0)}, \quad F_A(\psi) = \frac{1}{2} \frac{\partial}{\partial A} \int_0^{L_0} \psi^2_{(\omega, A)}(x)dx \big|_{(\omega_0, A_0)}.$$
In order to simplify the notation, the norm and inner product in $L^2_{\text{per}}([0, L_0])$ will be denoted by $|| \cdot ||$ and $\langle \cdot, \cdot \rangle$.

Before stating our main theorem we need some preliminary results. We let ρ be the semi-distance defined on the space X as

$$\rho(u, \psi) = \inf_{y \in \mathbb{R}} ||u - \psi(\cdot + y)||_X.$$ \hfill (4.20)

For a given $\varepsilon > 0$, we define the ε-neighborhood of the orbit O_ψ as

$$U_\varepsilon := \{u \in X; \rho(u, \psi) < \varepsilon\}.$$ \hfill (4.21)

We also introduce the smooth manifolds

$$\Sigma_0 = \{u \in X; F(u) = F(\psi), M(u) = M(\psi)\},$$ \hfill (4.22)

and

$$\Upsilon_0 = \{u \in X; \langle \psi, u \rangle = \langle 1, u \rangle = 0 \}.$$ \hfill (4.23)

The next result states that under a suitable restriction, the operator L is strictly positive.

Proposition 4.12. Assume that there is $\Phi \in X$ such that $\langle L\Phi, \phi \rangle = 0$, for all $\phi \in \Upsilon_0$, and

$$\mathcal{T} := \langle L\Phi, \Phi \rangle < 0.$$ \hfill (4.24)

Then, there is a constant $c > 0$ such that

$$\langle Lv, v \rangle \geq c||v||^2_X,$$

for all $v \in \Upsilon_0$ such that $\langle v, \psi' \rangle = 0$.

Proof. We shall give only a sketch of the proof. From **Proposition 4.11** one has

$$L^2_{\text{per}}([0, L_0]) = [\chi] \oplus [\psi'] \oplus P,$$ \hfill (4.25)

where χ satisfies $||\chi|| = 1$ and $L\chi = -\lambda_0^2 \chi$, $\lambda_0 \neq 0$. By using the arguments in [18, p. 278], we obtain that

$$\langle Lp, p \rangle \geq c_1||p||^2_P,$$

for all $p \in H^2_{\text{per}}([0, L_0]) \cap P$,

where c_1 is a positive constant.

Next, from (4.25), we write

$$\Phi = a_0 \chi + b_0 \psi' + p_0, \quad a_0, b_0 \in \mathbb{R},$$

where $p_0 \in H^2_{\text{per}}([0, L_0]) \cap P$. Now, since $\psi' \in \ker(L)$, $L\chi = -\lambda_0^2 \chi$, and $\mathcal{T} < 0$, we obtain

$$\langle Lp_0, p_0 \rangle = \langle L(\Phi - a_0 \chi - b_0 \psi'), \Phi - a_0 \chi - b_0 \psi' \rangle = \langle L\Phi, \Phi \rangle + a_0^2 \lambda_0^2 < a_0^2 \lambda_0^2.$$ \hfill (4.26)
Taking $\varphi \in \mathcal{Y}_0$ such that $\|\varphi\| = 1$ and $\langle \varphi, \psi' \rangle = 0$, we can write $\varphi = a_1 \chi + p_1$, where $p_1 \in X \cap P$. Thus,

$$0 = (\mathcal{L}\Phi, \varphi) = (-a_0 \lambda_0^2 \chi + \mathcal{L}p_0, a_1 \chi + p_1) = -a_0 a_1 \lambda_0^2 + \langle \mathcal{L}p_0, p_1 \rangle.$$ \hfill (4.27)

The rest of the proof runs as in [1, Lemma 5.1] (see also [17, Lemma 4.4]). \hfill \Box

Proposal 4.12 is useful to establish the following result. In what follows, let us consider $H = E + \omega_0 F + A_0 M$, where E, F and M are the conserved quantity defined in (1.6), (1.7) and (1.8), respectively.

Proposition 4.13. Under the assumptions of Proposition 4.12 there are $\alpha > 0$ and $D = D(\alpha) > 0$ such that

$$H(u) - H(\psi) \geq D\rho(u, \psi)^2,$$

for all $u \in U_\alpha \cap \Sigma_0$.

Proof. The proof can be found in [17, Lemma 4.6]. So, we omit the details. \hfill \Box

Finally, we present our stability result. In what follows in this section, we assume that uniqueness and continuous dependence hold according to Theorem 2.1.

Theorem 4.14. Let $\psi = \psi_{(\omega_0, A_0)}$ be a periodic solution given in Theorem 4.10. Assume that the matrix

$$D := \begin{bmatrix} F_A(\psi) & M_A(\psi) \\ F_\omega(\psi) & M_\omega(\psi) \end{bmatrix}$$

is invertible. If there is $\Phi \in X$ such that $\langle \mathcal{L}\Phi, \varphi \rangle = 0$, for all $\varphi \in \mathcal{Y}_0$, and $I = \langle \mathcal{L}\Phi, \Phi \rangle < 0$, then ψ is orbitally stable in X by the periodic flow of (1.1).

Proof. Let $\alpha > 0$ be the constant such that Proposition 4.13 holds. Since H is continuous at ψ, for a given $\varepsilon > 0$, there exists $\delta \in (0, \alpha)$ such that if $\|u_0 - \psi\| < \delta$ one has

$$H(u_0) - H(\psi) < D\varepsilon^2,$$ \hfill (4.28)

where $D > 0$ is the constant in Proposition 4.13. We need to divide our proof into two cases.

First case. $u_0 \in \Sigma_0$. Since F and M are conserved quantities, if $u_0 \in \Sigma_0$ one has that $u(t) \in \Sigma_0$, for all $t \geq 0$. The time continuity of the function $\rho(u(t), \psi)$ allows to choose $T > 0$ such that

$$\rho(u(t), \psi) < \alpha, \quad \text{for all } t \in [0, T).$$ \hfill (4.29)

Thus, one obtains $u(t) \in U_\alpha$, for all $t \in [0, T)$. Combining Proposition 4.13 and (4.28), we have

$$\rho(u(t), \psi) < \varepsilon, \quad \text{for all } t \in [0, T).$$ \hfill (4.30)
Next, we prove that \(\rho(u(t), \psi) < \alpha \), for all \(t \in [0, +\infty) \), from which one concludes the orbital stability restricted to perturbations in the manifold \(\Sigma_0 \). Indeed, let \(T_1 > 0 \) be the supremum of the values of \(T > 0 \) for which (4.29) holds. To obtain a contradiction, suppose that \(T_1 < +\infty \). By choosing \(\varepsilon < \frac{\alpha}{2} \) we obtain, from (4.30),

\[
\rho(u(t), \psi) < \frac{\alpha}{2}, \quad \text{for all } t \in [0, T_1).
\]

Since \(t \in (0, +\infty) \mapsto \rho(u(t), \psi) \) is continuous, there is \(T_0 > 0 \) such that \(\rho(u(t), \psi) < \frac{3}{4}\alpha < \alpha \), for \(t \in [0, T_1 + T_0) \), contradicting the maximality of \(T_1 \). Therefore, \(T_1 = +\infty \) and the theorem is established if \(u_0 \in \Sigma_0 \).

Second case. \(u_0 \notin \Sigma_0 \). In this case, since \(\det(D) \neq 0 \), we claim that there is \((\omega_1, A_1) \in \mathcal{O} \), such that \(F(\psi(\omega_1, A_1)) = F(u_0) \) and \(M(\psi(\omega_1, A_1)) = M(u_0) \).

In fact, since \(M \) and \(F \) are smooth, the Inverse Function Theorem implies the existence of \(r_1, r_2 > 0 \) such that the map

\[
\Gamma : B_{r_1}(\omega_0, A_0) \to B_{r_2}(M(\psi), F(\psi)) \quad \text{given by} \quad (\omega, A) \mapsto (M(\psi_{(\omega, A)}), F(\psi_{(\omega, A)})),
\]

is a smooth diffeomorphism. Here, \(B_r((x, y)) \) denotes the open ball in \(\mathbb{R}^2 \) centered at \((x, y) \) with radius \(r > 0 \). The continuity of the functionals \(M \) and \(F \) gives (if necessary we can take a smaller \(\delta > 0 \))

\[
|M(u_0) - M(\psi)| < \frac{r_2}{\sqrt{2}} \quad \text{and} \quad |F(u_0) - F(\psi)| < \frac{r_2}{\sqrt{2}},
\]

that is, \((M(u_0), F(u_0)) \in B_{r_2}(M(\psi), F(\psi)) \). Since \(\Gamma \) is a diffeomorphism, there is a unique \((\omega_1, A_1) \in B_{r_1}(\omega_0, A_0) \) such that \((M(u_0), F(u_0)) = (M(\psi_{(\omega_1, A_1)}), F(\psi_{(\omega_1, A_1)})) \). The claim is thus proved.

The remainder of the proof follows from the smoothness of the periodic wave with respect to the parameters, the fact that the period does not change whether \((\omega, A) \in \mathcal{O} \) and the triangle inequality. \(\Box \)

Theorem 4.14 establishes the orbital stability of \(\psi \) provided \(\det(D) \neq 0 \) and \(\mathcal{I} < 0 \). The next proposition gives a sufficient condition to show that \(\mathcal{I} < 0 \).

Proposition 4.15. Let \(K : \mathbb{R}^2 \to \mathbb{R} \) be the function defined as

\[
K(x, y) = x^2 M_A(\psi) + xy(M_\omega(\psi) + F_A(\psi)) + y^2 F_\omega(\psi).
\]

Assume that there is \((a, b) \in \mathbb{R}^2 \) such that \(K(a, b) > 0 \). Then there is \(\Phi \in X \) such that \(\langle \mathcal{L} \Phi, \phi \rangle = 0 \), for all \(\phi \in \mathcal{Y}_0 \), and

\[
\mathcal{I} = \langle \mathcal{L} \Phi, \Phi \rangle < 0.
\]
Proof. It suffices to define $\Phi := a\beta + b\eta$. Indeed, since $L\beta = -1$ and $L\eta = -\psi$, it is clear that $\langle L\Phi, \varphi \rangle = 0$, for all $\varphi \in \Upsilon_0$, and

$$\langle L\Phi, \Phi \rangle = \langle -a - b\psi, a\beta + b\eta \rangle$$

$$= -(a^2M_A(\psi) + abM_\omega(\psi) + abF_A(\psi) + b^2F_\omega(\psi))$$

$$= -K(a, b).$$

The proof is thus completed. □

Corollary 4.16. Assume that A_0 is sufficiently small. Then $\psi = \psi(\omega_0, A_0)$ is orbitally stable in X provided $\det(D) \neq 0$.

Proof. Differentiating the equation

$$-\psi'' + \omega\psi - \psi\log\psi^2 + A = 0$$

(4.31)

with respect to ω, multiplying the obtained equation by ψ and integrating on $[0, L_0]$ we deduce that

$$2F_\omega(\psi) = 2F(\psi) - A_0M_\omega(\psi).$$

(4.32)

Since $F(\psi) > 0$, we see that if A_0 is sufficiently small then $F_\omega(\psi) > 0$. Thus, by taking $(a, b) = (0, 1)$ we obtain $K(a, b) > 0$. The conclusion then follows in view of Proposition 4.15 and Theorem 4.14. □

Corollary 4.17. Assume that $\psi > 0$ and $\det(D) \neq 0$. If $A_0 > 0$ then there exists $(a, b) \in \mathbb{R}^2$ such that $K(a, b) > 0$. Consequently, there exists $\Phi \in X$ such that $\mathcal{I} < 0$ and ψ is orbitally stable in X.

Proof. From Proposition 4.15 and Theorem 4.14 it suffices to show the existence of $(a, b) \in \mathbb{R}^2$ such that $K(a, b) > 0$. If $M_A(\psi) > 0$ we can take $(a, b) = (1, 0)$. If $F_\omega(\psi) > 0$, we can take $(a, b) = (0, 1)$. Assume now that $M_A(\psi) \leq 0$ and $F_\omega(\psi) \leq 0$. It is to be observed that since $\det(D) \neq 0$ the case $(M_A(\psi), M_\omega(\psi)) = (0, 0)$ is ruled out. Differentiating equation (4.31) with respect to A, multiplying the obtained equation by ψ and integrating on $[0, L_0]$ it is inferred that

$$2F_A(\psi) = M(\psi) - A_0M_A(\psi).$$

(4.33)

Taking the derivative in (4.32) with respect to A and in (4.33) with respect to ω and comparing the result we see that $F_A(\psi) = M_\omega(\psi)$. Hence, the function K in Proposition 4.15 reads as

$$K(x, y) = x^2M_A(\psi) + 2xyM_\omega(\psi) + y^2F_\omega(\psi).$$

If $M_A(\psi) = F_\omega(\psi) = 0$ we can take $(a, b) = (-1, 1)$ or $(a, b) = (1, 1)$ according to the sign of $M_\omega(\psi)$.
We now divide the rest of the proof into two cases.

Case 1. $M_\omega(\psi) \leq 0$. Note that

\[
\Delta := M_\omega(\psi)^2 - M_A(\psi) F_\omega(\psi)
= M_\omega(\psi)^2 - M_A(\psi) \left(F(\psi) - A M_\omega(\psi) \right)
= M_\omega(\psi)^2 - M_A(\psi) F(\psi) - A M_A(\psi) M_\omega(\psi) > 0.
\]

Thus, either $K(x, 1) = 0$ or $K(1, y) = 0$ has two different real roots. In any case, this implies that there is $(a, b) \in \mathbb{R}^2$ such that $K(a, b) > 0$.

Case 2. $M_\omega(\psi) > 0$. Note that

\[
det(D) = M_\omega(\psi) \left(\frac{M(\psi)}{2} - \frac{A}{2} M_A(\psi) \right) - M_A(\psi) \left(F(\psi) - \frac{A}{2} M_\omega(\psi) \right)
= \frac{1}{2} M(\psi) M_\omega(\psi) - M_A(\psi) F(\psi) > 0.
\]

Hence, if $M_A(\psi) < 0$ we have $M_A(\psi) det(D) < 0$. By taking $(a, b) = (M_\omega(\psi), -M_A(\psi))$, we deduce

\[
K(a, b) = M_\omega(\psi)^2 M_A(\psi) - M_\omega(\psi) M_A(\psi) (M_\omega(\psi) + F_A(\psi)) - M_A(\psi)^2 F_\omega(\psi)
= -M_A(\psi) (M_\omega(\psi) F_A(\psi) - M_A(\psi) F_\omega(\psi))
= -M_A(\psi) det(D) > 0.
\]

Finally suppose $M_A(\psi) = 0$. Since the case $F_\omega(\psi) = 0$ has already been dealt with, we may assume $F_\omega(\psi) < 0$. By taking $a = 1$ and $b = -\frac{M_\omega(\psi)}{F_\omega(\psi)}$, we have

\[
K(a, b) = -2 \frac{M_\omega(\psi)^2}{F_\omega(\psi)} + \frac{M_\omega(\psi)^2}{F_\omega(\psi)} = -\frac{M_\omega(\psi)^2}{F_\omega(\psi)} > 0.
\]

This completes the proof of the corollary. \qed

Remark 4.18. Table 2 shows some values of $M_A(\psi) det(D)$, $M_A(\psi)$, and $F_\omega(\psi)$. Although we are not able to prove analytically, numerical calculations suggest that $det(D) \neq 0$ and $F_\omega(\psi) > 0$, for all $(\omega, A) \in P_i$, $i = 1, 3$ (recall this is true in the case $A = 0$). Theorem 4.14 and Proposition 4.15 would imply that ψ is orbitally stable in X by the periodic flow of (1.1).

Acknowledgments

F.N. is supported by CNPq/Brazil grant 304654/2015-9. A.P. is supported by CNPq/Brazil grant 303098/2016-3 and FAPESP/São Paulo/Brazil grant 2013/08050-7. F.C. is supported by CAPES/Brazil.
Table 2

Values of the constants indicating that our assumptions are matched.

<table>
<thead>
<tr>
<th>ω_0</th>
<th>A_0</th>
<th>$\phi(0)$</th>
<th>L_0</th>
<th>$M_A(\psi) \det(D)$</th>
<th>$M_A(\psi)$</th>
<th>$F_{\psi}(\psi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4.18</td>
<td>-0.47</td>
<td>-0.21</td>
<td>7.41</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3.49</td>
<td>3.13</td>
<td>24.99</td>
<td>21.81</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-0.1</td>
<td>4.32</td>
<td>0.50</td>
<td>0.44</td>
<td>1.42</td>
</tr>
<tr>
<td>1</td>
<td>-2</td>
<td>-2</td>
<td>3.65</td>
<td>2.80</td>
<td>8.99</td>
<td>7.82</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>3.37</td>
<td>-1.65</td>
<td>-0.14</td>
<td>0.52</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>15</td>
<td>4.21</td>
<td>354.78</td>
<td>1.22</td>
<td>349.28</td>
</tr>
<tr>
<td>-3</td>
<td>-2</td>
<td>-0.5</td>
<td>2.95</td>
<td>0.18</td>
<td>0.43</td>
<td>0.22</td>
</tr>
<tr>
<td>-5</td>
<td>-0.1</td>
<td>-0.1</td>
<td>3.76</td>
<td>0.01</td>
<td>0.45</td>
<td>0.01</td>
</tr>
<tr>
<td>-10</td>
<td>-2</td>
<td>-0.2</td>
<td>2.03</td>
<td>0.0008</td>
<td>0.20</td>
<td>0.004</td>
</tr>
</tbody>
</table>

References