4. Observe that with the definition of ℓ and \mathcal{A} given in the text, the isoperimetric inequality continues to hold (with the same proof) even when Γ is not simple.

Show that this stronger version of the isoperimetric inequality is equivalent to Wirtinger's inequality, which says that if f is 2π -periodic, of class C^1 , and satisfies $\int_0^{2\pi} f(t) dt = 0$, then

$$\int_0^{2\pi} |f(t)|^2 dt \le \int_0^{2\pi} |f'(t)|^2 dt$$

with equality if and only if $f(t) = A \sin t + B \cos t$ (Exercise 11, Chapter 3).

[Hint: In one direction, note that if the length of the curve is 2π and γ is an appropriate arc-length parametrization, then

$$2(\pi - \mathcal{A}) = \int_0^{2\pi} \left[x'(s) + y(s) \right]^2 ds + \int_0^{2\pi} (y'(s)^2 - y(s)^2) ds.$$

A change of coordinates will guarantee $\int_0^{2\pi} y(s) \, ds = 0$. For the other direction, start with a real-valued f satisfying all the hypotheses of Wirtinger's inequality, and construct g, 2π -periodic and so that the term in brackets above vanishes.]

11. Show that if $u(x,t) = (f * H_t)(x)$ where H_t is the heat kernel, and f is Riemann integrable, then

$$\int_0^1 |u(x,t) - f(x)|^2 dx \to 0 \quad \text{as } t \to 0.$$

12. A change of variables in (8) leads to the solution

$$u(\theta, \tau) = \sum a_n e^{-n^2 \tau} e^{in\theta} = (f * h_\tau)(\theta)$$

of the equation

$$\frac{\partial u}{\partial \tau} = \frac{\partial^2 u}{\partial \theta^2}$$
 with $0 \le \theta \le 2\pi$ and $\tau > 0$,

with boundary condition $u(\theta,0) = f(\theta) \sim \sum a_n e^{in\theta}$. Here $h_{\tau}(\theta) = \sum_{n=-\infty}^{\infty} e^{-n^2 \tau} e^{in\theta}$. This version of the heat kernel on $[0,2\pi]$ is the analogue of the Poisson kernel, which can be written as $P_r(\theta) = \sum_{n=-\infty}^{\infty} e^{-|n|\tau} e^{in\theta}$ with $r = e^{-\tau}$ (and so 0 < r < 1 corresponds to $\tau > 0$).

- 13. The fact that the kernel $H_t(x)$ is a good kernel, hence $u(x,t) \to f(x)$ at each point of continuity of f, is not easy to prove. This will be shown in the next chapter. However, one can prove directly that $H_t(x)$ is "peaked" at x = 0 as $t \to 0$ in the following sense:
 - (a) Show that $\int_{-1/2}^{1/2} |H_t(x)|^2 dx$ is of the order of magnitude of $t^{-1/2}$ as $t \to 0$. More precisely, prove that $t^{1/2} \int_{-1/2}^{1/2} |H_t(x)|^2 dx$ converges to a non-zero limit as $t \to 0$.
 - (b) Prove that $\int_{-1/2}^{1/2} x^2 |H_t(x)|^2 dx = O(t^{1/2})$ as $t \to 0$.

[Hint: For (a) compare the sum $\sum_{-\infty}^{\infty}e^{-cn^2t}$ with the integral $\int_{-\infty}^{\infty}e^{-cx^2t}\,dx$ where c>0. For (b) use $x^2\leq C(\sin\pi x)^2$ for $-1/2\leq x\leq 1/2$, and apply the mean value theorem to e^{-cx^2t} .]

2. Let f and g be the functions defined by

$$f(x) = \chi_{[-1,1]}(x) = \left\{ \begin{array}{ll} 1 & \text{if } |x| \leq 1, \\ 0 & \text{otherwise,} \end{array} \right. \quad \text{and} \quad g(x) = \left\{ \begin{array}{ll} 1 - |x| & \text{if } |x| \leq 1, \\ 0 & \text{otherwise.} \end{array} \right.$$

Although f is not continuous, the integral defining its Fourier transform still makes sense. Show that

$$\hat{f}(\xi) = \frac{\sin 2\pi \xi}{\pi \xi}$$
 and $\hat{g}(\xi) = \left(\frac{\sin \pi \xi}{\pi \xi}\right)^2$,

with the understanding that $\hat{f}(0) = 2$ and $\hat{g}(0) = 1$.

- **3.** The following exercise illustrates the principle that the decay of \hat{f} is related to the continuity properties of f.
 - (a) Suppose that f is a function of moderate decrease on $\mathbb R$ whose Fourier transform $\hat f$ is continuous and satisfies

$$\hat{f}(\xi) = O\left(\frac{1}{|\xi|^{1+\alpha}}\right)$$
 as $|\xi| \to \infty$

for some $0 < \alpha < 1$. Prove that f satisfies a Hölder condition of order α , that is, that

$$|f(x+h)-f(x)| \leq M|h|^{\alpha} \quad \text{ for some } M>0 \text{ and all } x,h \in \mathbb{R}.$$

(b) Let f be a continuous function on \mathbb{R} which vanishes for $|x| \geq 1$, with f(0) = 0, and which is equal to $1/\log(1/|x|)$ for all x in a neighborhood of the origin. Prove that \hat{f} is not of moderate decrease. In fact, there is no $\epsilon > 0$ so that $\hat{f}(\xi) = O(1/|\xi|^{1+\epsilon})$ as $|\xi| \to \infty$.

[Hint: For part (a), use the Fourier inversion formula to express f(x+h) - f(x) as an integral involving \hat{f} , and estimate this integral separately for ξ in the two ranges $|\xi| \leq 1/|h|$ and $|\xi| \geq 1/|h|$.]

- **4. Bump functions**. Examples of compactly supported functions in $\mathcal{S}(\mathbb{R})$ are very handy in many applications in analysis. Some examples are:
 - (a) Suppose a < b, and f is the function such that f(x) = 0 if $x \le a$ or $x \ge b$ and

$$f(x) = e^{-1/(x-a)}e^{-1/(b-x)}$$
 if $a < x < b$.

Show that f is indefinitely differentiable on \mathbb{R} .

- (b) Prove that there exists an indefinitely differentiable function F on \mathbb{R} such that F(x)=0 if $x\leq a,\ F(x)=1$ if $x\geq b,$ and F is strictly increasing on [a,b].
- (c) Let $\delta > 0$ be so small that $a + \delta < b \delta$. Show that there exists an indefinitely differentiable function g such that g is 0 if $x \le a$ or $x \ge b$, g is 1 on $[a + \delta, b \delta]$, and g is strictly monotonic on $[a, a + \delta]$ and $[b \delta, b]$.

[Hint: For (b) consider $F(x) = c \int_{-\infty}^{x} f(t) dt$ where c is an appropriate constant.]

- **5.** Suppose f is continuous and of moderate decrease.
 - (a) Prove that \hat{f} is continuous and $\hat{f}(\xi) \to 0$ as $|\xi| \to \infty$.
 - (b) Show that if $\hat{f}(\xi) = 0$ for all ξ , then f is identically 0.

[Hint: For part (a), show that $\hat{f}(\xi) = \frac{1}{2} \int_{-\infty}^{\infty} [f(x) - f(x - 1/(2\xi))] e^{-2\pi i x \xi} dx$. For part (b), verify that the multiplication formula $\int f(x) \hat{g}(x) dx = \int \hat{f}(y) g(y) dy$ still holds whenever $g \in \mathcal{S}(\mathbb{R})$.]

 ${f 7.}$ Prove that the convolution of two functions of moderate decrease is a function of moderate decrease.

[Hint: Write

$$\int f(x-y)g(y) \, dy = \int_{|y| \le |x|/2} + \int_{|y| \ge |x|/2}.$$

In the first integral $f(x-y) = O(1/(1+x^2))$ while in the second integral $g(y) = O(1/(1+x^2))$.]

8. Prove that f is continuous, of moderate decrease, and $\int_{-\infty}^{\infty} f(y)e^{-y^2}e^{2xy}dy=0$ for all $x\in\mathbb{R}$, then f=0.

[Hint: Consider $f * e^{-x^2}$.]

9. If f is of moderate decrease, then

(14)
$$\int_{-R}^{R} \left(1 - \frac{|\xi|}{R}\right) \hat{f}(\xi) e^{2\pi i x \xi} d\xi = (f * \mathcal{F}_R)(x),$$

where the Fejér kernel on the real line is defined by

$$\mathcal{F}_R(t) = \begin{cases} R \left(\frac{\sin \pi t R}{\pi t R} \right)^2 & \text{if } t \neq 0, \\ R & \text{if } t = 0. \end{cases}$$

Show that $\{\mathcal{F}_R\}$ is a family of good kernels as $R \to \infty$, and therefore (14) tends uniformly to f(x) as $R \to \infty$. This is the analogue of Fejér's theorem for Fourier series in the context of the Fourier transform.