4. Observe that with the definition of £ and A given in the text, the isoperimetric
inequality continues to hold (with the same proof) even when I is not simple.

Show that this stronger version of the isoperimetric inequality is equivalent
to Wirtinger's inequality, which says that if f is 27-periodic, of class C*, and
. 2n
satisfies [ f(t)dt = 0, then

2 2@
] )2t < ] PP dt
0 0

with equality if and only if f(t) = Asint + Bcost (Exercise 11, Chapter 3).

[Hint: In one direction, note that if the length of the curve is 27 and « is an
appropriate arc-length parametrization, then

27 2w
2 — A) = / (@/(s) + y()]” ds + ] (o (5)? — y(s)?) ds.

A change of coordinates will guarantee fnzw y(s) ds = 0. For the other direction,
start with a real-valued f satisfying all the hypotheses of Wirtinger's inequality,
and construct g, 2r-periodic and so that the term in brackets above vanishes.]

11. Show that if w(x,t) = (f * H;)(x) where H; is the heat kernel, and [ is
Riemann integrable, then

1
/ |u(x, ) — f(.!‘)|2 de —0 ast— 0.
0

12. A change of variables in (8) leads to the solution

u(H: T)= Z a7187ﬂ2T€I‘?19 = (f * h'f)(f;)

of the equation

I 2,

% = % with 0 < 6 < 27 and 7 > 0,
with  boundary condition u(6,0) = f(8) ~ > a,e™?. Here h,(0) =
S e ™7e™ This version of the heat kernel on [0,27] is the analogue

oo

e o eI with

of the Poisson kernel, which can be written as P.(8) =)
r=e 7 (and so 0 < r < 1 corresponds to 7 > 0).

13. The fact that the kernel H,(z) is a good kernel, hence u(x,t) — f(z) at
each point of continuity of f, is not easy to prove. This will be shown in the
next chapter. However, one can prove directly that I, (x) is “peaked” at x =0
as t — 0 in the following sense:

(a) Show that f_lm |H,(x)|? dx is of the order of magnitude of t~=1/2 as t — 0.
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More precisely, prove that t1/2 [ 1/2

iy |H,(2)|? dx converges to a non-zero

limit as t — 0.

(b) Prove that fjﬁg 22 Hy(x)? de = O(t"/?) as t — 0.

Hint: For (a) compare the sum Y™ e~ with the integral [> e~**"t dz
I e g o

where ¢ > 0. For (b) use x? < C(sinmz)? for —1/2 <2 < 1/2, and apply the

mean value theorem to e~ "t ]



2. Let f and g be the functions defined by

N L) i <1 ) L= if x| <1,
f@) = x-1 (@) = { 0 otherwise, and  g(z) = { 0 otherwise.

Although f is not continuous, the integral defining its Fourier transform still
makes sense. Show that

- sin 2w sin g

Fo = T g g - (B

with the understanding that f((]) =2 and g(0) = 1.

3. The following exercise illustrates the principle that the decay of f is related
to the continuity properties of f.

(a) Suppose that f is a function of moderate decrease on R whose Fourier
transform f is continuous and satisfies

f0=0(ghs) wlioo

for some 00 < a < 1. Prove that f satisfies a Holder condition of order «,
that is, that

[f(z+h) — f(z)] < M]h|®  for some M >0 and all 2,k € R.

(b) Let f be a continuous function on R which vanishes for |z| > 1, with
f(0) =0, and which is equal to 1/log(1/]x|) for all 2 in a neighborhood
of the origin. Prove that f is not of moderate decrease. In fact, there is
no e > 0 so that f(&) = O(1/|€]'") as |¢] — oc.

[Hint: For part (a), use the Fourier inversion formula to express f(x + h) — f(z)
as an integral involving f, and estimate this integral separately for £ in the two
ranges [€] < 1/[h| and [¢] > 1/[h]]

4. Bump functions. Examples of compactly supported functions in S(R) are

very handy in many applications in analysis. Some examples are:

(a) Suppose a < b, and [ is the function such that f(z) =0ifx <aorz >b
and

f(z) = e M@=/ =2)f g < < b,

Show that f is indefinitely differentiable on R.

(b) Prove that there exists an indefinitely differentiable function F on R such
that F(z) =0if  <a, F(z) =1if z > b, and F is strictly increasing on
[a, b].

(¢) Let d > 0 be so small that a + § < b — 4. Show that there exists an indef-
initely differentiable function g such that gis 0ifx <aorxz > b, gis 1 on
[a+ d,b— 4], and g is strictly monotonic on [a, a + 8] and [b— §,8].

[Hint: For (b) consider F(z) =c [ jm S(£) dt where ¢ is an appropriate constant.|
5. Suppose f is continuous and of moderate decrease.
(a) Prove that f is continuous and f(&) — 0 as |¢] — .

(b) Show that if f (&) = 0 for all £, then f is identically 0.

[Hint: For part (a), show that f(£) = %ff; [flx) — fla —1/(28))]e 2728 do,
For part (b), verify that the multiplication formula Jf’ flx)g(x)de = f jE (1)g(y) dy
still holds whenever g € S(R) |



7. Prove that the convolution of two functions of moderate decrease is a function
of moderate decrease.

[Hint: Write
[ra—wamar= [ 4 .
lyl<|=|/2 lylz[=]/2

In the first integral f(x —y) = O(1/(1+a?)) while in the second integral
g(y) = 0(1/(1 +2))]

8. Prove that f is continuous, of moderate decrease, and | _0; f (;r,r):-_”'é‘2 ey =0
for all z € R, then f = 0.

[Hint: Consider f+e™* ]

9. If f is of moderate decrease, then

R
(14) f 0 (l B %I) H(©)e 5 dg = ( » Fr)(@),

where the Fejér kernel on the real line is defined by

2
sinwt R .
Frlt) = R( iR ) Bz
R ift=0.

Show that {Fg} is a family of good kernels as R — oo, and therefore (14) tends
uniformly to f(x) as 2 — oo. This is the analogue of Fejér’s theorem for Fourier
series in the context of the Fourier transform.



