(3.1) Consider a fluid of constant density in two dimensions with gravity, and
suppose that the vorticity vy —u is everywhere constant and equal to w. Show that
the velocity field has the form (u,v) = (¢x + Xy, ¢y — xx) Where ¢ is harmonic

and y is any function of x, y (independent of ¢) satisfying V?y = —w. Show
further that '

1
V(¢,+Eq2+ww+%+gz)=0

where ¥ is the stream function for u; i.e., u = (¥, —¥x) and q?® = u? + v2
(3.3) For steady two-dimensional flow of a fluid of constant density, we have
pu-Vu+Vp =0, V.-u=0.
Show that, if u = (¥, —V¥x), these equations imply
V¢ x V(V3y) = 0.
Thus. show that a solution is obtained by giving a function H (yr) and then solving
V2y = H'(y). Show also that the pressure is given by - H) — %(V:j/]z +
const.

(3.4) Prove Ertel’s theorem for a fluid of constant density: If f is a scalar

material invariant, i.e., %{ = (), then w - V f is also a material invariant, where

@ = V x u is the vorticity field.

(3.5) A steady Beltrami flow is a velocity field u(x) for which the vorticity is
always parallel to the velocity, i.e., V x u = f(x)u for some scalar function ¥
Show that if a steady Beltrami field is also the steady velocity field of an inviscid
fluid of constant density, then necessarily f is constant on streamlines. What is the
corresponding pressure? Show that

u= (Bsiny+ Ccosz,Csinz + Acosx, Asinx + Bcosy)
is such a Beltrami field with f = —1.

(3.6) Another formula exhibiting a vector field u = (w, v, w) whose curl is
w = (£,n.2), where V- @ = 0, is given by
1

1
N = :f rq(:x.ry.t:)dr—_v[ tZ(tx.ty,tz)dt,
0

0

1 1
v = x[ tC(tx, ty,tz)dt — zf tE(tx,ty, tz)dt,
0 0

1 1
w= y[ tE(rx, ty. tz)dt —xf tn(tx,ty, tz)dt.
0 0

Verify this result. (Note that u will not in general be divergence-free, e.g., check
E=(=0,n=2x.)



5.1. Let a closed circuit C of fluid particles be given, at t =0, by
x =(acoss, asins, 0), 0<s<2mnm,

so that each value of s between 0 and 27w corresponds to a particular
fluid particle. Let C(¢) be given subsequently by

x=(acoss +aatsins,asins, 0), 0=s5s<2m

Find the velocity u(s,t) of each fluid particle, and show that the
particles s =0 and s=x remain at rest. Find the acceleration of
each fluid particle, show that

u= (ayr 0’ O)’

and sketch how the shape of C(t) changes with time.
Now, by definition,

2 a
F=J’ u-dx=f U= ds.
C@) 0 os

Calculate the last integral explicitly at time ¢, confirming that it is
independent of ¢, in accord with Kelvin’s circulation theorem.

5.3. Let an ideal fluid be in 2-D motion. By virtue of eqn (5.9) the
vorticity w of any fluid element is conserved. The fluid element must
also conserve its volume, and because it is not being stretched in the
z-direction its cross-sectional area S in the x—y plane must therefore be
conserved. It follows that the integral

jwdS

taken over a dyed cross-section § in the x—y plane, must be independent
of time. By Stokes’s theorem, or by Green’s theorem in the plane
(A.24), it follows that I', the circulation round the dyed circuit which
forms the perimeter of §, must also be independent of time.

This is in some respects a nice way of seeing how Kelvin’s circulation
theorem comes about. It is, however, a wholly 2-D argument, and that
theorem is certainly not restricted to 2-D flows. What is the other
serious limitation to the above point of view?
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