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8. Verify that % Zn?’:ﬂ -
function illustrated in Figure 6, defined by f(0) = 0, and

is the Fourier series of the 2m-periodic sawtooth

L r <0
5 5 1 T .
flx) =

if<ax<m.

T X
2 2
Note that this function is not continuous. Show that nevertheless, the series
converges for every = (by which we mean, as usual, that the symmetric partial
sums of the series converge). In particular, the value of the series at the origin,
namely 0, is the average of the values of f(z) as x approaches the origin from
the left and the right.
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Figure 6. The sawtooth function

9. Let f(x) = X[as(x) be the characteristic function of the interval [a,b] C
[—, @], that is,

. (z) = 1 if x € [a,b],
Xla.t] ) = 0 otherwise.

(a) Show that the Fourier series of f is given by
—ina —inb

b—a e —e ina
f(z) ~ + Z e,

27 2min

n#0
The sum extends over all positive and negative integers excluding 0.

(b) Show that if a # —7 or b # 7 and a # b, then the Fourier series does not
converge absolutely for any x. [Hint: It suffices to prove that for many

values of n one has |sinnfy| > ¢ > 0 where #y = (b—a)/2.]

(¢c) However, prove that the Fourier series converges at every point . What
happens if a = —7w and b = «”?



13. The purpose of this exercise is to prove that Abel summability is stronger
than the standard or Cesaro methods of summation.

. u [ ) .
(a) Show that if the series ) ™~ ¢, of complex numbers converges to a finite
limit s, then the series is Abel summable to s. [Hint: Why is it enough to
prove the theorem when s = 07 Assuming s = 0, show that if sy =1 +
. : N M . N .on L e .
<+++ ey, then anl Cnl —(l—r}znzl sar™ 4 s . Let N —

to show that
Z cnr’ = (1—1) Z Spr'.

Finally, prove that the right-hand side converges to 0 as r — 1.]

(b) However, show that there exist series which are Abel summable, but that
do not converge. [Hint: Try ¢, = (—1)". What is the Abel limit of 3" ¢,,7]

(¢) Argue similarly to prove that if a series Zf’:l ¢, is Cesaro summable to
o, then it is Abel summable to o. [Hint: Note that

o0 (o]

2
E ear™ = (1 —1) E no,r",
n=1 n=1

and assume o = 0.]

(d) Give an example of a series that is Abel summable but not Cesaro summable.
[Hint: Try ¢, = (—1)""'n. Note that if > ¢, is Cesaro summable, then
¢, /n tends to 0.]

The results above can be summarized by the following implications about
series:

convergent = Cesaro summable = Abel summable,

and the fact that none of the arrows can be reversed.

16. The Weierstrass approximation theorem states: Let f be a continuous
function on the closed and bounded interval [a,b] C R. Then, for any € > 0,
there exists a polynomial P such that

sup |f(x) — P(x)| <e.

rE|a,b]

Prove this by applying Corollary 5.4 of Fejér’'s theorem and using the fact that
the exponential function €' can be approximated by polynomials uniformly on
any interval.



17. In Section 5.4 we proved that the Abel means of f converge to f at all
points of continuity, that is,

]

;hiﬁ A(f)B) = llm( « [)(#)= f(6), with0<r<l1,

whenever [ is continuous at #. In this exercise, we will study the behavior of
A, (f)(8) at certain points of discontinuity.

An integrable function is said to have a jump discontinuity at @ if the two
limits

lim f(@+h)=f(") and lim f(6—h)=f(67)
n>o oo

exist.

(a) Prove that if f has a jump discontinuity at #, then

i 4, ()(0) — LED 1O

with 0 < »r < 1.
r—1 2

[Hint: Explain why 5= f P.(0)df = 5~ ff:‘- P, (6)df = . then modify
the proof given in the text.]

(b) Using a similar argument, show that if f has a jump discontinuity at 8,

+ —_
the Fourier series of [ at # is Cesaro summable to w.

18. If P.(f) denotes the Poisson kernel, show that the function

8P\

defined for 0 < r < 1 and # € R, satisfies:
(i) Aw =0 in the disc.
(ii) lim,_q u(r,#) = 0 for each 6.

However, u is not identically zero.



19. Solve Laplace’s equation Au = 0 in the semi infinite strip
S={(z,y):0<x <1, 0<y},
subject to the following boundary conditions

u(0,y) =0 when 0 < y,
0 when 0 <y,
f(z) whenO0<z <1

where f is a given function, with of course f(0) = f(1) = 0. Write

[ac ]
E a, sin(nmwz)

n=1
and expand the general solution in terms of the special solutions given by

wun(x,y) = e ""sin(nmx).

Express u as an integral involving f, analogous to the Poisson integral for-

mula (6).

8. Exercise 6 in Chapter 2 dealt with the sums

* 1

> o aud
— Al — .
n? n?

n odd =1 n=1

Similar sums can be derived using the methods of this chapter.

(a) Let f be the function defined on [—m, «| by f(#) = |f|. Use Parseval's
identity to find the sums of the following two series:

oo

- 1
g M1 and Z e

n=1
In fact, they are 74/96 and /90, respectively.

(b) Consider the 2mr-periodic odd function defined on [0, 7] by f(8) = 6(7 — 8).
Show that

o s w)
1 w0 1 R
= dal 1 —_— = .
2 @n+1)6 960 Z né 945
n=>0 n=1

. . OO ‘- .
Remark. The general expression when k is even for Y~ 1/n* in terms of "
- . - - (=]
is given in Problem 4. However, finding a formula for the sum >~ 1/n?, or
more generally >~ > 1/n* with k odd, is a famous unresolved question.



10. Consider the example of a vibrating string which we analyzed in Chapter 1.
The displacement u(z,t) of the string at time ¢ satisfies the wave equation

1 ?u ?u
——— ==, c=1/p.
2 Ot A2

The string is subject to the initial conditions

u(e,0) = f(z) and  T'(.0) = g()

where we assume that f € C! and ¢ is continuous. We define the total energy
of the string by

1 L/ ou : 1 L/ ou 2
E(t)= = dax + — — da.
(t) 2’”/0 (E)t) ’+2T/n (a.r) !

The first term corresponds to the “kinetic energy” of the string (in analogy with
(1/2)muv?, the kinetic energy of a particle of mass m and velocity v), and the
second term corresponds to its “potential energy.”

Show that the total energy of the string is conserved, in the sense that E(t)
is constant. Therefore,

L 1 L .
E(t)=E(0) = —p] g(x)? dr + §T/ f(x)? da.
0 0



11. The inequalities of Wirtinger and Poincaré establish a relationship between
the norm of a function and that of its derivative.

(a)

(s w]
12. Prove tl'1at/

If fis T-periodic, continuous, and piecewise C'! with fﬁT f(t)dt =0, show
that

’ T2 (7T .
f ()] dt < yps: |f/(8)]? dt,
0

™ Jo

with equality if and only if f(t) = Asin(2#xt/T) + B cos(2xt/T).
[Hint: Apply Parseval’s identity.|

If fis as above and g is just C* and T-periodic, prove that

2 T2 T T .
e NICTTy Ol
™ Jo 0

For any compact interval [a, b] and any continuously differentiable function
[ with f(a) = f(b) = 0, show that

b ) b—a)? [?
flf(t)lzdfg%/ £/ (£)]? dt.

Discuss the case of equality, and prove that the constant (b — a)? /7% can-
not be improved. [Hint: Extend f to be odd with respect to a and periodic
of period T'= 2(b — a) so that its integral over an interval of length T is
0. Apply part a) to get the inequality, and conclude that equality holds if
and only if f(t) = Asin(m=2)].

T—
] Fg(t) dt
1]

0 €T 2

[Hint: Start with the fact that the integral of Dy (#) equals 2w, and note that
the difference (1/sin(6/2)) — 2/8 is continuous on [—m, w|. Apply the Riemann-
Lebesgue lemma. |



16. Let f be a 27-periodic function which satisfies a Lipschitz condition with
constant A'; that is,

Iflz)— fly) < K|z —y| for all x,v.

This is simply the Holder condition with o« = 1, so by the previous exercise, we
see that f(n) = O(1/|n|). Since the harmonic series > 1/n diverges, we cannot
say anything (vet) about the absolute convergence of the Fourier series of f. The
outline below actually proves that the Fourier series of f converges absolutely
and uniformly.

(a) For every positive h we define gy, (x) = f(x + h) — f(x — h). Prove that

1 2w o0 R
5 /{} lgn ()| dx = Z 4|sinnh|?|f(n)|?,
n=—oo
and show that
o0
> Isinnh?|f(n)* < K*h%.
n=—o0c

(b) Let p be a positive integer. By choosing h = 7/2P*!, show that

. K252
Z |f(ﬂ)|2 < 22T

2r—1lg|n|<2P

(c) Estimate >, , <In|<2r |£(n)], and conclude that the Fourier series of f
converges absolutely, hence uniformly. [Hint: Use the Cauchy-Schwarz
inequality to estimate the sum.]

(d) In fact, modify the argument slightly to prove Bernstein’s theorem: If f
satisfies a Holder condition of order ev > 1/2, then the Fourier series of f
converges absolutely.



18. Here are a few things we have learned about the decay of Fourier coeflicients:
(a) if f is of class C*, then f(n) = o(1/|n|*);
(b) if f is Lipschitz, then f(n) = O(1/|n]);
(¢) if f is monotonic, then f(n) = O(1/|n|);

(d) if f is satisfies a Holder condition with exponent v where 0 < o < 1, then

f(n) = O(1/|n|*);
(e) if f is merely Riemann integrable, then ) | f(n)|? < 0o and therefore

f(n) = o(1).

Nevertheless, show that the Fourier coefficients of a continuous function can
tend to 0 arbitrarily slowly by proving that for every sequence of nonnegative
real numbers {¢,} converging to 0, there exists a continuous function f such
that | f(n)| = e, for infinitely many values of n.

[Hint: Choose a subsequence {¢,, } so that >, €, < o00.]



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

