Low Order-Value Optimization and applications

R. Andreani † J. M. Martínez ‡ L. Martínez § F. Yano ¶

October 24, 2005

Abstract

Given \(r \) real functions \(F_1(x), \ldots, F_r(x) \) and an integer \(p \) between 1 and \(r \), the Low Order-Value Optimization problem (LOVO) consists of minimizing the sum of the functions that take the \(p \) smaller values. If \((y_1, \ldots, y_r) \) is a vector of data and \(T(x, t_i) \) is the predicted value of the observation \(i \) with the parameters \(x \in \mathbb{R}^n \), it is natural to define \(F_i(x) = (T(x, t_i) - y_i)^2 \) (the quadratic error at observation \(i \) under the parameters \(x \)). When \(p = r \) this LOVO problem coincides with the classical nonlinear least-squares problem. However, the interesting situation is when \(p \) is smaller than \(r \). In that case, the solution of LOVO allows one to discard the influence of an estimated number of outliers. Thus, the LOVO problem is an interesting tool for robust estimation of parameters of nonlinear models. When \(p \ll r \) the LOVO problem may be used to find hidden structures in data sets.

In this paper optimality conditions are discussed, algorithms for solving the LOVO problem are introduced and convergence theorems are proved. Finally, numerical experiments will be presented.

Key words: Order-Value Optimization, algorithms, convergence, robust estimation of parameters, hidden patterns.

1 Introduction

Given \(r \) functions \(F_1, \ldots, F_r \) defined in a domain \(\Omega \subset \mathbb{R}^n \) and an integer \(p \in \{1, \ldots, r\} \), we define the Low Order-Value function \(S_p : \Omega \to \mathbb{R} \) by

\[
S_p(x) = \sum_{j=1}^{p} F_{i_j}(x)
\]

Technical Report MCDO 051013, Department of Applied Mathematics, State University of Campinas, Brazil, October 2005. This work was supported by PRONEX-Optimization 76.79.1008-00, FAPESP (Grants 01-04597-4 and 02-14203-6) and CNPq.

†Department of Applied Mathematics, IMECC-UNICAMP, State University of Campinas, CP 6065, 13081-970 Campinas SP, Brazil. E-mail: andreani@ime.unicamp.br
‡Department of Applied Mathematics, IMECC-UNICAMP, State University of Campinas, CP 6065, 13081-970 Campinas SP, Brazil. E-mail: martinez@ime.unicamp.br
§Department of Physical Chemistry, Department of Physical Chemistry, IQ-UNICAMP, State University of Campinas, Brazil. E-mail: lmartinez@iqm.unicamp.br.
¶Department of Applied Mathematics, IMECC-UNICAMP, State University of Campinas, CP 6065, 13081-970 Campinas SP, Brazil. E-mail: yano@ime.unicamp.br
for all $x \in \Omega$, where $\{i_1(x), \ldots, i_r(x)\} = \{1, \ldots, r\}$ and

$$F_{i_1(x)}(x) \leq F_{i_2(x)}(x) \leq \ldots \leq F_{i_p(x)}(x) \leq \ldots \leq F_{i_r(x)}(x).$$

If the functions F_i are continuous, the function S_p is continuous as well, because it is a sum of continuous functions [3, 4]. However, even if all the functions F_i are differentiable, the function S_p is, generally, nonsmooth. We define the Low Order-Value Optimization (LOVO) problem in the following way:

$$\text{Minimize } S_p(x) \text{ subject to } x \in \Omega.$$ \hspace{1cm} (1)

In [3] the Order-Value Optimization problem (OVO) was introduced as the minimization of the Order-Value function $F_{i_p(x)}(x)$ subject to $x \in \Omega$. In [4] a nonlinear programming reformulation was given for OVO and it was proved that, without the necessity of constraint qualifications, local solutions of the reformulation are KKT points. The main applications of OVO are in risk evaluation and robust estimation [20]. When $F_i(x)$ represents the predicted loss under the scenario i and the decision x, the OVO function $F_{i_p(x)}(x)$ corresponds, essentially, to the classical Value-at-Risk (VaR) [21] measurement with a confidence level (p/r) [5]. The Conditional Value-at-Risk (CVaR) measurement with confidence level $(r - p)/r$ corresponds to the High Order-Value function $S_p(x) = \sum_{j=r-p+1}^{r} F_{i_j(x)}(x)$. In this case p is generally small.

Let us define $m = r!/[(p(r - p))!]$. Clearly, the set $\{1, \ldots, r\}$ contains exactly m different subsets C_1, \ldots, C_m with cardinality p. For all $i = 1, \ldots, m$, $x \in \Omega$, we define:

$$f_i(x) = \sum_{j \in C_i} F_j(x)$$

and

$$f_{\text{min}}(x) = \min\{f_1(x), \ldots, f_m(x)\}.$$

It is easy to see that $f_{\text{min}}(x) = S_p(x)$ for all $x \in \Omega$ and, thus, the LOVO problem is:

$$\text{Minimize } f_{\text{min}}(x) \text{ subject to } x \in \Omega.$$ \hspace{1cm} (2)

The characterization (2) of the LOVO problem will be used throughout this paper for theoretical purposes. However, one should have in mind that, in practice, the formulation (1) is the interesting one and that, of course, the evaluation of S_p does not need the computation of f_1, \ldots, f_m.

The High Order-Value function (that corresponds to CVaR) is $S_p(x) = f_{\text{max}}(x)$, where $f_{\text{max}}(x) = \max\{f_1(x), \ldots, f_m(x)\}$. So, if the functions f_i are convex the problem (HOVO) of minimizing CVaR is a convex (minimax) problem and, if the f_i’s are affine functions this problem reduces to Linear Programming [29].

The OVO problem (minimizing $F_{i_p(x)}(x)$) may be applied to robust estimation of parameters because it generalizes the classical Minimax regression which, as it is well known, is very sensitive to the presence of outliers. However, LOVO is more adequate for robust estimation purposes, with the proper definitions of $F_i(x)$. If $y_1, \ldots, y_r \in \mathbb{R}$ are observations of a given phenomenon which, theoretically, corresponds to the physical law $y = T(x,t)$, we may define $F_i(x)$ as the
quadratic error at the \(i\)-th observation \((F_i(x) = (T(x, t_i) - y_i)^2)\). The least-squares estimation of the parameters \(x\) comes from solving

\[
\text{Minimize } \sum_{i=1}^{r} F_i(x) \text{ subject to } x \in \Omega.
\]

If we estimate that approximately \(r-p\) observations come from (probably systematic) observation errors, it is natural to estimate the parameters by means of solving the LOVO problem

\[
\text{Minimize } S_p(x) \text{ subject to } x \in \Omega.
\]

Therefore, this LOVO problem is a generalization of the nonlinear least-squares problem which is able to eliminate the influence of outliers.

Unlike OVO and HOVO, the LOVO problem is not applicable to risk evaluation. The reason is that, if we define \(F_i(x)\) as the predicted loss under the decision \(x\), the LOVO function discards the larger losses (as OVO and VaR) but does not discard the smaller ones. So, the decisions under LOVO would be always unreasonably optimistic and risky.

On the other hand, in the case that \(p << r\), the LOVO problem is a tool for finding Hidden Patterns in situations were a lot of wrong observations are mixed with a small number of correct data [6].

This paper is organized as follows. In Section 2 we define two types of optimality conditions for the LOVO problem. In Section 3 we define an algorithm for unconstrained LOVO problems, that converges to weakly stationary points. In Section 4 we introduce a method that converges to strongly stationary points. In both cases we prove local and global convergence. In Section 5 we introduce an algorithm for constrained LOVO problems and we prove its convergence. Hidden-pattern problems are discussed in Section 6. Numerical experiments are given in Section 7 and conclusions in Section 8.

Notation.

- The symbol \(\| \cdot \|\) will denote the Euclidian norm of vectors and matrices, although many times it may be replaced by an arbitrary norm.
- \(B(x_*, \epsilon) = \{ x \in \mathbb{R}^n \mid \| x - x_* \| \leq \epsilon \}\).
- We denote \(\mathbb{N} = \{0, 1, 2, \ldots \}\).
- We denote \(\mathbb{R}_+ = \{ t \in \mathbb{R} \mid t \geq 0 \}\) and \(\mathbb{R}_{++} = \{ t \in \mathbb{R} \mid t > 0 \}\).
- Given \(K = \{ k_0, k_1, k_2, \ldots \}\) such that \(k_j < k_{j+1}\) and \(k_j \in \mathbb{N}\) for all \(j \in \mathbb{N}\), we denote \(\lim_{k \in K} z_k = \lim_{j \to \infty} z_{k_j}\).
- If \(B \in \mathbb{R}^{n \times n}\), \(B > 0\) means that \(B\) is positive definite.
- \([v]_i\) denotes the \(i\)-th component of the vector \(i\). If there is no place to confusion, we also denote \(v_i = [v]_i\).
- If \(v \in \mathbb{R}^n\), we denote \(v_+ = (\max\{0, v_1\}, \ldots, \max\{0, v_n\})^T\).
2 Optimality conditions

In this section we use formulation (2).

For all $x \in \Omega$ we define

$$I(x) = \{ i \in \{1, \ldots, m\} \mid f_i(x) = f_{\text{min}}(x) \}.$$

In Lemma 2.1, we prove that a global minimizer x_* of (2) is, necessarily, a global minimizer of $f_i(x)$ for all $i \in I(x_*)$. As a consequence, in Theorem 2.1 we show that the same property holds for local minimizers.

Lemma 2.1. Let $A \subset \Omega$, $x_* \in A$. If the point x_* is a global minimizer of $f_{\text{min}}(x)$ subject to $x \in A$, then x_* is a global minimizer of $f_i(x)$ subject to $x \in A$ for all $i \in I(x_*)$. In particular (taking $A = \Omega$), if x_* is a global minimizer of (2) then x_* is a global minimizer of $f_i(x)$ for all $i \in I(x_*)$

Proof. Assume that, for some $i \in I(x_*)$, x_* is not a global minimizer of $f_i(x)$ subject to $x \in A$. Then, there exists $y \in A$ such that $f_i(y) < f_i(x_*)$. So, by the definitions of f_{min} and $I(x_*)$,

$$f_{\text{min}}(y) \leq f_i(y) < f_i(x_*) = f_{\text{min}}(x_*).$$

Therefore, x_* is not a global minimizer of $f_{\text{min}}(x)$ subject to $x \in A$.

Theorem 2.1. If $x_* \in \Omega$ is a local minimizer of (2) then, for all $i \in I(x_*)$, x_* is a local minimizer of $f_i(x)$ subject to $x \in \Omega$.

Proof. Let $\epsilon > 0$ such that x_* is a global minimizer of $f_{\text{min}}(x)$ subject to $x \in A$, where

$$A = \{ x \in \Omega \mid \|x - x_*\| \leq \epsilon \}.$$

By Lemma 1 we obtain that x_* is a global minimizer of $f_i(x)$ subject to $x \in A$ for all $i \in I(x_*)$. Therefore, x_* is local minimizer of $f_i(x)$ subject to $x \in \Omega$ for all $i \in I(x_*)$.

Remark. The reciprocal of Lemma 2.1 is not true, even if the functions are continuous. Take $A = \Omega = \mathbb{R}$, $f_1(x) = (x - 1)^2$, $f_2(x) = x$. Although $x_* = 1$ is a global minimizer of $f_i(x)$ for all $i \in I(x_*) = \{1\}$, this point is not a global minimizer of f_{min}. However, as we will see below, the reciprocal of Theorem 2.1 is true if the functions f_i are continuous.

Proposition 2.1. Assume that x_* is a local minimizer of f_i for all $i \in I(x_*)$ and that f_i is continuous at x_* for all $i \notin I(x_*)$. Then, x_* is a local minimizer of (2).

Proof. Let $\epsilon > 0$ be such that

$$f_i(x_*) > f_{\text{min}}(x_*) + \epsilon \quad \text{for all} \quad i \notin I(x_*).$$
Since \(f_i \) is continuous for all \(i \notin I(x_*) \), there exists \(\delta_1 > 0 \) such that
\[
f_i(x) > f_{\text{min}}(x_*) \quad \text{for all} \quad i \notin I(x_*)
\] (3)
whenever \(\|x - x_*\| \leq \delta_1 \).

By the hypothesis, there exists \(\delta_2 > 0 \) such that for all \(i \in I(x_*) \),
\[
f_i(x) \geq f_i(x_*) = f_{\text{min}}(x_*)
\] (4)
whenever \(\|x - x_*\| \leq \delta_2 \).

Define \(\delta = \min\{\delta_1, \delta_2\} \). By (3) and (4), we have that, for all \(x \in \Omega \) such that \(\|x - x_*\| \leq \delta \), and for all \(i = 1, \ldots, m \),
\[
f_i(x) \geq f_{\text{min}}(x_*)
\]
Therefore,
\[
f_{\text{min}}(x) \geq f_{\text{min}}(x_*)
\]
for all \(x \in \Omega \) such that \(\|x - x_*\| \leq \delta \).

Let \(\Phi \) be differentiable on an open set that contains \(\Omega \) and consider the nonlinear programming problem
\[
\text{Minimize } \Phi(x) \text{ subject to } x \in \Omega.
\] (5)

Necessary Optimality Conditions (NOC) are conditions that must be satisfied by local minimizers of (5). For example, if \(\Omega = \mathbb{R}^n \), the requirement “\(\nabla \Phi(x) = 0 \)" is a NOC. In constrained Optimization, Necessary Optimality Conditions usually take the form: If a constraint qualification is satisfied at \(x_* \), then the KKT conditions hold. See, for example [9]. Constraint qualifications only involve properties of \(\Omega \) whereas the KKT conditions involve the gradient of \(f \) and the gradients of the constraints.

Theorem 2.1 allows us to prove the following Corollary.

Corollary 2.1. Let \(x_* \in \Omega \) be a local minimizer of the problem (2), where all the functions \(f_i \) are differentiable in an open set that contains \(\Omega \). Then, for all \(i \in I(x_*) \), \(x_* \) satisfies the necessary optimality conditions associated with the problem
\[
\text{Minimize } f_i(x) \text{ subject to } x \in \Omega.
\] (6)

Proof. By Theorem 2.1, \(x_* \) is a local minimizer of \(f_i \) for all \(i \in I(x_*) \). Therefore, \(x_* \) satisfies the necessary optimality conditions associated with this problem. \(\square \)

Corollary 2.1 motivates the following definitions. Given a Necessary Optimality Condition (NOC) for nonlinear programming, we say that \(x_* \in \Omega \) is **strongly critical** if, for all \(i \in I(x_*) \), \(x_* \) satisfies NOC, associated with the problem (6).

We say that \(x_* \in \Omega \) is **weakly critical** if there exists \(i \in I(x_*) \) such that \(x_* \) satisfies NOC, associated with (6).
3 Unconstrained LOVO algorithm with convergence to weakly critical points

Optimization algorithms for solving nonlinear programming problems (5) are iterative. At each iteration, the functional values, the gradients and, perhaps, the second derivatives of the objective function and the constraints are generally required. Users of computer codes that implement nonlinear programming algorithms must provide subroutines that evaluate these quantities.

In the presence of the problems (1) or (2) one is tempted to use any well established optimization method for smooth problems. Each time the (perhaps non-existent) \(\nabla f_{\min}(x) \) is required by the algorithm, one may choose \(i \in I(x) \) and "define"

\[
\nabla f_{\min}(x) \leftarrow \nabla f_i(x).
\] (7)

(We may proceed in a similar way if the algorithm also requires Hessians.)

The question that we address in this section is: what happens if we proceed in that way? As it is well-known, to use such a strategy in many nonsmooth problems may be catastrophic. However, we will show here that, in the case of (1)-(2), the consequences are less severe. Essentially, we will show that convergence to weakly critical points necessarily occurs.

Algorithm U1, defined below, applies to the unconstrained minimization (\(\Omega = \mathbb{R}^n \)) of \(f_{\min}(x) \). We assume that the functions \(f_i \) are continuously differentiable for all \(x \in \mathbb{R}^n \). This algorithm may be interpreted as a straightforward application of a smooth unconstrained minimization method to the unconstrained LOVO problem with the "wrong evaluation" (7).

Algorithm U1. Let \(\theta \in (0, 1), \alpha \in (0, 1), M > 1, \beta > 0, t_{\text{one}} > 0 \) be algorithmic parameters. Let \(x_0 \in \mathbb{R}^n \) be the initial approximation. Given \(x_k \in \mathbb{R}^n \), the steps for computing \(x_{k+1} \) are:

Step 1. Choose \(\nu(k) \in I(x_k) \). If \(\| \nabla f_{\nu(k)}(x_k) \| = 0 \), terminate.

Step 2. Compute \(d_k \in \mathbb{R}^n \) such that

\[
\nabla f_{\nu(k)}(x_k)^T d_k \leq -\theta \| d_k \| \| \nabla f_{\nu(k)}(x_k) \| \quad \text{and} \quad \| d_k \| \geq \beta \| \nabla f_{\nu(k)}(x_k) \|. \tag{8}
\]

Step 3. Compute \(t_k > 0, x_{k+1} \in \mathbb{R}^n \), such that

\[
\nabla f_{\min}(x_{k+1}) \leq \nabla f_{\min}(x_k) + \alpha t_k \nabla f_{\nu(k)}(x_k)^T d_k \tag{9}
\]

and

\[
\left[t_k \geq t_{\text{one}} \right] \quad \text{or} \quad \left[\nabla f_{\min}(x_k + \tilde{t}_k d_k) > \nabla f_{\min}(x_k) + \alpha \tilde{t}_k \nabla f_{\nu(k)}(x_k)^T d_k \right. \quad \text{for some} \ \tilde{t}_k \leq Mt_k. \tag{10}
\]

The line-search strategy (9)-(10) admits different implementations. The most straightforward one is backtracking. In this case, \(t_k \) is chosen as the first number of the sequence \(\{1, 2^{-1}, 2^{-2}, \ldots\} \) that satisfies (9) and \(x_{k+1} = x_k + t_k d_k \). In this case \(t_{\text{one}} = 1 \) and \(M = 2 \). However, the choice based on (9)-(10) admits more sophisticated and efficient line-search procedures. See, for example, [10].
Recall that, in the unconstrained LOVO problem, a weakly critical point is a point where \(\nabla f_i(x) = 0 \) for some \(i \in I(x) \). In the following theorems we prove that the algorithm stops at \(x_k \) only if \(x_k \) is weakly critical and that limit points of sequences generated by Algorithm U1 are weakly critical.

Theorem 3.1. Algorithm U1 is well-defined and terminates at \(x_k \) only if \(x_k \) is weakly critical.

Proof. Assume that \(x_k \) is not weakly critical and define \(i = \nu(k) \). So, \(\nabla f_i(x_k) \neq 0 \). By (8) and the differentiability of \(f_i \),

\[
\lim_{t \to 0} \frac{f_i(x_k + td_k) - f_i(x_k)}{t} = \nabla f_i(x_k)^T d_k < 0.
\]

Then,

\[
\lim_{t \to 0} \frac{f_i(x_k + td_k) - f_i(x_k)}{t \nabla f_i(x_k)^T d_k} = 1.
\]

Since \(\alpha < 1 \), for \(t \) small enough we have:

\[
\frac{f_i(x_k + td_k) - f_i(x_k)}{t \nabla f_i(x_k)^T d_k} \geq \alpha.
\]

Since \(\nabla f_i(x_k)^T d_k < 0 \), we deduce:

\[
f_i(x_k + td_k) \leq f_i(x_k) + \alpha t \nabla f_i(x_k)^T d_k.
\]

But \(f_{\min}(x_k + td_k) \leq f_i(x_k + td_k) \) and \(f_{\min}(x_k) = f_i(x_k) \), so:

\[
f_{\min}(x_k + td_k) \leq f_{\min}(x_k) + \alpha t \nabla f_i(x_k)^T d_k
\]

for \(t \) small enough.

Therefore, choosing \(t_k \) as the first number in the sequence \(\{t_{\text{one}}, t_{\text{one}}/M, t_{\text{one}}/M^2, \ldots\} \) that satisfies (11), the conditions (9) and (10) are satisfied.

This proves that, whenever \(x_k \) is not weakly critical, a point \(x_{k+1} \) satisfying (9)-(10) may be found, so the algorithm is well defined. \(\square \)

Let us remark that Theorem 3.1 says that, if Algorithm U1 terminates at \(x_k \), then \(x_k \) is weakly critical, but the reciprocal is not true. For example, define, with \(n = 1, m = 2 \), \(f_1(x) = x, f_2(x) = x^2 \). Clearly, 0 is weakly critical because \(\nabla f_2(0) = 0 \). However, if \(x_k = 0 \) and one chooses \(\nu(k) = 1 \) the algorithm will not stop and, in fact, it will find a better point such that \(f_{\min}(x) < f_{\min}(0) \).

Theorem 3.2 If \(x_* \) is a limit point of a sequence generated by Algorithm U1 then \(x_* \) is weakly critical. Moreover, if \(\lim_{k \to K} x_k = x_* \) and the same \(i = \nu(k) \in I(x_k) \) is chosen at Step 1 of the algorithm for infinitely many indices \(k \in K \), then \(i \in I(x_*) \) and \(\nabla f_i(x_*) = 0 \). Finally,

\[
\lim_{k \to K} \|\nabla f_{\nu(k)}(x_k)\| = 0.
\]
Proof. Let \(x_\ast \in \mathbb{R}^n \) be a limit point of the sequence generated by Algorithm U1. Let \(K = \{k_0, k_1, k_2, k_3, \ldots \} \) be an infinite sequence of integers such that:

1. There exists \(i \in \{1, \ldots, m\} \) such that \(i = \nu(k) \) for all \(k \in K \).
2. \(\lim_{k \in K} x_k = x_\ast \).

The sequence \(K \) and the index \(i \) necessarily exist since \(\{1, \ldots, m\} \) is finite.

By the continuity of \(f_i \),

\[
\lim_{k \in K} f_i(x_k) = f_i(x_\ast). \tag{13}
\]

Clearly, since \(i = \nu(k) \), we have that

\[f_i(x_k) \leq f_\ell(x_k) \quad \text{for all } \ell \in \{1, \ldots, m\}. \tag{14} \]

for all \(k \in K \).

Taking limits on both sides of this inequality, we see that \(f_i(x_\ast) \leq f_\ell(x_\ast) \) for all \(\ell \in \{1, \ldots, m\} \). Thus,

\[i \in I(x_\ast). \tag{15} \]

By the definition of Algorithm U1, since \(k_{j+1} \geq k_j + 1 \), we have:

\[
f_i(x_{k_{j+1}}) = f_{\min}(x_{k_{j+1}}) \leq f_{\min}(x_{k_j}) \leq f_{\min}(x_{k_j}) + \alpha t_{k_j} \nabla f_i(x_{k_j})^T d_{k_j} < f_{\min}(x_{k_j}) = f_i(x_{k_j}) \tag{16} \]

for all \(j \in \mathbb{N} \).

By (9), (13) and (15), we obtain:

\[
\lim_{j \to \infty} t_{k_j} \nabla f_i(x_{k_j})^T d_{k_j} = 0.
\]

Therefore, by (8),

\[
\lim_{j \to \infty} t_{k_j} \| \nabla f_i(x_{k_j}) \| \| d_{k_j} \| = 0. \tag{17}
\]

If, for some subsequence \(K_1 \subset K \), \(\lim_{k \in K_1} \nabla f_i(x_k) = 0 \), we deduce that \(\nabla f_i(x_\ast) = 0 \) and the thesis is proved. Therefore, we only need to analyze the possibility that \(\| \nabla f_i(x_k) \| \) is bounded away from zero for \(k \in K \). In this case, by (17),

\[
\lim_{k \in K} t_k \| d_k \| = 0. \tag{18}
\]

If, for some subsequence, \(\| d_k \| \to 0 \), the condition (8) also implies that \(\nabla f_i(x_k) \to 0 \) and \(\nabla f_i(x_\ast) = 0 \). Thus, we only need to consider the case in which \(\lim_{k \in K} t_k = 0 \). Without loss of generality, we may assume that \(t_k < t_{\text{one}} \) for all \(k \in K \). So, by (10), for all \(k \in K \) there exists \(\tilde{t}_k > 0 \) such that

\[
f_i(x_k + \tilde{t}_k d_k) \geq f_{\min}(x_k + \tilde{t}_k d_k) > f_{\min}(x_k) + \alpha \tilde{t}_k \nabla f_i(x_k)^T d_k = f_i(x_k) + \alpha \tilde{t}_k \nabla f_i(x_k)^T d_k. \tag{19}
\]
Moreover, by (10) and (17),
\[\lim_{k \in K} \ell_k \|d_k\| = 0. \] (19)
Define\(s_k = \ell_k d_k \) for all\(k \in K \). Then, by (19),
\[\lim_{k \in K} \|s_k\| = 0. \] (20)
By (18) and the Mean Value Theorem, for all\(k \in K \) there exists\(\xi_k \in [0,1] \) such that
\[\nabla f_i(x_k + \xi_k s_k)^T s_k = f_i(x_k + s_k) - f_i(x_k) > \alpha \nabla f_i(x_k)^T s_k. \] (21)
Moreover, by (8),
\[\frac{\nabla f_i(x_k)^T s_k}{\|s_k\|} \leq -\theta \|\nabla f_i(x_k)\| \] (22)
for all\(k \in K \).

Let\(K_1 \subset K, s \in \mathbb{R}^n \) be such that\(\lim_{k \in K_1} s_k/\|s_k\| = s \).

By (20), dividing both sides of the inequality (21) by\(\|s_k\| \), and taking limits for\(k \in K_1 \), we obtain:
\[\nabla f_i(x_*)^T s \geq \alpha \nabla f_i(x_*)^T s. \]
Since\(\alpha < 1 \) and\(\nabla f_i(x_k)^T d_k < 0 \) for all\(k \), this implies that\(\nabla f_i(x_*)^T s = 0 \). Thus, taking limits in (22), we obtain that\(\nabla f_i(x_*) = 0 \). Therefore, by (14),\(x_* \) is weakly critical.

Finally, let us prove (12). If (12) is not true, there exists\(j \) and an infinite set of indices\(k \in K \) such that\(j = \nu(k) \) and\(\|\nabla f_j(x_k)\| \) is bounded away from zero. This implies that\(j \in I(x_*) \) and\(\|\nabla f_j(x_*)\| \neq 0 \), contradicting the first part of the proof. \(\square \)

In the rest of this section we address the local convergence of Algorithm U1. The choice of\(x_{k+1} \) in this algorithm imposes that\(f_{\min}(x_{k+1}) \leq f_{\min}(x_k) + \alpha t_k \nabla f_{\nu(k)}(x_k)^T d_k \). This property is obviously satisfied if\(x_{k+1} = x_k + t_k d_k \) but, for enhancing the probability of convergence to global minimizers, other accelerated definitions for\(x_{k+1} \) are possible and, possibly, desirable. For local convergence, however, the distance between\(x_{k+1} \) and\(x_k \) must be small if\(x_k \) is close to being critical. This requirement is stated in the following Assumption B1.

Assumption B1

We assume that Algorithm U1 is implemented in such a way that there exists\(b > 0 \) such that
\[\|x_{k+1} - x_k\| \leq b \|\nabla f_{\nu(k)}(x_k)\| \] (23)
for all\(k \in \mathbb{N} \).

Assumption B1 is compatible with line searches based on (10). For gradient, Newton or quasi-Newton choices of\(d_k \) one generally has that\(\|d_k\| = O(||\nabla f_{\nu(k)}(x_k)||) \). Obviously, back-tracking preserves this property with\(t_k d_k \) replacing\(d_k \). So, a point\(x_{k+1} \) of the form\(x_k + t_k d_k \) and satisfying (23) may be obtained.
Our strategy for proving local superlinear convergence has three parts. In Theorem 3.3 we show that, under an isolation assumption, if \(x_* \) is a limit point of the algorithm, the whole sequence converges to it. In Theorem 3.4 we prove that, if the algorithm is started near a strict local minimizer, the generated sequence converges. Neither Theorem 3.4 can be reduced to Theorem 3.3, nor Theorem 3.3 is a consequence of Theorem 3.4 (the assumption on \(x_* \) of Theorem 3.3 is weaker). However, both theorems show that convergence of the whole sequence to a point \(x_* \) may be expected in many cases. Under this assumption and assuming that the search directions are obtained as the inexact solutions of quasi-Newton linear systems with a Dennis-Moré compatibility condition we will show that superlinear convergence takes place.

We say that \(x_* \) is very strongly isolated if there exists \(\epsilon > 0 \) such that for all \(x \in B(x_*, \epsilon) - \{x_*\} \) and for all \(i \in I(x) \), we have that \(\nabla f_i(x) \neq 0 \). In other words, a reduced neighborhood of \(x_* \) does not contain weakly critical points.

Theorem 3.3. Assume that \(x_* \) is very strongly isolated, the sequence \(\{x_k\} \) is generated by Algorithm U1 with Assumption B1 and \(\lim_{k \in K} x_k = x_* \) for some infinite sequence \(K \subset \mathbb{N} \). Then, \(x_* \) is weakly critical and

\[
\lim_{k \to \infty} x_k = x_*.
\]

Proof. The fact that \(x_* \) is weakly critical is a consequence of Theorem 3.2.

By (12) and (23), we have:

\[
\lim_{k \in K} \|x_{k+1} - x_k\| = 0. \tag{24}
\]

Since \(x_* \) is very strongly isolated, there exists \(\epsilon > 0 \) such that \(\nabla f_i(x) \neq 0 \) for all \(i \in I(x) \) if \(x \in B(x_*, \epsilon) - \{x_*\} \).

By (24) and the hypothesis of the theorem, there exists \(k_1 \in K \) such that

\[
\|x_{k+1} - x_k\| < \epsilon/2 \text{ and } \|x_k - x_*\| < \epsilon/2
\]

for all \(k \in K, k \geq k_1 \).

Define

\[
C = \{x \in \mathbb{R}^n \mid \epsilon/2 \leq \|x - x_*\| \leq \epsilon\}.
\]

Clearly, \(C \) is compact and does not contain weakly critical points. Then, by Theorem 3.2, \(C \) cannot contain infinitely many iterates. Therefore, we have two possibilities:

1. There exists \(k_2 \in \mathbb{N} \) such that \(\|x_k - x_*\| \leq \epsilon/2 \) for all \(k \geq k_2 \).
2. There exist infinitely many iterates \(k \geq k_1 \), such that \(\|x_k - x_*\| \leq \epsilon/2 \) and \(\|x_{k+1} - x_k\| > \epsilon/2 \).

In the first case, since \(x_* \) is the only possible limit point in the ball with radius \(\epsilon/2 \) we have that the sequence \(\{x_k\} \) converges to \(x_* \).

Let us analyze the second case. Let \(K_1 \subset \mathbb{N} \) be such that \(\|x_k - x_*\| \leq \epsilon/2 \) and \(\|x_{k+1} - x_k\| > \epsilon/2 \) for all \(k \in K_1 \).
Since all the iterates belong to the ball with center $\epsilon/2$ and x_* is the only possible limit point in this ball, it turns out that

$$\lim_{k \in K_1} x_k = x_*.$$

Therefore, by (12),

$$\lim_{k \in K_1} \|\nabla f_{\nu(k)}(x_k)\| = 0.$$

By (23), this implies that

$$\lim_{k \in K_1} \|x_{k+1} - x_k\| = 0,$$

contradicting the assumption $\|x_{k+1} - x_k\| \geq \epsilon/2 \forall k \in K_1$. This means that the second case mentioned above is impossible. So, the proof is complete.

\[\square \]

Theorem 3.4. Assume that x_* is a very strongly isolated strict local minimizer of f_{\min}. Let $\{x_k\}$ be a sequence generated by Algorithm U1 with Assumption B1. Then, there exists $\delta_1 > 0$ such that $\|x_0 - x_*\| \leq \delta_1$ implies that

$$\lim_{k \to \infty} x_k = x_*.$$

Proof. Let $\epsilon > 0$ be such that x_* is a strict global minimizer of f_{\min} in the ball $B(x_*, \epsilon)$ and that this ball does not contain weakly critical points other than x_*. Let us prove that there exists $\delta \in (0, \epsilon/2)$ such that

$$\|x_k - x_*\| \leq \delta \Rightarrow \|x_{k+1} - x_k\| \leq \epsilon/2. \quad (25)$$

Assume, by contradiction, that δ satisfying (25) does not exist. Given $x \in \mathbb{R}^n$ denote x_+ the possible follower of x by an iteration of Algorithm U1. Under the assumption that (25) is false, there exists a sequence $\{z_\ell\}$ such that $\lim_{\ell \to \infty} z_\ell = x_*$ and

$$\|z_\ell - (x_*)_+\| > \epsilon/2 \quad \text{for all } \ell = 0, 1, 2, \ldots$$

By (23) this implies that for all $\ell \in \mathbb{N}$, there exists j_ℓ such that

$$f_{j_\ell}(z_\ell) = f_{\min}(z_\ell)$$

and $\|\nabla f_{j_\ell}(z_\ell)\|$ is bounded away from zero. Take j such that $j = j_\ell$ infinitely many times. Then, $j \in I(z_\ell)$ for all ℓ and $\|\nabla f_j(x_*)\|$ is bounded away from zero. This implies that $j \in I(x_*)$ and $\|\nabla f_j(x_*)\| \neq 0$. This cannot be true, since x_* is a local minimizer and, hence, it is strongly critical. Therefore, (25) is true.

Let c be the minimum of $f_{\min}(x)$ on the set defined by $\delta \leq \|x - x_*\| \leq \epsilon$. Let $\delta_1 \in (0, \delta)$ be such that

$$\|x - x_*\| \leq \delta_1 \Rightarrow f_{\min}(x) < c.$$

Let us prove by induction that, taking $\|x_0 - x_*\| \leq \delta_1$, one has that $\|x_k - x_*\| \leq \epsilon/2$ and $f(x_k) < c$ for all k. By the definition of δ_1 this is true for $k = 0$. For the inductive step, observe that, by (25), we have that $\|x_{k+1} - x_*\| \leq \epsilon$. But, by the definition of c and the fact that $f(x_{k+1}) < f(x_k)$, we have that $\|x_{k+1} - x_*\| \leq \epsilon/2$.

11
Therefore, the whole sequence is contained in $B(x_*, \epsilon/2)$. Since the only weakly critical point in this ball is x_*, Theorem 3.2 implies that the whole sequence converges to x_* as we wanted to proof.

\textbf{Assumption B2.} In the implementation of Algorithm \textbf{U1} we have:

- $\alpha \in \left(0, \frac{1}{2}\right)$.
- The direction d_k is a solution of

$$B_kd = -\nabla f_{\nu(k)}(x_k) + r_k,$$

where $B_k \in \mathbb{R}^{n \times n}$ is symmetric and positive definite and

$$\|r_k\| \leq \eta_k \|\nabla f_{\nu(k)}(x_k)\|.$$

- If

$$f_{\min}(x_k + d_k) \leq f_{\min}(x_k) + \alpha \nabla f_{\nu(k)}(x_k)^T d_k,$$

we choose $t_k = 1$ and $x_{k+1} = x_k + d_k$.
- The set $\{\|B_k^{-1}\|, k \in \mathbb{N}\}$ is bounded.

Let us comment here some features of Algorithm \textbf{U1} under Assumption B2.

1. The coefficient α is restricted to $(0, 1/2)$ because this favors the acceptance of the steplength $t_k = 1$, as will be shown in the proofs.

2. The direction d_k comes from the inexact solution of a quasi-Newton equation. The matrices B_k will be positive-definite Hessian approximations.

3. When $x_k + d_k$ satisfies the sufficient descent condition we accept the steplength $t_k = 1$ and the point x_{k+1} is taken as $x_k + d_k$. Again, this enhances the probability of taking Newton-like steps.

4. If $\|B_k\| < \frac{1}{\beta}$, the condition $\|d_k\| \geq \beta \|\nabla f_{\nu(k)}(x_k)\|$ is satisfied. Moreover, if the condition number $\|B_k\| \|B_k^{-1}\|$ is less than or equal to $\frac{1}{\delta}$, the angle condition (8) is satisfied. Clearly, it is always possible to choose B_k satisfying both requirements.

Theorem 3.5 completes the convergence theory of Algorithm \textbf{U1}. We will show that, under Assumptions \textbf{B1} and \textbf{B2}, if the sequence $\{x_k\}$ converges to a local minimizer such that all the relevant Hessians are positive definite and the matrices B_k satisfy a Dennis-Moré condition, the convergence is superlinear and, eventually, $t_k = 1$.

\textbf{Theorem 3.5.} Assume that:

1. The sequence $\{x_k\}$ is generated by Algorithm \textbf{U1} with Assumptions \textbf{B1} and \textbf{B2};
2. \(x_\ast \) is a local minimizer;

3. \(f_i \) admits continuous second derivatives in a neighborhood of \(x_\ast \) for all \(i \in I(x_\ast) \);

4. \(\nabla^2 f_i(x_\ast) > 0 \) for all \(i \in I(x_\ast) \);

5. \(\lim_{k \to \infty} x_k = x_\ast \);

6. The Dennis-Moré condition

\[
\lim_{k \to \infty} \frac{\|B_k - \nabla^2 f_{\nu(k)}(x_k)\| d_k}{\|d_k\|} = 0 \tag{28}
\]

and the Inexact-Newton condition

\[
\lim_{k \to \infty} \eta_k = 0 \tag{29}
\]

are verified.

Then,

- There exists \(k_0 \in \mathbb{N} \) such that \(t_k = 1 \) for all \(k \geq k_0 \).

- The sequence \(\{x_k\} \) converges superlinearly to \(x_\ast \).

Proof. By the continuity of the functions \(f_i \), there exists \(k_1 \in \mathbb{N} \) such that, for all \(k \geq k_1 \),

\[
I(x_k) \subset I(x_\ast).
\]

By Taylor’s formula, for all \(k \geq k_1 \), we have that

\[
f_{\nu(k)}(x_k + d_k) - f_{\nu(k)}(x_k) - \alpha d_k^T \nabla f_{\nu(k)}(x_k) = (1 - \alpha) d_k^T \nabla f_{\nu(k)}(x_k) + \frac{1}{2} d_k^T \nabla^2 f_{\nu(k)}(x_k) d_k + o(\|d_k\|^2)
\]

\[
= (1 - \alpha) d_k^T [\nabla^2 f_{\nu(k)}(x_k) + \nabla f_{\nu(k)}(x_k) d_k] + \left(\alpha - \frac{1}{2} \right) d_k^T \nabla^2 f_{\nu(k)}(x_k) d_k + o(\|d_k\|^2).
\]

But \(B_k d_k + \nabla f_{\nu(k)}(x_k) = r_k \) and, by (8), (27) and (29), \(\|r_k\| = o(\|\nabla f_{\nu(k)}(x_k)\|) = o(\|d_k\|) \).

Therefore,

\[
f_{\nu(k)}(x_k + d_k) - f_{\nu(k)}(x_k) - \alpha d_k^T \nabla f_{\nu(k)}(x_k)
\]

\[
= (1 - \alpha)(d_k)^T r_k + (1 - \alpha)d_k^T [\nabla^2 f_{\nu(k)}(x_k) - B_k] d_k + \left(\alpha - \frac{1}{2} \right) d_k^T \nabla^2 f_{\nu(k)}(x_k) d_k + o(\|d_k\|^2)
\]

\[
= (1 - \alpha)d_k^T [\nabla^2 f_{\nu(k)}(x_k) - B_k] d_k + \left(\alpha - \frac{1}{2} \right) d_k^T \nabla^2 f_{\nu(k)}(x_k) d_k + o(\|d_k\|^2)
\]

But, by (28),

\[
(1 - \alpha)d_k^T [\nabla^2 f_{\nu(k)}(x_k) - B_k] d_k = o(\|d_k\|^2),
\]

therefore,

\[
f_{\nu(k)}(x_k + d_k) - f_{\nu(k)}(x_k) - \alpha d_k^T \nabla f_{\nu(k)}(x_k) = \left(\alpha - \frac{1}{2} \right) d_k^T \nabla^2 f_{\nu(k)}(x_k) d_k + o(\|d_k\|^2). \tag{30}
\]
Let $\mu > 0$ a lower bound for the eigenvalues of $\nabla^2 f_i(x_i), i \in I(x_i)$. Then, there exists $k_2 > k_1$ such that $\mu/2$ is lower bound for the eigenvalues of $\nabla^2 f_{\nu(k)}(x_k)$ for all $k \geq k_2$. So, for all $k \geq k_2$, we have:

$$
\frac{d_k^T \nabla^2 f_{\nu(k)}(x_k) d_k}{\|d_k\|^2} \geq \mu/2.
$$

Since $\alpha < 1/2$, by (30), we have:

$$
\frac{f_{\nu(k)}(x_k + d_k) - f_{\nu(k)}(x_k) - \alpha d_k^T \nabla f_{\nu(k)}(x_k)}{\|d_k\|^2} \leq \left(\alpha - \frac{1}{2} \right) \frac{\mu}{2} + \frac{o(\|d_k\|^2)}{\|d_k\|^2}.
$$

for $k \geq k_2$. But, since $\{\|B_k^{-1}\|, k \in \mathbb{N}\}$ is bounded and $\nabla f_{\nu(k)}(x_k) \to 0$, by (26) and (27) we have that $\|d_k\| \to 0$. So, taking limits in (31) for $k \to \infty$, we get:

$$
f_{\nu(k)}(x_k + d_k) - f_{\nu(k)}(x_k) - \alpha d_k^T \nabla f_{\nu(k)}(x_k) \leq 0
$$

for k large enough. So, by the definition of the algorithm, there exists $k_0 \in \mathbb{N}$ such that $t_k = 1$ for all $k \geq k_0$. Therefore, the first part of the thesis is proved.

By the first part of the thesis and Assumption B2 we have that

$$
x_{k+1} - x_k = d_k \quad \text{for all} \quad k \geq k_0.
$$

Then, by Taylor’s formula:

$$
\nabla f_{\nu(k)}(x_{k+1}) = \nabla f_{\nu(k)}(x_k) + \nabla^2 f_{\nu(k)}(x_k) d_k + o(\|d_k\|)
$$

$$
= B_k d_k + \nabla f_{\nu(k)}(x_k) + (\nabla^2 f_{\nu(k)}(x_k) - B_k) d_k + o(\|d_k\|)
$$

$$
= r_k + (\nabla^2 f_{\nu(k)}(x_k) - B_k) d_k + o(\|d_k\|).
$$

As in the first part of the proof, we have that $\|r_k\| = o(\|d_k\|)$, therefore:

$$
\nabla f_{\nu(k)}(x_{k+1}) = [\nabla^2 f_{\nu(k)}(x_k) - B_k] d_k + o(\|d_k\|).
$$

So, by (28),

$$
\lim_{k \to \infty} \frac{\|\nabla f_{\nu(k)}(x_{k+1})\|}{\|x_{k+1} - x_k\|} = 0.
$$

By the continuity and nonsingularity of the Hessians at x_*, we deduce that

$$
\lim_{k \to \infty} \frac{\|x_{k+1} - x_*\|}{\|x_{k+1} - x_k\|} = 0.
$$

Clearly, this implies that

$$
\lim_{k \to \infty} \frac{\|x_{k+1} - x_*\|}{\|x_{k+1} - x_*\| + \|x_k - x_*\|} = 0.
$$

Therefore, after some manipulation, we obtain the superlinear convergence of $\{x_k\}$. \hfill \Box
4 Unconstrained LOVO algorithm with convergence to strongly critical points

In Section 3 we introduced Algorithm U1 which, briefly speaking, converges to weakly critical points. Algorithm U1 may converge to points that are not strongly critical and, of course, that are far from being minimizers of the unconstrained LOVO problem. For example, consider the problem defined by $f_1(x) = x$, $f_2(x) = x^2$, $m = 2$. For all $x \in (0, 1)$ we have that $f_{\min}(x) = x^2$. Therefore, it is easy to define a sequence $x_k \in (0, 1)$ generated by Algorithm U1 and converging to 0. Of course, 0 is a weakly critical point, but it is not strongly critical. The objective of this section is to introduce and analyze an unconstrained algorithm that converges to strongly critical points.

Algorithm U2. Let $\theta \in (0, 1), \alpha \in (0, 1), M > 1, \beta > 0, t_{\text{one}} > 0, \varepsilon > 0, \delta > 0$ be algorithmic parameters. Let $x_0 \in \mathbb{R}^n$ be the initial approximation. Given $x_k \in \mathbb{R}^n$, the steps for computing x_{k+1} are:

Step 1. If $\|\nabla f_i(x_k)\| = 0$ for all $i \in I(x_k)$, terminate the execution of the algorithm.

If $\|\nabla f_i(x_k)\| > \delta$ for all $i \in I(x_k)$, choose $i \in I(x_k)$ and define $J_k = \{i\}$. Otherwise, define $J_k = \{j \in \{1, \ldots, m\} | f_j(x_k) \leq f_{\min}(x_k) + \varepsilon \text{ and } \nabla f_j(x_k) \neq 0\}$.

Step 2. For all $i \in J_k$, compute $d_k^i \in \mathbb{R}^n$ such that

$$\nabla f_i(x_k)^T d_k^i \leq -\theta \|d_k^i\| \|\nabla f_i(x_k)\| \text{ and } \|d_k^i\| \geq \beta \|\nabla f_i(x_k)\|.$$ \hspace{1cm} (33)

Step 3. For all $i \in J_k$, compute $t_k^i > 0$ such that

$$f_i(x_k + t_k^i d_k^i) \leq f_i(x_k) + \alpha t_k^i \nabla f_i(x_k)^T d_k^i$$ \hspace{1cm} (34)

and

$$[t_k^i \geq t_{\text{one}}] \text{ or } [f_i(x_k + t_k^i d_k^i) > f_i(x_k) + \alpha t_k^i \nabla f_i(x_k)^T d_k^i \text{ for some } \bar{t}_k^i \leq Mt_k^i].$$ \hspace{1cm} (35)

Step 4. Compute $x_{k+1} \in \mathbb{R}^n$ such that

$$f_{\min}(x_{k+1}) \leq \min_{i \in J_k} \{f_i(x_k + t_k^i d_k^i)\}.$$ \hspace{1cm} (36)

In Algorithm U2, if $\|\nabla f_i(x_k)\| > \delta$ for all $i \in I(x_k)$ the iteration is identical to the one of Algorithm U1. If, for some $i \in I(x_k)$ the gradient norm is smaller than δ we compute descent directions for all the functions f_i such that $f_i(x_k) \approx f_{\min}(x_k)$ (with precision ε). Then, we perform line searches along all these directions and we finish taking x_{k+1} such that this point is at least as good as all the points obtained in the line searches. Below we show that the algorithm is well defined and can stop only at strongly critical points.
Theorem 4.1. Algorithm U2 is well-defined and terminates at \(x_k \) if, and only if, \(x_k \) is strongly critical. Moreover, if the algorithm does not terminate at \(x_k \),

\[
f_{\text{min}}(x_{k+1}) < f_{\text{min}}(x_k)
\]

for all \(k = 0, 1, 2, \ldots \).

Proof. If \(x_k \) is strongly critical, Step 1 guarantees that the algorithm terminates at \(x_k \).

Let us now show that, if \(x_k \) is not strongly critical, the iteration that defines Algorithm U2 can be completed in finite time and that \(x_{k+1} \) satisfies (37).

If \(x_k \) is not strongly critical, there exists \(i \in I(x_k) \) such that \(\| \nabla f_i(x_k) \| \neq 0 \). Therefore, the set \(J_k \) is nonempty and, by construction, for all \(i \in J_k \), \(\nabla f_i(x_k) \neq 0 \). Therefore, as in the proof of Theorem 3.1, for all \(i \in J_k \) and \(t \) small enough, the sufficient descent condition

\[
f_i(x_k + td_k^i) \leq f_i(x_k) + \alpha t \nabla f_i(x_k)^T d_k^i
\]

is verified. Therefore, choosing \(t_k^i \) as the first number in the sequence \(\{ t \text{one}, t \text{one}/M, t \text{one}/M^2, \ldots \} \) that satisfies (34), the conditions (34) and (35) are satisfied. So, the algorithm is well defined.

Now, let \(i \in I(x_k) \) be such that \(\nabla f_i(x_k) \neq 0 \). Since \(i \in J_k \) we have that:

\[
f_i(x_k + t_k^i d_k^i) \leq f_i(x_k) + \alpha t_k^i \nabla f_i(x_k)^T d_k^i = f_{\text{min}}(x_k) + \alpha t_k^i \nabla f_i(x_k)^T d_k^i < f_{\text{min}}(x_k).
\]

Therefore, (37) follows from (36). \(\square \)

In Lemma 4.1 we prove that, in a convergent subsequence generated by Algorithm U2, at most finitely many iterations are of type U1.

Lemma 4.1. Assume that \(\{ x_k \} \) is an infinite sequence generated by Algorithm U2 and \(K \) is an infinite sequence of indices such that \(\lim_{k \in K} x_k = x_* \). Then, for all \(k \in K \) large enough,

\[
\min_{i \in I(x_k)} \{ \| \nabla f_i(x_k) \| \} \leq \delta.
\]

Proof. Assume that the thesis is not true. Then, there exists \(K_1 \), an infinite subsequence of \(K \), such that

\[
\| \nabla f_i(x_k) \| > \delta \quad \text{for all} \quad i \in I(x_k), k \in K_1.
\]

Define \(K_1 = \{ k_0, k_1, k_2, k_3, \ldots \} \), \(k_j < k_{j+1} \) for all \(j \) and

\[
y_j = x_{k_j} \quad \text{for all} \quad j = 0, 1, 2, \ldots .
\]

By (38) and the choice of \(J_k \) in this case, the sequence \(\{ y_j \} \) is generated as in Algorithm U1. Therefore, there exists \(i \in \{ 1, \ldots, m \} \) such that \(J_{k_j} = \{ i \} \subset I(x_{k_j}) \) infinitely many times. By Theorem 3.2, \(i \in I(x_*) \) and \(\nabla f_i(x_*) = 0 \). Therefore, by the continuity of \(\nabla f_i \),

\[
\lim_{j \to \infty} \| \nabla f_i(x_{k_j}) \| = 0.
\]

This implies that (38) is false. \(\square \)

In Theorem 4.2 we prove that Algorithm U2 necessarily produces strongly critical points.
Theorem 4.2. If x_* is a limit point of a sequence generated by Algorithm U2, then x_* is strongly critical. Moreover, given $\epsilon > 0$, there exists $k \in \mathbb{N}$ such that

$$\|\nabla f_i(x_k)\| \leq \epsilon \text{ for all } i \in I(x_k).$$

Proof. Let $K = \{k_0, k_1, k_2, \ldots\}$ be such that

$$\lim_{k \in K} x_k = x_*.$$

By Lemma 4.1 and the definition of Algorithm U2, we may assume, without loss of generality, that

$$J_k = \{j \in \{1, \ldots, m\} | f_j(x_k) \leq f_{\min}(x_k) + \epsilon \text{ and } \nabla f_j(x_k) \neq 0\}$$

for all $k \in K$.

Assume that $i \in I(x_*)$. Our aim is to prove that $\nabla f_i(x_*) = 0$.

Clearly, $f_i(x_*) = f_{\min}(x_*)$. So, by the continuity of f_i and $f_{\min},$

$$f_i(x_k) \leq f_{\min}(x_k) + \epsilon. \hspace{1cm} (39)$$

for $k \in K$ large enough. By continuity, if $\nabla f_i(x_k)$ vanishes infinitely many times for $k \in K$, we are done. Otherwise, we may assume, without loss of generality, that $\nabla f_i(x_k) \neq 0$ for all $k \in K$. Therefore, by (39), $i \in J_k$ for all $k \in K$. Moreover,

$$\lim_{k \in K} f_i(x_k) - f_{\min}(x_k) = f_i(x_*) - f_{\min}(x_*) = 0. \hspace{1cm} (40)$$

By the definition of the algorithm, for j large enough we have:

$$f_{\min}(x_{k_{j+1}}) < f_{\min}(x_{k_j+1}) \leq f_i(x_{k_j} + t_{k_j}^i d_{k_j}^i) \leq f_i(x_{k_j}) + \alpha t_{k_j}^i \nabla f_i(x_{k_j})^T d_{k_j}^i = f_{\min}(x_{k_j}) + [f_i(x_{k_j}) - f_{\min}(x_{k_j})] + \alpha t_{k_j}^i \nabla f_i(x_{k_j})^T d_{k_j}^i. \hspace{1cm} (41)$$

By (33), $\alpha t_{k_j}^i \nabla f_i(x_{k_j})^T d_{k_j}^i < 0$. Assume, for a moment, that there exists $c > 0$, $j_0 \in \mathbb{N}$, such that

$$\alpha t_{k_j}^i \nabla f_i(x_{k_j})^T d_{k_j}^i < -c \hspace{1cm} (42)$$

for all $j \geq j_0$. But, by (40), there exists $j_1 \geq j_0$ such that

$$f_i(x_{k_j}) - f_{\min}(x_{k_j}) < c/2 \hspace{1cm} (43)$$

for all $j \geq j_1$. So, by (41), (42) and (43), we have that

$$f_{\min}(x_{k_{j+1}}) \leq f_{\min}(x_{k_j}) - c/2$$

for all $j \geq j_1$. This implies that $\lim_{j \to \infty} f_{\min}(x_{k_j}) = -\infty$ and contradicts the fact that, by continuity, $f_{\min}(x_{k_j}) \to f_{\min}(x_*)$. Therefore, the existence of c and j_0 with the property (42) is impossible. This implies that there exists K_1, an infinite subsequence of K, such that

$$\lim_{k \in K_1} \alpha t_k^i \nabla f_i(x_k)^T d_k^i = 0.$$
Therefore, by (33),
\[
\lim_{k \in K_1} t_k^i \|\nabla f_i(x_k)\| \|d_k^i\| = 0.
\]
The rest of the proof is similar to the proof of Theorem 3.2. If, for some subsequence \(K_2 \subset K_1\), \(\lim_{k \in K_2} \nabla f_i(x_k) = 0\), we are done. So, let us assume that \(\|\nabla f_i(x_k)\|\) is bounded away from zero for \(k \in K_1\). In this case,
\[
\lim_{k \in K} t_k^i d_k^i = 0. \tag{44}
\]
If, for some subsequence \(K_3 \subset K_1\), \(\lim_{k \in K_3} d_k^i = 0\), then, by (33), \(\lim_{k \in K_3} \|\nabla f_i(x_k)\| = 0\) and, thus, \(\nabla f_i(x) = 0\). So, we only need to consider the case in which \(\|d_k^i\|\) is bounded away from zero for \(k \in K_1\). In this case, by (44),
\[
\lim_{k \in K_1} t_k^i d_k^i = 0.
\]
Therefore, without loss of generality, we may assume that \(t_k^i < t_{one}\) for all \(k \in K_1\). Then, by (35), there exist \(t_k^i \leq M t_k^i\), \(s_k = t_k^i d_k^i\) such that
\[
f_i(x_k + s_k) > f_i(x_k) + \alpha \nabla f_i(x_k)^T s_k \quad \text{for all } \ k \in K_1 \tag{45}
\]
and, by (44),
\[
\lim_{k \in K_1} \|s_k\| = 0. \tag{46}
\]
So, by (45) and the Mean Value Theorem, there exists \(\xi_k \in [0, 1]\) such that
\[
\nabla f_i(x_k + \xi_k s_k)^T s_k = f_i(x_k + s_k) - f_i(x_k) > \alpha \nabla f_i(x_k)^T s_k \tag{47}
\]
for all \(k \in K_1\). Moreover, by (33),
\[
\frac{\nabla f_i(x_k)^T s_k}{\|s_k\|} \leq -\theta \|\nabla f_i(x_k)\| \tag{48}
\]
for all \(k \in K_1\). Let \(K_4\) be a subsequence of \(K_1\) such that
\[
\lim_{k \in K_4} \frac{s_k}{\|s_k\|} = s.
\]
By (46), dividing both sides of (47) by \(\|s_k\|\) and taking limits for \(k \in K_4\), we obtain:
\[
\nabla f_i(x_s)^T s \geq \alpha \nabla f_i(x_s)^T s.
\]
Since \(\alpha < 1\) and \(\nabla f_i(x_k)^T d_k < 0\) for all \(k\), this implies that \(\nabla f_i(x_s)^T s = 0\). Taking limits on both sides of (48) we obtain that \(\|\nabla f_i(x_s)\| = 0\).

Let us prove the second part of the thesis. If it is not true, then there exists \(K_5\), an infinite subset of \(K\) and \(\epsilon > 0\) such that for all \(k \in K_5\) there exists \(i \in I(x_k)\) such that \(\|\nabla f_i(x_k)\| > \epsilon\). Clearly, the same index \(i\) must be repeated infinitely many times, and, taking limits, we get that \(i \in I(x_s)\) and \(\|\nabla f_i(x_s)\| \geq \epsilon\). This contradicts the first part of the thesis. \(\square\)
For proving local convergence we follow similar steps to those of Algorithm U1. Assumption B3 establishes that the distance between two consecutive iterates is less than or equal to the maximum gradient norm in J_k. This is always possible if the directions d^i_k are taken according to gradient-like, Newton or quasi-Newton paradigms.

Assumption B3

We assume that Algorithm U2 is implemented in such a way that there exists $b > 0$ such that

$$
\|x_{k+1} - x_k\| \leq b \max \{ \|\nabla f_i(x_k)\|, i \in J_k \} \tag{49}
$$

for all $k \in \mathbb{N}$.

We say that x_* is strongly isolated if there exists $\epsilon > 0$ such that for all $x \in B(x_*, \epsilon) - \{x_*\}$ there exists $i \in I(x)$ such that $\nabla f_i(x) \neq 0$. In other words, a reduced neighborhood of x_* does not contain strongly critical points.

Let $a > 0$. We say that x_* is a-vertically isolated if $f_i(x_*) > f_{\min}(x_*) + a$ for all $i \notin I(x_*)$.

Theorem 4.3 is similar to Theorem 3.3 of Section 3. We prove that, under strongly isolation and vertical isolation assumptions, a limit point of the sequence generated by Algorithm U2 is necessarily the limit of the whole sequence. Moreover, in Theorem 4.4 we show that convergence to a strict local minimizer occurs if the initial point is close enough to such a solution.

Theorem 4.3. Assume that x_* is strongly isolated and a-vertically isolated with $a > \epsilon$. Suppose that the sequence $\{x_k\}$ is generated by Algorithm U2 with Assumption B3 and $\lim_{k \in K} x_k = x_*$ for some infinite sequence $K \subset \mathbb{N}$. Then, x_* is strongly critical and

$$
\lim_{k \to \infty} x_k = x_*.
$$

Proof. The fact that x_* is strongly critical is a consequence of Theorem 4.2.

By the assumption of vertical isolation, for $k \in K$ large enough we have that $J_k \subset I(x_*)$. Since $\nabla f_i(x_*) = 0$ for all $i \in I(x_*)$, by (49) we have that

$$
\lim_{k \in K} \|x_{k+1} - x_k\| = 0. \tag{50}
$$

By (50) and the hypothesis of the theorem, there exists $k_1 \in K$ such that

$$
\|x_{k+1} - x_k\| < \epsilon/2 \text{ and } \|x_k - x_*\| < \epsilon/2
$$

for all $k \in K, k \geq k_1$.

As in Theorem 3.3, define:

$$
C = \{x \in \mathbb{R}^n \mid \epsilon/2 \leq \|x - x_*\| \leq \epsilon \}.
$$

Clearly, C is compact and does not contain strongly critical points. Then, by Theorem 4.2, C cannot contain infinitely many iterates. Therefore, we have two possibilities:
1. There exists $k_2 \in \mathbb{N}$ such that $\|x_k - x_*\| \leq \epsilon/2$ for all $k \geq k_2$.

2. There exist infinitely many iterates $k \geq k_1$, such that $\|x_k - x_*\| \leq \epsilon/2$ and $\|x_{k+1} - x_k\| > \epsilon/2$.

In the first case, since x_* is the only possible limit point in the ball with radius $\epsilon/2$ we have that the sequence $\{x_k\}$ converges to x_*.

Let us analyze the second case. Let $K_1 \subset \mathbb{N}$ be such that $\|x_k - x_*\| \leq \epsilon/2$ and $\|x_{k+1} - x_k\| > \epsilon/2$ for all $k \in K_1$.

Since all the iterates belong to the ball with center $\epsilon/2$ and x_* is the only possible limit point in this ball, it turns out that

$$\lim_{k \in K_1} x_k = x_*.$$

By the hypothesis of vertical isolation, we have that $J_k \subset I(x_*)$ for $k \in K_1$ large enough. Moreover, $\nabla f_i(x_*) = 0$ for all $i \in I(x_*)$. Then, by (49),

$$\lim_{k \in K_1} \|x_{k+1} - x_k\| = 0,$$

contradicting the assumption $\|x_{k+1} - x_k\| \geq \epsilon/2 \forall k \in K_1$. This means that the second case mentioned above is impossible. So, the proof is complete.

Theorem 4.4. Assume that x_* is a strongly isolated strict local minimizer which, in addition, is a-vertically isolated with $a > \epsilon$. Let $\{x_k\}$ be a sequence generated by Algorithm U2 with Assumption B3. Then, there exists $\epsilon > 0$ such that $\|x_0 - x_*\| \leq \epsilon$ implies that

$$\lim_{k \to \infty} x_k = x_*.$$

Proof. Let $\epsilon > 0$ be such that x_* is a strict global minimizer of f_{\min} in the ball $B(x_*, \epsilon)$ and that this ball does not contain strongly critical points other than x_*. Let us prove that there exists $\delta \in (0, \epsilon/2)$ such that

$$\|x_k - x_*\| \leq \delta \Rightarrow \|x_{k+1} - x_k\| \leq \epsilon/2. \quad (51)$$

In fact, since x_* is strongly critical, $\nabla f_i(x_*) = 0$ for all $i \in I(x_*)$. But the assumption of vertical isolation with $a > \epsilon$ implies that, in a neighborhood of x_*, $J_k \subset I(x_*)$. Then, by the continuity of the gradients and the assumption (49), we obtain (51).

The rest of the proof is as in Theorem 3.4. Let c be the minimum of $f_{\min}(x)$ on the set defined by $\delta \leq \|x - x_*\| \leq \epsilon$. Let $\delta_1 \in (0, \delta)$ be such that

$$\|x - x_*\| \leq \delta_1 \Rightarrow f_{\min}(x) < c.$$

Let us prove by induction that, taking $\|x_0 - x_*\| \leq \delta_1$, one has that $\|x_k - x_*\| \leq \epsilon/2$ and $f(x_k) < c$ for all k. By the definition of δ_1 this is true for $k = 0$. For the inductive step, observe that, by (51), we have that $\|x_{k+1} - x_*\| \leq \epsilon$. But, by the definition of c and the fact that $f(x_{k+1}) < f(x_k)$, we have that $\|x_{k+1} - x_*\| \leq \epsilon/2.$
Therefore, the whole sequence is contained in $B(x_*, \epsilon/2)$. Since the only strongly critical point in this ball is x_*, Theorem 4.2 implies that the whole sequence converges to x_* as we wanted to prove.

The assumption of vertical isolation is essential for proving Theorems 4.3 and 4.4. In fact, consider the problem defined by $f_1(x) = x^2$, $f_2(x) = x + \epsilon/2$, where vertical isolation does not hold. The point $x_0 = 0$ is the unique strong local minimizer of this problem. However, for x_0 close to x_*, $J_0 = \{1, 2\}$. Taking $d_0^2 = -1$ we will have that $f_{\min}(x^1) < 0$ so that convergence to 0 will be impossible. So, the thesis of Theorem 4.4 does not hold in this case.

Assumption $B4$ establishes the specific implementation of Algorithm $U2$ that produces local superlinear convergence. As in Algorithm $U1$ we assume that the directions d_i^k are computed using the inexact solution of a linear Newton-like equation. To enhance the probability of taking pure Newton-like iterates we make the choice (55) below. This will be sufficient for proving, in Theorem 4.5 that superlinear convergence holds under similar conditions to those of Theorem 3.5.

Assumption B4. In the implementation of Algorithm $U2$ we have:

- $\alpha \in \left(0, \frac{1}{2}\right)$.
- For all $i \in J_k$, the direction d_i^k is a solution of
 \[B_i^k d = -\nabla f_i(x_k) + r_k, \]
 where $B_i^k \in \mathbb{R}^{n \times n}$ is symmetric and positive definite and
 \[\|r_k\| \leq \eta_k \|\nabla f_i(x_k)\|. \]
- If \(f_i(x_k + d_i^k) \leq f_i(x_k) + \alpha \nabla f_i(x_k)^T d_i^k, \)
 then we choose $t_i^k = 1$.
- If there exists $j \in J_k$ such that $t_j^k = 1$, we choose
 \[x_{k+1} = x_k + t_i^k d_i^k, \]
 where
 \[f_i(x_k + t_i^k d_i^k) = \min \{ f_j(x_k + t_j^k d_j^k), j \in J_k \}. \]
- There exists $C > 0$ such that, for all $k \in \mathbb{N}$, $i \in J_k$,
 \[\| (B_k^i)^{-1} \| \leq C \] and Assumption $B3$ holds.

If η_k is small enough and $\|B_i^k\| < \frac{1}{\beta}$, the condition $d_i^k \geq \beta \|\nabla f_i(x_k)\|$ is satisfied. Moreover, if the condition number $\|B_i^k\| \| (B_k^i)^{-1} \|$ is less than or equal to $\frac{1}{\beta}$, the angle condition (33) is satisfied. Clearly, it is always possible to choose B_i^k satisfying both requirements.

Theorem 4.5. Assume that:
1. The sequence \(\{x_k\} \) is generated by Algorithm U2 with Assumption B4;

2. \(x_* \) is a local minimizer;

3. For all \(i \in I(x_*) \), the function \(f_i \) admits continuous second derivatives in a neighborhood of \(x_* \);

4. \(\nabla^2 f_i(x_*) > 0 \) for all \(i \in I(x_*) \);

5. \(\lim_{k \to \infty} x_k = x_* \);

6. For all \(i \in I(x_*) \), the Dennis-More condition

\[
\lim_{k \to \infty} \frac{\|[B_k^i - \nabla^2 f_i(x_k)]d_k^i\|}{\|d_k^i\|} = 0
\]

(56)

and the inexact-Newton condition

\[
\lim_{k \to \infty} \eta_k = 0
\]

(57)

hold.

Then,

- There exists \(k_0 \in \mathbb{N} \) such that, for all \(k \geq k_0 \) and \(i \in I(x_*) \), we have that \(i \in J_k \) and \(t_k^i = 1 \).

- If \(i \in J_k \) is such that

\[
f_i(x_k + t_k^i d_k^i) = \min \{ f_j(x_k + t_k^j d_k^j), j \in J_k \}
\]

(58)

for infinitely many indices \(k \), then \(i \in I(x_*) \).

- There exists \(k_1 \in \mathbb{N} \) such that for all \(k \geq k_1 \) there exists \(i(k) \in J_k \cap I(x_*) \) such that \(t_k^{i(k)} = 1 \) and

\[
x_{k+1} = x_k + d_k^{i(k)}.
\]

(59)

- The sequence \(\{x_k\} \) converges superlinearly to \(x_* \).

Proof. Let \(i \in I(x_*) \). Since \(x_* \) must be strongly critical, we have that \(\nabla f_i(x_*) = 0 \). However, since \(\nabla^2 f_i(x_*) \) is positive definite, \(\nabla f_i(x_k) \neq 0 \) for \(k \) large enough. Since \(f_i(x_*) = f_{\min}(x_*) \), by the continuity of \(f_i \) and \(f_{\min} \), we have that \(f_i(x_k) \leq f_{\min}(x_k) + \varepsilon \) for \(k \) large enough. So, there exists \(k_0' \in \mathbb{N} \) such that \(i \in J_k \) for all \(k \geq k_0' \).

The proof of (62) below mimics the proof of (32) in Theorem 3.5.

By Taylor's formula, for all \(k \geq k_0' \), we have that

\[
f_i(x_k + d_k^i) - f_i(x_k) - \alpha(d_k^i)^T \nabla f_i(x_k) = (1 - \alpha)(d_k^i)^T \nabla f_i(x_k) + \frac{1}{2}(d_k^i)^T \nabla^2 f_i(x_k)(d_k^i) + o(\|d_k^i\|^2)
\]

\[
= (1 - \alpha)(d_k^i)^T [\nabla f_i(x_k) + \nabla^2 f_i(x_k)d_k^i] + (\alpha - \frac{1}{2})(d_k^i)^T \nabla^2 f_i(x_k)d_k^i + o(\|d_k^i\|^2).
\]
By (33), (53) and (57) we have that $\| r_k \| = o(\| d_k^i \|)$. Therefore,

$$f_i(x_k + d_k^i) - f_i(x_k) - \alpha (d_k^i)^T \nabla f_i(x_k)$$

$$= (1 - \alpha) (d_k^i)^T \nabla^2 f_i(x_k) - B_k^i d_k^i + (\alpha - \frac{1}{2}) (d_k^i)^T \nabla^2 f_i(x_k) d_k^i + o(\| d_k^i \|^2).$$

But, by (56),

$$(1 - \alpha) (d_k^i)^T [\nabla^2 f_i(x_k) - B_k^i] d_k^i = o(\| d_k^i \|^2),$$

therefore,

$$f_i(x_k + d_k^i) - f_i(x_k) - \alpha (d_k^i)^T \nabla f_i(x_k) = (\alpha - \frac{1}{2}) (d_k^i)^T \nabla^2 f_i(x_k) d_k^i + o(\| d_k^i \|^2). \quad (60)$$

Let $\mu > 0$ a lower bound for the eigenvalues of $\nabla^2 f_i(x_*)$. Then, there exists $k_2 > k'_0$ such that $\mu/2$ is lower bound for the eigenvalues of $\nabla^2 f_i(x_k)$ for all $k \geq k_2$. So, for all $k \geq k_2$, we have:

$$\frac{(d_k^i)^T \nabla^2 f_i(x_k) d_k^i}{\| d_k^i \|^2} \geq \mu / 2.$$

Since $\alpha < 1/2$, by (60), we have:

$$\frac{f_i(x_k + d_k^i) - f_i(x_k) - \alpha (d_k^i)^T \nabla f_i(x_k)}{\| d_k^i \|^2} \leq \left(\alpha - \frac{1}{2} \right) \frac{\mu}{2} + o(\| d_k^i \|^2). \quad (61)$$

for $k \geq k_2$. But, since $\|(B_k^i)^{-1}\| \leq C$ for all k and $\nabla f_i(x_*) = 0$, we have that $\| d_k^i \| \to 0$. So, taking limits in (61) for $k \to \infty$, we get:

$$f_i(x_k + d_k^i) - f_i(x_k) - \alpha (d_k^i)^T \nabla f_i(x_k) \leq 0$$

for k large enough. So, by Assumption B4, there exists $k_0 \geq k_2$ such that $t_k^i = 1$ for all $k \geq k_0$. Therefore, the first part of the thesis is proved.

Let us now prove the second part of the thesis. By the first part of the thesis, for k large enough we choose x_{k+1} using (54) and (55). Assume that (58) holds for infinitely many indices $k \in \bar{K}$. Then, for all $k \in \bar{K}$,

$$f_i(x_{k+1}) = f_i(x_k + t_k^i d_k^i) \leq f_{\min}(x_k).$$

Taking limits for $k \in \bar{K}$, we obtain that $f_i(x_*) = f_{\min}(x_*)$. So, $i \in I(x_*)$.

The third part of the thesis follows as a consequence of the first two. For k large enough $J_k \cap I(x_*) \neq \emptyset$. Therefore, by the first part of the thesis, for k large enough there exists i such that $t_k^i = 1$. Then, by (54) and the second part of the thesis, $x_{k+1} = x_k + t_k^i d_k^i(k)$ and $t(k) \in I(x_*)$ for all k large enough. Then, by the first part of the thesis again, we obtain (59).

Now, we are able to prove the last part of the thesis.

As in the first part of the proof, by (33), (53) and (57) we have that $\| r_k \| = o(\| \nabla f_i(k)(x_k) \|) = o(\| d_k^i(k) \|)$. Then, by Taylor’s formula:

$$\nabla f_i(k)(x_{k+1}) = \nabla f_i(k)(x_k) + \nabla^2 f_i(k)(x_k) d_k^i(k) + o(\| d_k^i(k) \|)$$

$$= \nabla f_i(k)(x_k) + \nabla^2 f_i(k)(x_k) d_k^i(k) + o(\| d_k^i(k) \|)$$

23
\[B_k^{(k)} d_k^{(k)} + \nabla f_i(x_k) + \left[\nabla^2 f_i(x_k) - B_k^{(k)} \right] d_k^{(k)} + o(\|d_k^{(k)}\|). \]

Then, by (52), (53) and (57),

\[\nabla f_i(x_{k+1}) = \left[\nabla^2 f_i(x_k) - B_k^{(k)} \right] d_k^{(k)} + o(\|d_k^{(k)}\|). \]

So, by (56),

\[\lim_{k \to \infty} \frac{\|\nabla f_i(x_{k+1})\|}{\|x_{k+1} - x_k\|} = 0. \]

But the continuity and nonsingularity of \(\nabla^2 f_i(x) \) at \(x_* \), this implies that

\[\lim_{k \to \infty} \frac{\|x_{k+1} - x_*\|}{\|x_{k+1} - x_k\|} = 0. \]

It follows that

\[\lim_{k \to \infty} \frac{\|x_{k+1} - x_*\|}{\|x_{k+1} - x_k\| + \|x_k - x_*\|} = 0. \]

Therefore, superlinear convergence follows. □

5 Constrained LOVO problems

In this section we address the LOVO problem when the feasible set \(\Omega \) is not whole space \(\mathbb{R}^n \). We will assume that \(\Omega \) is described by a set of equations and inequations and we will define a globally convergent Augmented Lagrangian algorithm for solving the constrained LOVO problem. For that purpose we need, first, to recall a suitable Augmented Lagrangian method for solving smooth constrained optimization problems.

5.1 Smooth Augmented Lagrangian method

We consider the problem

\[\text{Minimize } f(x) \text{ subject to } h(x) = 0, g(x) \leq 0, \]

(63)

where \(f : \mathbb{R}^n \to \mathbb{R}, h : \mathbb{R}^n \to \mathbb{R}^m, g : \mathbb{R}^n \to \mathbb{R}^p \). We assume that \(f, h, g \) are continuously differentiable.

For all \(x \in \mathbb{R}^n, \rho \in \mathbb{R}_{++}, \lambda \in \mathbb{R}^m, \mu \in \mathbb{R}_{+}^p \) we define the Augmented Lagrangian [18, 24, 26, 27]:

\[L(x, \lambda, \mu, \rho) = f(x) + \frac{\rho}{2} \left[\left\| h(x) + \frac{\lambda}{\rho} \right\|^2 + \left\| g(x) + \frac{\mu}{\rho} \right\|^2 \right]. \]

(64)

Algorithm C is an Augmented Lagrangian method for solving the smooth problem (63). Essentially, it is a particular case of the Augmented Lagrangian algorithm with arbitrary lower-level constraints described in [2] and implemented in the Tango web-page.

Algorithm C.
Let $x_0 \in \mathbb{R}^n$ be an arbitrary initial point.
The parameters for the execution of the algorithm are:

$$
\tau \in [0, 1), \gamma > 1,
-\infty < \tilde{\lambda}_{\min} < \tilde{\lambda}_{\max} < \infty,
0 \leq \tilde{\mu}_{\max} < \infty,
\rho_1 \in \mathbb{R}_{++},
[\tilde{\lambda}_1]_j \in [\lambda_{\min}, \lambda_{\max}] \text{ for all } j = 1, \ldots, n_h,
[\tilde{\mu}_1]_j \in [0, \tilde{\mu}_{\max}] \text{ for all } j = 1, \ldots, n_g.
$$

\varepsilon_1 > 0.

Step 1. Initialization
Set $k \leftarrow 1$. For $j = 1, \ldots, n_g$, compute

$$
[\sigma_0]_j = \max \{g_j(x_0), 0\}.
$$

Step 2. Solving the subproblem
Compute $x_k \in \Omega$ such that

$$
\|\nabla L(x_k, \lambda_k, \mu_k, \rho_k)\|_{\infty} \leq \varepsilon_k.
$$

Step 3. Estimate multipliers
For all $j = 1, \ldots, n_h$, compute

$$
[\lambda_{k+1}]_j = [\tilde{\lambda}_k]_j + \rho_k \bar{h}_j(x_k)
$$

and

$$
[\tilde{\lambda}_{k+1}]_j \in [\lambda_{\min}, \lambda_{\max}].
$$

For all $j = 1, \ldots, n_g$, compute

$$
[\mu_{k+1}]_j = \max \{0, [\tilde{\mu}_k]_j + \rho_k g_j(x_k)\},
$$

$$
[\sigma_k]_j = \max \left\{ g_j(x_k), \frac{[\tilde{\mu}_k]_j}{\rho_k} \right\},
$$

and

$$
[\tilde{\mu}_{k+1}]_j \in [0, \tilde{\mu}_{\max}].
$$

Step 4. Update the penalty parameters
If

$$
\max \{\|h(x_k)\|_{\infty}, \|\sigma_k\|_{\infty}\} \leq \tau \max \{\|h(x_{k-1})\|_{\infty}, \|\sigma_{k-1}\|_{\infty}\},
$$

define

$$
\rho_{k+1} \geq \rho_k.
$$
Else, define
\[\rho_{k+1} \geq \gamma \rho_k. \] (67)

Step 5. Begin a new outer iteration

Compute \(\varepsilon_{k+1} > 0 \). Set \(k \leftarrow k + 1 \). Go to Step 2.

The only differences between Algorithm C and the algorithm introduced in [2] (in the case that no lower-level constraints are present) is in the updating rules (66) and (67). In [2] the authors set \(\rho_{k+1} = \rho_k \) when (65) holds and \(\rho_{k+1} = \gamma \rho_k \) otherwise. This difference does not affect at all the proofs of the following convergence theorems.

Theorem 5.1. Assume that \(\{x_k\} \) is an infinite sequence generated by Algorithm C with \(\varepsilon_k \to 0 \) and that \(x_* \) is a limit point. Then, \(x_* \) is a stationary point of

\[
\text{Minimize } \sum_{j=1}^{n_h} h_j(x)^2 + \sum_{j=1}^{n_g} \max\{0, g_j(x)\}^2.
\]

Proof. See Theorem 3.1 of [2]. \(\square \)

Theorem 5.2. Assume that \(\{x_k\} \) is an infinite sequence generated by Algorithm C with \(\varepsilon_k \to 0 \), \(x_* \) is a limit point and the constant positive linear dependence (CPLD) constraint qualification [7, 25] is fulfilled at \(x_* \). Then, \(x_* \) is a KKT point of (63).

Proof. See Theorem 3.2 of [2]. \(\square \)

The final boundedness result for the penalty parameters associated to Algorithm C is given in Theorem 5.3. A crucial assumption will be that the precision used to solve subproblems must tend to zero faster than the feasibility measure. This type of requirement is usual in many Augmented Lagrangian and Multiplier methods [8, 9, 11, 12, 13, 14, 15, 17].

Assumption C1. We assume that

1. The sequence \(\{x_k\} \) is generated by the application of Algorithm C to the problem (63) and
\[\lim_{k \to \infty} x_k = x_* \]

2. In (66) the rule \(\rho_{k+1} = \rho_k \) is employed.

3. The point \(x_* \) is feasible \((h(x_*) = 0, g(x_*) \leq 0) \).

4. The gradients
\[\{\nabla h_j(x_*)\}_{j=1}^{n_h}, \{\nabla g_j(x_*)\}_{j \mid g_j(x_*)=0} \}

are linearly independent.
5. Strict complementarity takes place at x_*. This means that, if $\mu_* \in \mathbb{R}^{n_g}_+$ is the vector of Lagrange multipliers corresponding to the constraints $g(x) \leq 0$, then:

$$g_j(x_*) = 0 \Rightarrow [\mu_*]_j > 0.$$

6. The functions f, h, g admit continuous second derivatives in a neighborhood of x_*.

7. Define the tangent subspace T as the set of all $z \in \mathbb{R}^n$ such that

$$\nabla h(x_*)^T z = 0,$$

$$\nabla g_j(x_*)^T z = 0$$

for all j such that $g_j(x_*) = 0$.

Then, for all $z \in T, z \neq 0$,

$$z^T [\nabla^2 f(x_*) + \sum_{i=1}^{n_h} [\lambda_*]_j \nabla^2 h_j(x_*) + \sum_{j=1}^{n_g} [\mu_*]_j \nabla^2 g_j(x_*)] z > 0.$$

Theorem 5.3. Suppose that Assumption C1 holds. In addition, assume that:

1. There exists a sequence $\eta_k \to 0$ such that

$$\varepsilon_k \leq \eta_k \max\{\|h(x_k)\|_{\infty}, \|\sigma_k\|_{\infty}\} \forall k \in \mathbb{N}.$$

2. $[\lambda_*]_j \in (\bar{\lambda}_{\min}, \bar{\lambda}_{\max}) \forall j = 1, \ldots, n_h$ and $[\mu_*]_j \in (\bar{\mu}_{\min}, \bar{\mu}_{\max}) \forall j = 1, \ldots, n_g$.

3. $[\bar{\lambda}_{k+1}]_j$ is the projection of $[\lambda_{k+1}]_j$ on $[\bar{\lambda}_{\min}, \bar{\lambda}_{\max}]$ and $[\bar{\mu}_{k+1}]_j$ is the projection of $[\mu_{k+1}]_j$ on $[0, \bar{\mu}_{\max}]$ for all $j = 1, \ldots, n_h, j = 1, \ldots, n_g, k \in \mathbb{N}$.

Then, the sequence of penalty parameters $\{
ho_k\}$ is bounded.

Proof. See Theorem 4.3 of [2]. \hfill \square

5.2 Augmented Lagrangian method for LOVO

Now we are in conditions to define natural extensions of Algorithm C to the LOVO problem. When the solution of unconstrained minimization subproblems is needed, one may use Algorithms U1 or U2.

We consider the problem

$$\text{Minimize } f_{\text{min}}(x) \text{ subject to } h(x) = 0, g(x) \leq 0,$$

where $f_i : \mathbb{R}^n \to \mathbb{R}$ for all $i = 1, \ldots, m$, $h : \mathbb{R}^n \to \mathbb{R}^{n_h}$, $g : \mathbb{R}^n \to \mathbb{R}^{n_g}$ and all these functions are smooth.
As in (64), for all $x \in \mathbb{R}^n$, $\rho \in \mathbb{R}^+_{++}$, $\lambda \in \mathbb{R}^{n_h}$, $\mu \in \mathbb{R}^{n_g}_+$ we define the Augmented Lagrangian associated with f_i by:

$$L_i(x, \lambda, \mu, \rho) = f_i(x) + \frac{\rho}{2} \left[\left\| h(x) + \frac{\lambda}{\rho} \right\|^2 + \left\| g(x) + \frac{\mu}{\rho} \right\|_+^2 \right].$$

The Augmented Lagrangian associated with f_{\min} is defined by

$$L_{\min}(x, \lambda, \mu, \rho) = f_{\min}(x) + \frac{\rho}{2} \left[\left\| h(x) + \frac{\lambda}{\rho} \right\|^2 + \left\| g(x) + \frac{\mu}{\rho} \right\|_+^2 \right].$$

Let us define

$$L_{\min}(x) = \{ i \in \{1, \ldots, m\} \mid L_i(x, \lambda, \mu, \rho) = L_{\min}(x, \lambda, \mu, \rho) \}.$$

Algorithm C-LOVO.

Let $x_0 \in \mathbb{R}^n$ be an arbitrary initial point.

The parameters for the execution of the algorithm are:

$$\tau \in [0, 1), \gamma > 1,$$

$$-\infty < \bar{\lambda}_{\min} < \bar{\lambda}_{\max} < \infty,$$

$$0 \leq \bar{\mu}_{\max} < \infty,$$

$$\rho_1 \in \mathbb{R}^+_{++},$$

$$[\bar{\lambda}_j] \in [\bar{\lambda}_{\min}, \bar{\lambda}_{\max}] \forall j = 1, \ldots, n_h,$$

$$[\bar{\mu}_j] \in [0, \bar{\mu}_{\max}] \forall j = 1, \ldots, n_g,$$

$$\varepsilon_1 > 0.$$

Step 1. Initialization

Set $k \leftarrow 1$. For $j = 1, \ldots, n_g$, compute

$$[\sigma_0]_j = \max \{ g_j(x_0), 0 \}.$$

Step 2. Solving the subproblem

Compute $x_k \in \Omega$ such that

$$\| \nabla L_i(x_k, \bar{\lambda}_k, \bar{\mu}_k, \rho_k) \|_\infty \leq \varepsilon_k$$

(69)

for some $i \in I_{\min}(x_k)$.

Step 3. Estimate multipliers

For all $j = 1, \ldots, n_h$, compute

$$[\lambda_{k+1}]_j = [\bar{\lambda}_k]_j + \rho_k h_j(x_k)$$

and

$$[\bar{\lambda}_{k+1}]_j \in [\bar{\lambda}_{\min}, \bar{\lambda}_{\max}].$$

28
For all $j = 1, \ldots, n_g$, compute
\[
[k+1]_j^k = \max\{0, [\tilde{\mu}_k]_j^k + \rho_k g_j(x_k)\},
\]
\[
[k]_j^k = \max \left\{ g_j(x_k), -\frac{[\tilde{\mu}_k]_j^k}{\rho_k} \right\},
\]
and
\[
[k+1]_j^k \in [0, \tilde{\mu}_{max}].
\]

Step 4. Update the penalty parameters

If
\[
\max\{\|h(x_k)\|_\infty, \|\sigma_k\|_\infty\} \leq \tau \max\{\|h(x_{k-1})\|_\infty, \|\sigma_{k-1}\|_\infty\},
\]
define
\[
\rho_{k+1} = \rho_k.
\]
Else, define
\[
\rho_{k+1} = \gamma \rho_k.
\]

Step 5. Begin a new outer iteration

Compute $\varepsilon_{k+1} > 0$. Set $k \leftarrow k + 1$. Go to Step 2.

The obvious way to solve (69) is to apply Algorithm U1 or Algorithm U2 to

\[
\text{Minimize } L_{\text{min}}(x, \lambda_k, \tilde{\mu}_k, \rho_k).
\]

Both algorithms guarantee that a point satisfying (69) can be found, provided that the generated sequence is bounded. On the other hand, boundedness of the sequences generated by Algorithms U1 or U2 may be guaranteed under suitable relations between objective function and constraints.

In Theorem 5.4 we prove that Algorithm C-LOVO finds stationary points of the constraint infeasibility.

Theorem 5.4. Assume that $\{x_k\}$ is an infinite sequence generated by Algorithm C-LOVO with $\varepsilon_k \to 0$ and that x_* is a limit point. Then, x_* is a stationary point of

\[
\text{Minimize } \sum_{j=1}^{n_h} h_j(x)^2 + \sum_{j=1}^{n_g} \max\{0, g_j(x)\}^2.
\]

Proof. Since $\{x_k\}$ is infinite, there exists $i \in \{1, \ldots, m\}$ such that (69) holds for f_i infinitely many times. Taking the corresponding subsequence of $\{x_k\}$, it turns out that this subsequence may be thought as generated by Algorithm C. Therefore, the thesis follows by Theorem 5.1.

Theorem 5.5. Assume that $\{x_k\}$ is an infinite sequence generated by Algorithm C-LOVO with $\varepsilon_k \to 0$, x_* is a limit point and the CPLD constraint qualification is fulfilled at x_*. Then, there exists $i \in I(x_*)$ such that x_* is a KKT point of

\[
\text{Minimize } f_i(x) \text{ subject to } h(x) = 0, g(x) \leq 0.
\]
Proof. As in Theorem 5.4, consider an infinite subsequence of \(\{x_k\} \) such that (69) holds with the same index \(i \) for all the terms of this subsequence. Again, this subsequence may be thought as having been generated by Algorithm C. By Theorem 5.2 there exists \(x_* \) satisfying the thesis of this theorem. The fact that \(x_* \in I(x_*) \) follows trivially from the fact that
\[L_i(x_k, \bar{\lambda}_k, \bar{\mu}_k, \rho_k) \leq L_j(x_k, \bar{\lambda}_k, \bar{\mu}_k, \rho_k) \text{ for all } j. \]

The final boundedness result for the penalty parameters associated to Algorithm C-LOVO is given in Theorem 5.6. As in the previous theorems, the technique consists of reducing the LOVO problem to a smooth nonlinear programming problem. However, in this case, we will need an additional assumption: given a convergent sequence generated by Algorithm C-LOVO, we will assume that there exists a unique index \(i_{\min} \) such that
\[f_{i_{\min}}(x_k) = f_{\min}(x_k) \]
for all \(k \) large enough and \(i \neq i_{\min} \).

Assumption C2. We assume that

1. The sequence \(\{x_k\} \) is generated by the application of Algorithm C-LOVO to the problem (63) and \(\lim_{k \to \infty} x_k = x_* \).
2. The point \(x_* \) is feasible (\(h(x_*) = 0, g(x_*) \leq 0 \)).
3. There exists \(i_{\min} \in \{1, \ldots, m\} \) such that
\[f_{i_{\min}}(x_k) = f_{\min}(x_k) < f_i(x^k) \]
for all \(k \) large enough and \(i \neq i_{\min} \).
4. The gradients
\[\{\nabla h_j(x_*)\}_{j=1}^{n_h}, \{\nabla g_j(x_*)\}_{\{j | g_j(x_*)=0\}} \]
are linearly independent.
5. Strict complementarity takes place at \(x_* \). This means that, if \(\mu_* \in \mathbb{R}^n_+ \) is the vector of Lagrange multipliers corresponding to the constraints \(g(x) \leq 0 \), then:
\[g_j(x_*) = 0 \Rightarrow [\mu_*]_j > 0. \]
6. The functions \(f_{i_{\min}}, h, g \) admit continuous second derivatives in a neighborhood of \(x_* \).
7. Define the tangent subspace \(T \) as the set of all \(z \in \mathbb{R}^n \) such that
\[\nabla h(x_*)^T z = 0, \]
\[\nabla [g(x_*)]_j^T z = 0 \]
for all \(j \) such that \(g_j(x_*) = 0. \)
Then, for all \(z \in T, z \neq 0 \),
\[
z^T [\nabla^2 f_{\min}(x_*) + \sum_{j=1}^{n_h} [\lambda_j]_j \nabla^2 h_j(x_*) + \sum_{j=1}^{n_g} [\mu_j]_j \nabla^2 g_j(x_*)] z > 0.
\]

Theorem 5.6. Suppose that Assumption C2 holds. In addition, assume that:

1. There exists a sequence \(\eta_k \to 0 \) such that
 \[
 \epsilon_k \leq \eta_k \max\{\|h(x_k)\|_\infty, \|\sigma_k\|_\infty\} \forall k \in \mathbb{N}.
 \]
2. \([\lambda_j]_j \in (\bar{\lambda}_{\min}, \bar{\lambda}_{\max}) \forall j = 1, \ldots, n_h \) and \([\mu_j]_j \in (\bar{\mu}_{\min}, \bar{\mu}_{\max}) \forall j = 1, \ldots, n_g \).
3. \([\lambda_{k+1}]_j \) is the projection of \([\lambda_k]_j \) on \([\bar{\lambda}_{\min}, \bar{\lambda}_{\max}] \) for all \(j = 1, \ldots, n_h \), and \([\mu_{k+1}]_j \) is the projection of \([\mu_k]_j \) on \([0, \bar{\mu}_{\max}] \) for all \(j = 1, \ldots, n_g, k \in \mathbb{N} \).

Then, the sequence of penalty parameters \(\{\rho_k\} \) is bounded.

Proof. For \(k \) large enough the sequence may be thought as being generated by Algorithm C with Assumption C1. So, the thesis follows from Theorem 5.3.

\[
\]

6 Hidden patterns

Let \(Q = \{Q_1, \ldots, Q_N\} \subset \mathbb{R}^{\dim}, P = \{P_1, \ldots, P_M\} \subset \mathbb{R}^{\dim}, N \leq M \). The goal is to find the structure defined by \(Q \) in the set \(P \). Strictly speaking, we aim to find a displacement operator \(D : \mathbb{R}^{\dim} \to \mathbb{R}^{\dim} \) such that \(\{D(Q_1), \ldots, D(Q_N)\} \) fits some subset of \(P \).

Define \(\mathcal{N} \) the set of \(N \)–uples \(\nu = (\nu(1), \ldots, \nu(N)) \), where \(\nu(i) \in \{1, \ldots, M\} \) for all \(i = 1, \ldots, N \). (In other words, \(\mathcal{N} = \{1, \ldots, M\}^N \).

Let \(D \) be a displacement. For all \(\nu \in \mathcal{N} \) we define
\[
 f_{\nu}(D) = \sum_{i=1}^{N} \|D(Q_i) - P_{\nu(i)}\|^2.
\]

Finally,
\[
 f_{\min}(D) = \min_{\nu \in \mathcal{N}} f_{\nu}(D).
\]

If there exists a set of \(N \) points of \(P \) that fits exactly a displacement \(D \) of \(Q \) we have that \(f_{\min}(D) = 0 \). The problem of minimizing \(f_{\min} \) follows under the theory introduced in previous sections.

Fortunately, the evaluation of \(f_{\min} \) does not need the computation of all the functions \(f_\nu \). In fact, given a displacement \(D \), we compute, for all \(i = 1, \ldots, N \), \(P_{c(i)}(D) \in \mathcal{P} \) such that
\[
\|D(Q_i) - P_{c(i)}(D)\| \leq \|D(Q_i) - P\| \forall P \in \mathcal{P}.
\]
Then,

\[f_{\min}(D) = \sum_{i=1}^{N} \|D(Q_i) - P_{c(i)}(D)\|^2. \]

The two most common situations in applications correspond to \(\text{dim} = 2 \) and \(\text{dim} = 3 \). In the first case the displacement may be represented by three parameters: the translation of the center of gravity of \(Q \) and the angle of rotation. In the three-dimensional case, displacements may be represented by the translation vector and three rotations, although other alternatives are possible.

A generalization of this problem is to find a common structure to the sets \(P \) and \(Q \). Suppose that we want to find a displacement \(D \) such there exists \(R \leq N \) points of \(Q \) (say, \(Q_{j_1}, \ldots, Q_{j_R} \)) such that \(D(Q_{j_1}), \ldots, D(Q_{j_R}) \) fit \(R \) points of \(P \). In this case, we define \(\mathcal{M} \) as the Cartesian product between the subsets of \(\{1, \ldots, N\} \) and the \(R \)-uples of \(\{1, \ldots, M\} \). For all \(\nu = (\{j_1, \ldots, j_R\}, \{i_1, \ldots, i_R\}) \in \mathcal{M} \), we define

\[f_{\nu}(D) = \sum_{\ell=1}^{R} \|D(Q_{j_{\ell}}) - P_{i_{\ell}}\|^2 \]

and the goal is to minimize \(f_{\min}(D) = \min_{\nu \in \mathcal{M}} f_{\nu}(D) \). Again, the computation of \(f_{\min} \) is simple: for all \(i = 1, \ldots, N \) compute \(P_{c(i)}(D) \in P \) as in \((70)\). Then, \(f_{\min}(D) \) is the sum of the \(R \) smaller values of \(\|D(Q_i) - P_{c(i)}(D)\|^2 \).

Although the most obvious definition of a displacement operator involves only translation and rotations, more general definitions are possible. For example, the introduction of an additional parameter allows one to consider scale variations so that a given form may be recognized in a structure independently of its size. Moreover, if we replace the Euclidian norm of the difference by a different distance function, we may obtain many alternative case-oriented similarity measures.

7 Numerical experiments

One of the main practical consequences of the theory introduced in Sections 2–5 of this paper is that, in spite of the nonsmoothness of the LOVO problem, if one ignores the multiplicity of gradients at a given point \(x^k \) and we use straightforward smooth minimization solvers, the bad consequences are rather mild. In fact, a far more serious inconvenient is the fact that convergence to global minimizers is not guaranteed, but this inconvenient is shared by most practical smooth nonlinear-programming methods.

Many smooth optimization algorithms, when applied to LOVO, may be considered particular cases of Algorithms U1 and C-LOVO. With this property in mind, we used, in our experiments, the unconstrained and constrained versions of Algencan, the nonlinear-programming code available in the Tango project web-page (www.ime.usp.br/~egbirgin/tango) with its default algorithmic parameters [1, 2, 10]. Considering a rather large number of unconstrained and constrained tests, we did not detect practical differences between the performance of algorithms U1 and U2. In constrained problems this is as predicted by theory, because C-LOVO cannot guarantee convergence to strongly critical points.
All the experiments were run on a computer with Pentium IV processor, 512 Mb of RAM memory and Linux operating system. Codes are in Fortran77 and the compiler option “-O” was adopted.

7.1 A Hidden-Pattern Example

We consider the application LOVO described in Section 6. The points of \(\mathcal{P} \), represented in Figure 1.(a) in light grey, are the 253 Ca atoms of the thyroid hormone receptor protein bound to a IH5, a synthetic ligand (Protein Data Bank identifier 1NAV). The points of \(\mathcal{Q} \), in black in Figure 7.1(a), are 78 Ca atoms of the C-terminal region of a similar protein, however bound to a different ligand (PDB id. 1Q4X), which provides some structural differences. Therefore, there is no set of points in \(\mathcal{P} \) which exactly match the set \(\mathcal{Q} \). However, the proteins are similar. The goal here is to identify which set of points in the target protein best matches the points of the fragment. In other words, we aim to know whether there is a structural pattern of the type defined by \(\mathcal{Q} \) in the structure defined by \(\mathcal{P} \). This is the general definition of the problem of Protein Fold Recognition, which has fundamental importance for the analysis of protein function and evolution [19].

We used a multistart approach, since this type of problems has many local minimizers. The variables of the problem are the ones that define the displacement \(D \): three variables for defining the translation and three variables for defining rotations around the coordinate axes. Let \(B \subset \mathbb{R}^3 \) be the smaller box that contains the protein \(\mathcal{P} \). The initial approximation for the translation vector was taken as \(\xi - O \) where \(O \) is the center of gravity of \(\mathcal{Q} \) and \(\xi \) is a random point in \(B \). The initial angles were taken uniformly randomly between 0 and \(2\pi \).

The best solution was obtained in the third trial, after 0.19 seconds of CPU-time, including printings. The last execution of the unconstrained algorithm used 21 iterations. So, Algorithm U1 ran three times, finding critical points in the first two cases. On average, the distance between the displaced points of \(\mathcal{Q} \) and the points of \(\mathcal{P} \) was 1.07 angstroms (the best solution found is correct from the point of view of protein function and is, very likely, the global solution). In Figure 1.(b) we show the superposition of the points in the best solution found. We note that even when the alignment is good, its recognition is not obvious. Figure 1.(c) shows the same solution, but now represented as a Co trace (consecutive points in the structure are connected), and provides a clearer view of the alignment obtained (the fragment is in black and the target protein is in light grey).

7.2 Fitting Models with Outliers

7.2.1 Unconstrained fitting

Assume that \(\{(t_1, y_1), \ldots, (t_m, y_m)\} \subset \mathbb{R}^2 \) is a set of data and we know that “some of them are wrong”. Assume that \(T(x, t_i) \) is the predicted value of the observation \(i \) with the parameters \(x \in \Omega \). Least-squares fitting of the form \(y_i \approx T(x, t_i) \) leads to unsatisfactory results due to the overwhelming influence of outliers.

The LOVO approach for robust estimation of parameters consists in defining, for each \(i = 1, \ldots, r \), the error function

\[
F_i(x) = (T(x, t_i) - y_i)^2.
\]
Given \(p \in \{1, \ldots, r\} \), this set of functions defines a LOVO problem (1) for which algorithms \(U_1 \), \(U_2 \) (unconstrained cases) and \(C\text{-LOVO} \) (constrained cases) may be employed. When \(p = r \) this LOVO problem coincides with the classical nonlinear least-squares problem. However, the interesting situation is when \(p \) is smaller than \(r \). In that case, the solution of LOVO allows one to discard the influence of an estimated number of outliers. The idea is to solve this problem for different values of \(p \). If \(p = r \) we expect a large value of the LOVO function at the solution, showing that there are wrong data among the points that correspond to \(F_{i_1}, \ldots, F_{i_r} \). When \(p \) is decreased, the LOVO function at the solution tends to decrease as well. Obviously, this decrease is due to the fact that the quantity of terms in the sum is smaller but, we expect that, when we take “the correct \(p \)”, the magnitude of this decrease would be greater.

To illustrate the behavior of the LOVO approach we consider a simple unconstrained problem where \(T(x, t_i) \) is defined as

\[
T(x, t_i) = x_1 \exp[-t_i x_3] + x_2 \exp[-(t_i - x_9)^2 x_6] + x_3 \exp[-(t_i - x_{10})^2 x_7] + x_4 \exp[-(t_i - x_{11})^2 x_8].
\]

This is the Osborne-2 function (coming from Problem 19 of [23], where \(r = 65 \)). Here we introduced 13 additional data representing systematic errors. The results are shown in Figure 2. The points in the graphics represent the given data \((t_i, y_i)\). The rounded points are the detected outliers. The full line is the fitted curve. For \(p = 78 \) the full line gives the ordinary least-squares fitting. For \(p = 65 \) all the outliers are detected and the fitted curve is the “correct” one. In both cases we used the initial point given in [23]. The sum of squares was observed to decrease abruptly from \(p = 66 \) to \(p = 65 \), as expected.

Figure 1: Finding patterns of protein folding with LOVO.
7.2.2 Constrained fitting

Assume that x_1, \ldots, x_r satisfy the difference equations

$$\frac{x_{i+1} - 2x_i + x_{i-1}}{h^2} = \Phi(t_i, x_i, z)$$

for $i = 2, \ldots, r - 1$, where $z \in \mathbb{R}^{npar}$ is a vector of unknown parameters, $h = 2/(r - 1)$, $t_i = (i - 1)h$. We want to find the correct values of x and the parameters z. The data of the problem are y_1, \ldots, y_r. We know that approximately $r - p$ data are wrong. So, defining $F_i(x, z) = (x_i - y_i)^2$, the goal is to minimize $S_p(x, z)$ subject to the constraints (71).

In the experiments reported here we took $r = 21$, $npar = 3$ and

$$\Phi(x_i, z) = z_1 e^{x_i} - z_2 (x_i^2 + 1) t_i - z_3 \sin(t_i x_i).$$

The data were generated as follows. First, we found the exact solution of (71) that satisfies $\bar{x}_1 = 4, \bar{x}_r = 6$ with $z_1 = 0.1, z_2 = 1, z_3 = 2$. Then, we chose $y_i = \bar{x}_i + \xi_i$, where ξ_i is random between -0.05 and 0.05, for $i = 4, \ldots, r - 2$. The data y_1, y_2, y_3, y_{r-1} and y_r were generated as outliers, much larger than the “correct” y_i (Figure 3). The results for $p = 21$ and $p = 16$ are shown in Figure 3. As initial approximation we used x_i random between 0 and 2$|y_i|$ and z_i random between -10 and 10. For $p = 21$ the solution is distorted by the necessity of fitting the outliers and the value of the LOVO function at the solution was 5.27. For $p = 16$ the fitted solution coincided with the correct data and the LOVO function value was less than 0.001.
8 Final remarks

The LOVO problem defined in this paper is, in general, nonsmooth and nonconvex. Here we gave (weak and strong) optimality conditions and introduce unconstrained and constrained algorithms for its resolution. An important consequence of the theory, confirmed by experiments, is that, unlike most nonsmooth (even convex), problems the consequences of ignoring nonsmoothness are not severe. Briefly speaking, smooth optimization algorithms when applied to this problem converge to weakly stationary points and specific algorithms converge to strong stationary points. This allows us to take advantage of the availability of efficient smooth optimization software.

Applications to Hidden Pattern recognition and to Robust Model fitting seem to be promising. Both problems are very important in many areas of Science and Engineering. Undoubtedly, in the presence of specific technological applications it will be necessary to develop case-oriented algorithms but the possibility of using general software with reasonable results (an unusual feature in Engineering Optimization) is very encouraging.

Future research on this subject should include:

- Exploiting smooth reformulations like the one proposed in [4] for the OVO problem.
- Adaptation and development of global-optimization strategies for finding suitable initial points to avoid the attractiveness of local-nonglobal minimizers.
- Development of constrained LOVO algorithms with convergence to strongly critical points.
- Extensions of the LOVO approach to the case in which \(p \) is not fixed in advance. This should enhance the applicability to similarity problems.
- Nonlinear programming problems with LOVO– and OVO–constraints.
- Sequential Quadratic Programming, Interior-Point and Restoration algorithms for nonlinearly constrained LOVO problems.
Noisy Order-Value Optimization.

Acknowledgement. We are indebted to Mario Gneri, for insightful conversations on robust estimation problems.

References

