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Approximating Functions from Sampled Fourier
Data Using Spline Pseudofilters

Ana Gabriela Martı́nez, and Alvaro Rodolfo De Pierro, Member

Abstract— Recently, new polynomial approximation formulas
were proposed for the reconstruction of compactly supported
piecewise smooth functions from Fourier data. Formulas for
zero and first degree polynomials were presented. For higher
degree approximations, polynomial formulas become extremely
complicated to be handled. In this paper we solve this problem
by introducing spline approximations. The new approach can
be used in the same way as the polynomial one but producing
computable formulas for any degree of approximation in Fourier
reconstruction. We present general error estimates and numerical
experiments.

Index Terms— Discrete Fourier transform, filters, Fourier se-
ries, Fourier tranform, interpolation

I. INTRODUCTION

Recovering functions from a finite number of Fourier co-
efficients is an essential task in signal processing and many
other areas of application as well like Nuclear Magnetic Resso-
nance, Spectral Methods in Fluid Dynamics and Computed
Tomography (see for example [1], [4], [9], [12], [15]). It is
well known that when the function is smooth (analytic), the
pointwise convergence of the Fourier series is exponential.
Otherwise, it is only polynomial or even worse, and it depends
on its degree of smoothness. Furthermore, if the function
is not continuous, convergence is extremely slow and large
oscillations show up. That is the so called Gibbs phenomenon
[11] that causes a very poor approximation close to the jumps.
For the resolution of the Gibbs phenomenon there are two
groups of methods: one consists of filtering in the Fourier
domain (equivalent to smoothing in the space domain) and the
other of approximating the function in the space domain for
each interval between discontinuities, using some special basis.
The first group is able to obtain only polynomial convergence
of the filtered Fourier expansion, with a degree of acceleration
depending on the degree of smoothness of the filter. This con-
vergence, as expected, deteriorates close to the discontinuities
and the polynomial bounds for the truncation error can only be
obtained outside small intervals containing the discontinuities
(see [11]). The second group, before 1999, contained only one
method and it consists of expanding the Fourier approximation
using Gegenbauer polynomials, thus obtaining exponential
convergence (truncation error tending to zero exponentially
fast with the number of available coefficients). A detailed
description of all these methods can be found in the Review
by Gottlieb and Shu [11]. The Gegenbauer approximation
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approach resolves in theory the Gibbs phenomenon, because
of the exponential convergence proofs, but in practice, it is
computationally expensive and unstable, suggesting the use of
hybrid approaches that combines it with classical filtering (see
[6]), still complicated and not very stable. Also, the Gegen-
bauer expansion approach needs to discard intervals containing
the discontinuities, in order to get the exponential bounds. In
1999, Yin, De Pierro and Wei [24] introduced a new approach
that essentially belongs to the second group and could be
described as follows: estimate first the discontinuity points
and approximate the function inside the intervals between
discontinuities by polynomials of a given degree in such a way
that the reconstruction is exact for functions that are piecewise
polynomials of that degree. This polynomial approach proved
to be more stable and better than the classical filtering ap-
proach, as shown by the experiments in [24]. Formulas and
error estimates for zeroth and first degree approximations were
presented in [24] and [21]. General formulas for higher degrees
(≥ 2) proved to be extremely complicated and computationally
unfeasible. It is easy to see this, just by trying to extend from
zeroth to first degree (that is not trivial) and then to second
degree (that gives rise to a several pages formula). In this
paper, we solve that problem by introducing a new family of
approximation methods based on splines. This new approach
makes possible to deduce approximation formulas for the
retrieval of functions from Fourier coefficients for any given
degree allowing very accurate reconstructions of piecewise
smooth signals from Fourier data. We illustrate this for the case
of second degree splines. Higher degree cases, although more
complicated, could be now deduced straightaway. Regarding
the previous step, that is, the estimation of the discontinuities,
fast methods for this task were based on modifications of the
conjugate Fourier series, work done by A. Gelb and E. Tadmor
[7], [8]. A more stable and fast method based on polynomial
approximations can be found in [22] (Section III, Theorem 1).
In [23] it was shown that the zeroth degree detection method
of [22] works extremely well and it is much better (better
approximations, separating better the jumps, more stable) than
the existing ones based on the conjugate Fourier series.

In what follows we introduce some assumptions and nota-
tion, needed for the next sections. For the sake of simplicity
we consider functions in the interval [0, 1].

The Fourier Transform (FT) f̂ of f(x) is defined as

f̂(ω) =

+∞∫

−∞
f(x)e−i2πxωdx =

1∫

0

f(x)e−i2πxωdx (1)

and its inverse (IFT) as
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f(x) =

+∞∫

−∞
f̂(ω)ei2πxωdω, a.e. (2)

Let

0 = x0 < x1 < · · · < xN = 1, ∆xj = xj+1 − xj = h =
1
N
(3)

and

fj = f(ηj), j = 0, . . . , N − 1 with ηj = xj + δ, (4)

where 0 ≤ δ ≤ h is a constant.
We need to derive an approximate relation between the

discrete Fourier transform (DFT) and the Fourier transform
of the function f(x), so that we can use the Fast Fourier
Transform (FFT) to evaluate {fj , j = 0, · · · , N−1} efficiently
and accurately. Next we present our definitions and notation
for the Discrete Fourier Transform, the Fourier Transform
(FT) and the Fourier Expansion (FE). Properties and relations
between them can be found in any textbook like [3].

For a given function f(x) with support in [0, 1] and an
even integer N > 0, let {xj , j = 0, · · · , N} and {fj , j =
0, · · · , N −1} be defined as in (3) and (4), respectively. Then
the DFT of {fj , j = 0, · · · , N − 1} is defined by

f̃k =
1
N

N−1∑

j=0

fje
−i2kπ j

N ,−N/2 ≤ k ≤ N/2− 1 (5)

and the inverse formula by:

fj =
N/2−1∑

k=−N/2

f̃kei2kπ j
N , j = 0, . . . , N − 1. (6)

The DFT is the mapping between the N complex numbers
{fj , j = 0, . . . , N −1} and the N complex numbers {f̃k, k =
−N/2, . . . , N/2−1}. The FFT can be used to compute them.

From (5) and (6), in order to establish the relation between
the DFT and the FT of f(x), we just need to establish the
relation between the DFT and the FT with frequency k. From
(1) we obtain

f̂k ≡ f̂(k) =

1∫

0

f(x)e−i2kπxdx, k = 0,±1,±2, . . . . (7)

If f is a real valued function, f̂−k = f̂k.
The set of functions {ei2kπx, k = 0,±1,±2, . . .} is an

orthogonal system over the interval [0,1]. Because of the fact
that the support of f(x) is in the interval [0, 1], we can also
consider f(x) as defined in [0,1], and we can obtain the
Fourier expansion of f(x):

Sf(x) =
+∞∑

k=−∞
ckei2kπx (8)

with the Fourier coefficients

ck =

1∫

0

f(x)e−i2kπxdx, k = 0,±1,±2, . . . . (9)

Sf(x) represents the formal expansion of f in terms of the
Fourier orthogonal system {ei2kπx, k = 0,±1,±2, . . .}. If f
is a real valued function, c−k = ck.

Notice that the Fourier coefficient ck in (9) is exactly
the same as f̂k, that is, the Fourier transform of f(x) with
frequency k in (7).

The truncated Fourier expansion of f(x) is

PNf(x) =
N/2−1∑

k=−N/2

ckei2kπx (10)

Equation (10) is different from the theoretical discussion of
truncated Fourier transforms, but it corresponds directly to the
way that practical computation is actually programmed.

In order to make this expansion rigorous, one has to cope
with some problems: when and in what sense is the transform
convergent, what is the relation between the transform and
the function f(x), and how rapidly does the series converge.
It is well known that if f(x) ∈ L2([0, 1]) (square integrable
in (0, 1)), the series converges to the function f . However,
pointwise convergence could be far from reasonable. If f(x) ∈
C∞(0, 1) and f (p)(0) = f (p)(1) for all p = 0, 1 · · · , then

PNf(x) → f(x) exponentially for N →∞, ∀x ∈ [0, 1].

But when f(x) has points of discontinuity, or even when
f(x) ∈ C∞(0, 1) but it is not periodic, convergence rate is
poor and the Gibbs phenomenon occurs. As mentioned in the
beginning, in this case, one needs to use window functions
(also called smoothing functions) to reduce oscillations close
to points of discontinuity [14], [9], [4]. In [10] a different
but expensive approach is suggested for the problem. In [16]
a comprehensive description of all these approaches can be
found. In [24], a family of filters (that we prefer now to
call pseudofilters, because they are no longer associated with
convolutions in the space domain) was introduced based on the
property of producing an exact reconstruction for piecewise
constant functions. The formulas extending this result to
piecewise linear functions appeared in [21]. Further extensions
of the formulas for filters associated with higher degree poly-
nomials proved to be too complicated, even for degree two.
The solution of this problem turns out to be the substitution of
polynomials by splines, giving rise to computationally feasible
formulas for the filters of any degree of approximation, as it is
mathematically shown in the Appendix, where error estimates
are deduced.

In §2 we present a brief introduction to splines, needed to
derive the new spline pseudofilters of §3. §4 illustrates with
numerical experiments the behavior of the filters and finally
in §5 we present some conclusions and our current and future
research directions on this topic.

II. A BRIEF INTRODUCTION TO SPLINES

It follows a brief presentation of some basic results and
notation on spline functions. More detailed information could
be found in [2] and [18].
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A. B-Splines

B-splines are symmetric ‘bell-shaped’ functions, built by
iteratively convolving the rectangular pulse, that is,

βn(x) = β0 ∗ ... ∗ β0(x), n + 1− times,

where

β0(x) =
{

1 − 1
2 < x < 1

2 ,
0 otherwise .

These symmetric splines of order n, {βn(x)}n∈N , also
known as B-splines are basis functions used to build the spline
functions s(x). B-splines can be manipulated (differentiated
and integrated) very easily. They are compact supported and
the simplest way to construct them explicitly is through the
following formula:

βn(x) =
n+1∑

j=0

(−1)j

n!

(
n + 1

j

)
(x + n̄− j)2µ(x + n̄− j),

where n̄ = n+1
2 and

µ(x) =
{

0 x < 0,
1 x ≥ 0.

The Fourier Transform of the βn(x)’s can be computed
using the convolution theorem:

βn(x) = β0∗...∗β0(x), n+1−times ⇒ β̂n(w) = (β̂0(w))n+1.

From the fact that β̂0(w) = e−iw/2−eiw/2

−iw , we get that
β̂n(w) = ( sin(w/2)

w/2 )n+1.

B. Interpolating Splines

Spline functions are piecewise polynomials connected in a
smooth way at the points xk’s, called knots . A degree “n”
spline corresponds to a degree n polynomial in each of the
segments determined by the knots. In the interpolation process,
the differentiability conditions imposed to the approximation
allow the calculation of the n + 1 coefficients for the polyno-
mials in each segment. So, we have the following:

Definition: Let {xi} be a decreasing or increasing set of
real numbers, where a = inf({xi}) and b = sup({xi}). If
n is an integer ≥ 2, s(x) is a spline function of order n or
degree n− 1 with knots {xi}, if:

(i) s(x)|[xi,xi+1] ∈ Pn−1, i.e., s(x) constrained to the
interval [xi, xi+1] is a polynomial of at most degree n− 1.

(ii) s(x) ∈ Cn−2(a, b).
(iii) Additionally, if the number of knots is finite and

s(k)(a) = s(k)(b), k = 0, 1, . . . , n − 2, s(x) is called a
periodic spline.

If g(x) is a function defined in the interval [a, b], s(x) will
be its interpolating spline if it satisfies s(xi) = g(xi), ∀i.

We will call Sn
h , the generic space of polynomial splines of

order n, where n stands for the degree of the polynomials in
each segment and h the spacing between knots, that is,

Sn
h = {s ∈ L2(R); s ∈ Cn−1, s|Ik

∈ Pn, k ∈ Z},

where Ik = [xk, xk+h) if n is odd, and Ik = [xk−h/2, xk+
h/2) if n is even.

Interpolating Splines are uniquely determined by their B-
splines expansion; in the case of equally spaced knots, this
expansion is given by

s(x) =
∑

k∈Z

c(k)βn(x− k),

with unique coefficients c(k). In the case of polynomials
of degree less or equal to one, the relation between the
sample points and the coefficients is simple and given by
c(k) = s(k). For n ≥ 2, it was introduced in [17] an efficient
technique using digital filtering for the computation of the
coefficients. In order to describe this technique we need some
additional notation. The discrete B-spline kernel of degree n,
expanded by a factor m is defined by a sequence of values that
correspond to equidistant samples of the B-spline of degree n,
expanded by a factor of m, that is

bn
m(k) = βn(x/m)|x=k.

Once defined bn
m(k), we denote by Bn

m(z) its z transform; so

Bn
m(z) =

∑

k∈Z

bn
m(k) z−k.

The interpolation condition for the approximation by splines
at integer values corresponds to:

s(k) =
∑

l∈Z

c(l)βn(x− l).

that can be rewritten as

s(k) = (c ∗ bn
1 )(k).

We denote by “(bn
1 )−1” the inverse convolution operator

defined through the z transform:

(bn
1 )−1 → 1/Bn

1 (z),

that is, (bn
1 )−1 is the one whose z transform corresponds to

the inverse of Bn
1 (z). In the z space, we have that S(z) =

C(z) Bn
1 (z), applying the convolution theorem. Therefore,

C(z) = S(z) [ 1
Bn

1 (z) ] and we obtain the following expression
for the coefficients,

c(k) = [s ∗ (bn
1 )−1](k).

It is worth mention that the previous procedure is not anly
stable and fast, but also very easy to implement [17].

Substituting the last expression in s(x), we obtain,

s(x) =
∑

k∈Z

[s ∗ (bn
1 )−1](k) βn(x− k),

or, equivalently,

s(x) =
∑

k∈Z

s(k) ηn(x− k),

where ηn(x) = [(bn
1 )−1 ∗ βn](x) is called the Cardinal

Spline of order n.
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III. NEW SPLINE BASED PSEUDOFILTERS

Our goal is to derive recontruction methods of the point
values of f from a finite number of Fourier coefficients
{f̂k}N/2−1

k=−N/2. In our presentation of the new spline filters,
for the sake of simplicity, we will assume first that f has a
single jump at x = z ∈ [0, 1].

We start describing the zeroth degree method, then the first
degree method and finally the general formula for splines
filters of any given degree. The reason for this is that this
sequence could help the reader to understand how it is
possible to build algorithms for any degree of approximation
(accuracy). Algorithm 1, 2 and 3 give exact reconstructions
for piecewise constant functions, piecewise linear splines and
piecewise splines of second degree respectively.Also, for the
sake of better understanding, the descriptions of the cases
when the discontinuity point belongs to the mesh and when it
does not are presented separately.

We denote by βn
h the symmetric spline of order n defined

by,

βn
h (x) =

1
h

βn(
x

h
).

Its Fourier transform is given by :

β̂h
n
(w) = [2 sin(w

h

2
)/wh]n+1.

A. Zeroth Degree Approximation

Uniform Mesh

Let ηi = xi+xi+1
2 and fi = f(ηi) for i = 1, . . . , N − 1.

We define the approximation by a zeroth degree polynomial
of the function f in [0, 1] as:

p
(0)
f (x) = h

N−1∑

j=0

f(ηj) β0
h(x− ηj).

So, in each interval [xi, xi+1], the value of the polynomial
is constant and equal to the function’s value at the mid point
of the interval. The Fourier coefficients of this polynomial are
given by

(p̂(0)
f )

k
= h

N−1∑

j=0

f(ηj) (β̂h
0
)k e−i2πk(xj+h/2),

= β̂0(kh) e−iπkh h

N−1∑

j=0

f(ηj) e−i2πkxj ,

= [
sin(πkh)

πkh
] e−iπkh f̃k.

When the discontinuity points of f are the same as the
knot points, then the values of f̂k can be approximated by the
Fourier coefficients of the interpolating polynomial of zeroth
degree. So, if the gj’s are the approximations of the exact
values of the function f , we have that:

f̂k ≈ [
sin(πkh)

πkh
] e−iπkh g̃k.

Therefore the approximations for the values of f at the
points ηj can be calculated by applying an Inverse Discrete
Fourier Transform (IDFT):

gj = (IDFT ){[ πkh

sin(πkh)
] eiπkh f̂k}j j = 0, 1, . . . , N − 1.

This gives the expression of the zeroth degree filter for the
reconstruction formula:

σ
(0)
k = [

πkh

sin(πkh)
] eiπkh, k 6= 0 and σ

(0)
0 = 1. (11)

So, the formula for the reconstruction in the Fourier space
for the discontinuity points that coincide with the mesh points
is given by:

g̃k = σ
(0)
k f̂k, (12)

and the pointwise reconstruction of f could be obtained
through an Inverse Fast Fourier Transform (IFFT).

Nonuniform Mesh
When the mesh points do not coincide with the knots, the
formula should be corrected with a term that comes from
the substitution of the uniform mesh by a nonuniform one
that includes the discontinuity point as a knot, as in [24]. In
order to obtain the new fromula, let z 6⊂ {x0, . . . , xN} be the
discontinuity point and let xqz be the closest point to z in
the uniform mesh. The new nonuniform mesh is obtained by
substituting xqz by z, i.e.: {x0, . . . , xqz−1, z, xqz+1, . . . , xN}.
In the new resulting subintervals (xqz−1, z) and (z, xqz+1) we
define

fqz−1 = f(
xqz−1 + z

2
) and fqz = f(

xqz+1 + z

2
).

The new zeroth degree polynomial approximating the function
in the nonuniform mesh is given by

p(0)(x) = h

N−1∑

j=0

fj β
(0)
h (x− ηj) + (fqz−1 − fqz ) χ[xqz ,z].

where χI(x) is the characteristic function of the interval I:

χI(x) =
{

1 for x ∈ I,
0 otherwise .

Taking into account that

p(0)(x) = h

N−1∑

j=0

fj β
(0)
h (x− ηj)

−hfqz−1 β
(0)
h (x− ηqz−1)− hfqzβ

(0)
h (x− ηqz )+

+fqz−1 χ[xqz−1,z] + fqz χ[z,xqz+1],

in the Fourier space we get

f̂k ≈ p̂
(0)
k = β̂

(0)
kh e−iπkh f̃k + (fqz−1 − fqz ) Â

(0)
k (z),

where Â
(0)
k (z) = (χ̂[xqz ,z])k =

∫ z

xqz

e−i2πkxdx.

As before, the reconstructed point values are denoted by gj

and the reconstruction formula in the Fourier space is given
by:
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g̃k = σ
(0)
k (f̂k + [g](z) Â

(0)
k (z)), (13)

where [g](z) = (gqz −gqz−1) denotes the approximation of
the jump amplitude of f at the point z. The values of {gj}N−1

j=0

are obtained through the IDFT:

gj = IDFT{σ(0)
k (f̂k + [g](z) Â

(0)
k (z))}j ,

The generalization of the reconstruction formula for L dis-
continuity points is straightforward. These L points substitute
the closest ones in the mesh and the corresponding expression
in the Fourier space is given by:

g̃k = σ
(0)
k (f̂k +

L∑

l=1

[g](zl) Â
(0)
k (zl)),

So, the reconstruction formula for L points is the following:

gj = f
(0)
j +

L∑

l=1

[g](zl) a
(0)
j,l , j = 0, 1, . . . , N − 1, (14)

where f
(0)
j = IDFT{σ(0)

k f̂k}j and a
(0)
j,l =

IDFT{σ(0)
k Â

(0)
k (zl)}j .

From (14), it is clear that, to obtain approximations for the
point values of the function, it is necessary the knowledge
of the discontinuities {zl}L

l=1 as well as their amplitudes.
Methods for this computation can be found in [22]. Observe
that the {[g](zl)}L

l=1 can be obtained by solving an L × L
linear system, because if we consider in (14) j = qr and
j = qr − 1, we have that:

gqr = f (0)
qr

+
L∑

l=1

[g](zl) a
(0)
qr,l,

gqr−1 = f
(0)
qr−1 +

L∑

l=1

[g](zl) a
(0)
qr−1,l.

And for r = 1, 2, . . . , L,

[g](zr)−
L∑

l=1

(a(0)
qr,l − a

(0)
qr−1,l) [g](zl) = f (0)

qr
− f

(0)
qr−1.

These equations define a linear system for the L unknowns
[g](z1), . . . , [g](zL).
Summarizing, we describe next the zeroth degree
reconstruction method for the nonuniform mesh in the
following algorithm (ifft will denote the Inverse Fast Fourier
Transform).

Algorithm 1
Given N Fourier coefficients {f̂k}N/2−1

k=−N/2 and L discontinuity
points {z1, . . . , zL},

Step 1: Compute

f
(0)
j = ifftj{σ(0)

k f̂k}, for j = 0, . . . , N − 1,

a
(0)
j,l = ifftj{σ(0)

k A
(0)
k (zl)}, for j = 0, . . . , N−1, l = 1, . . . , L.

Step 2: Solve for { [g](zl)}L
l=1 the linear system,

[g](zr) +
L∑

l=1

(a(0)
qr,l − a

(0)
qr−1,l) [g](zl) = f (0)

qr
− f

(0)
qr−1,

for r = 1, . . . , L.

Step 3: Compute,

gj = f
(0)
j +

L∑

l=1

[g](zl) a
(0)
j,l , for j = 0, . . . , N − 1.

The computational cost of the algorithm is low because only
N(2L + 1) complex multiplications are necessary plus L + 1
applications of the FFT.

We derive next the first degree filter and the corresponding
reconstruction formula.

B. First Degree Approximation

Let xj = j
N , and f+

j = f(x+
j ) = lim

x→x+
j

f(x), f−j =

f(x−j ) = lim
x→x−j

f(x). {xql
}L

l=1 are the L points of the mesh

closest to the discontinuity points {zl}L
l=1.

Using the saw function, we introduce for each zl a new
piecewise smooth function with support localized in the in-
terval (xql−1, xql+1) that we denote by A1

zl
(x) and has a

unique discontinuity point at x = zl.

A1
zl

(x) =





(xql−1 − x)/2h for x ∈ [xql−1, zl],
(xql+1 − x)/2h for x ∈ (zl, xql+1].

0 otherwise.

The value of the jump amplitude at that point is given
by [A1

zl
](zl) = A1

zl
(z+

l ) − A1
zl

(z−l ) = 1, and the k-th
corresponding Fourier coefficient by ,

(Â1
zl

)k =
e−i2πkzl

i2πk
+

e−i2πkxql

i2πk
(
sin(2πkh)

2πkh
).

This is a very useful function because it allows the con-
struction of another continuous function u(x) associated with
f(x). That is,

f(x) = u(x) +
L∑

l=1

[f ](zl) A1
zl

(x).

The function u(x) is not only continuous, but as regular as
f in the intervals not containing discontinuity points, that is,
for x ∈ [0, 1] −

⋃

z∈Z

[xqz−1, xqz+1]. It is continuous because

[u] (zr) = [f ](zr)−
L∑

l=1

[f ](zl) [A1
zl

](zr)

= [f ](zr)−
L∑

l=1

[f ](zl) δl,r = [f ](zr)− [f ](zr) = 0.

Now denote by pn+
u (x) the degree n interpolator of

the function u(x) at the points (xj , u
+(xj)), where

u+(xj) = f+
j −

L∑

l=1

[f ](zl) A1
zl

(xj).
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Observe that for each l, u(z+
l ) = u(z−l ) =

[f(z+
l )(z−xql−1)+f(z−l )(xql+1−z)]

2h .
The representation of the polynomial pn+

u (x) in the B-spline
basis, for n = 1 corresponds to:

p1+
u (x) = h

N−1∑

j=0

u(xj) β1
h(x− xj).

Replacing the values u(xj) in the expression above gives,

p1+
u (x) = h

N−1∑

j=0

f+
j β1(x− xj)−

L∑

l=1

[f ](zl)

h
∑N−1

j=0 A1
zl

(xj) β1
h(x− xj),

The first part of the above expression will be denoted by
p1

f+(x), which corresponds to the first degree interpolating
spline at the points (xj , f

+(xj)). So, the k-th Fourier coeffi-
cient is given by:

(p̂1+
u )k = (p̂1

f+)k −
L∑

l=1

[f ](zl)
N−1∑

j=0

A1
zl

(xj) β̂1
kh e−i2πkxj

= h

N−1∑

j=0

f+
j β̂1

kh e−i2πkxj −
L∑

l=1

[f ](zl) β̂1
khh

∑N−1
j=0 A1

zl
(xj) e−i2πkxj = β̂1

kh (f̃+
k −

L∑

l=1

[f ](zl) (Ã1
zl

)k ),

where (Ã1
zl

)k corresponds to the DFT of the sequence
{A1

zl
(xj)}N−1

j=0 and β̂1
kh = ( sin(πk/N)

πk/N )2.

Using the fact that f̂k = ûk +
L∑

l=1

[f ](zl) (Â1
zl

)k, and

approximating ûk by (p̂1+
u )k, we have that:

f̂k ≈ (p̂1
u)k +

L∑

l=1

[f ](zl) (Â1
zl

)k,

= β̂1
kh (f̃+

k −
L∑

l=1

[f ](zl) (Ã1
zl

)k ) +
L∑

l=1

[f ](zl) (Â1
zl

)k,

= β̂1
kh f̃+

k +
L∑

l=1

[f ](zl) ((Â1
zl

)k − β̂1
kh (Ã1

zl
)k ).

This provides us with a filter and a reconstruction formula
for the point values of f . If we call, as before, gj the
reconstructed values of f(x+

j ), then

g̃k = σ
(1)
k f̂k −

∑L
l=1 [f ](zl) (σ(1)

k (Â1
zl

)k − (Ã1
zl

)k ),
k = −N/2, . . . , 0, . . . , N/2− 1,

where

σ
(1)
k = 1/β̂1

kh =
{

( πkh
sin(πkh) )

2 k 6= 0,

1 k = 0.

Observe that the magnitude of the jumps could be obtained
by solving the linear system obtained from the N -periodicity
of the DFT. Because, from g̃k = g̃k+N , we can deduce that

β̂
(1)
k β̂

(1)
k+N g̃k = β̂

(1)
k β̂

(1)
k+N g̃k+N ,

and using the N -periodicity of (Ã1
zl

)k we obtain the linear
system

L∑

l=1

[f ](zl)[β̂
(1)
k+N Âzl

k − β̂
(1)
k Âzl

k+N ] = β̂
(1)
k f̂k+N − β̂

(1)
k+N f̂k,

k = k1, . . . , kL.

So, assuming known the location of the discontinuity points
and their amplitudes, we have the following reconstruction
algorithm.

Algorithm 2:
Given the L discontinuity points z = (z1, . . . , zL) of the
function f and its Fourier coefficients {f̂k}N/2−1

k=−N/2:

Step 1: Compute f
(0)
j = ifftj(σ

(1)
k f̂k).

Step 2: Compute

(Â1
zl

)k =
e−i2πkzl

i2πk
+

e−i2πkxql

i2πk
(
sin(2πkh)

2πkh
,

k = 0, 1, . . . , N − 1, and l = 1, 2, . . . , L.

Step 3: Solve the (L × L) linear system to compute the
jumps amplitude: [f ](z1), [f ](z2), . . . , [f ](zL),
L∑

l=1

[f ](zl) [β̂(1)
k+N Âzl

k −β̂
(1)
k Âzl

k+N ] = β̂
(1)
k f̂k+N−β̂

(1)
k+N f̂k,

for k = k1, . . . , kL.

Step 4: Apply the reconstruction formula in the Fourier
space,

g̃k = σ
(1)
k f̂k −

L∑

l=1

[f ](zl) (σ(1)
k (Â1

zl
)k − (Ã1

zl
)k ),

k = −N/2, . . . , 0, . . . , N/2− 1.

Step 5: Apply the IFFT ,

gj = ifftj(g̃k).

The vector {gj}N−1
j=0 contains the approximations for the

point values of f at the mesh knots.

C. General Case: n ≥ 2
The case n ≥ 2 differs from the previous ones because the

coefficients of the interpolating spline no longer correspond
to the values of the interpolated function at the mesh points.
Now they are given by the discrete convolution of these
values with the filter. In what follows we present a derivation
of the general filter for any value of n.

As before pn
u(x) will be the interpolating spline of degree

n of the function u(x) at the points (xj , uj). So,

pn
u(x) = h

∑

l∈Z

c(l) βn
h (x− xl),
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where c(l) = [u ∗ (bn
1 )−1](l) and (bn

1 )−1(l) is the inverse
z Transform of 1/Bn

1 (z). The k-th Fourier coefficient of this
polynomial is given by:

(p̂n
u)k = h

∑

l∈ Z

c(l) β̂n
kh e−i2πkxl ,

= h β̂n
kh

∑

l

c(l) z−l
k ; zk = ei2πk/N

= h β̂n
kh C(z)|z=zk

,

where C(z) denotes the z Transform of the sequence c(l).

Using the fact that the z Transform of a convolution is the
product of the z Transforms we get that:

(p̂n
u)k = h β̂n

kh [U(z)
1

Bn
1 (z)

)]|z=zk
,

Then it holds,

(p̂n
u)k ≈ β̂n

kh

Bn
1 (zk)

ũk.

Taking into account the fact that (p̂n
u)k is an approximation

of ûk we obtain,

ûk ≈ β̂n
kh

Bn
1 (zk)

ũk,

So, we have a general expression for the filters when n ≥ 2,

σ
(n)
k =

Bn
1 (zk)

β̂n
kh

. (15)

The general expression for the z Transform of βn(x) is
given by

Bn
1 (ω) = bn

1 (0) +
[n/2]∑

k=1

2bn
1 (k) cos(2πωk).

where bn
1 (k) are the coefficients of the B-spline of degree n

and ω corresponds to any given frequency. So, the general
form of the degree n filters is given by,

σ
(n)
k = (β̂(n)

kh )−1 [bn
1 (0) +

[n/2]∑

k=1

2bn
1 (k) cos(2πωk)].

In order to establish a formula for the case n = 2, assuming
known the locations and amplitudes of the discontinuities of
the function and its derivatives, we proceed as before. We
know that, in this case, f has the following form:

f(x) = u(x) +
∑L

l=1 [f ](zl) A1
zl

(x) + [f ′](zl) A2
zl

(x),

where A1
zl

(x) corresponds to the function previously defined
for the first degree method and A2

zl
(x) is defined by:

A2
zl

(x) =





x(x−xql−1)(z−xql+1)

2hz for xql−1 < x ≤ z ,
x(x−xql+1)(z−xql−1)

2hz for z < x < xql+1 ,
0 otherwise.

We observe that this function satisfies A2
zl

(xql−1) =
A2

zl
(xql+1) = 0, [A2

zl
](z) = 0 and [A2′

zl
](z) = A2′

zl
(z+) −

A2′
zl

(z−) = (z−xql−1)(2z−xql+1)

2hz − (z−xql+1)(2z−xql−1)

2hz = 1.

The properties of this auxiliary function, together with
the previously defined one A1

zl
(x) make u(x) a continuous

function because,

[u](zr) = [f ](zr)−
L∑

l=1

[f ](zl) [A1
zl

](zr) + [f ′](zl) [A2
zl

](zr),

= [f ](zr)−
L∑

l=1

[f ](zl) δlr = 0.

Also observe that [u′](zr) = 0. At the subintervals not con-
taining discontinuity points, that is, at [0, 1]−⋃

l[xql−1, xql+1],
the function u is as regular as f .

Using the function u(x), the approximation given by the
second degree spline in the Fourier space is given by

ûk ≈ (p̂2
u)k = τ

(2)
k ũk, τ

(2)
k = 1/σ

(2)
k .

Using this approximation for n = 2 we have that,

f̂k = ûk +
L∑

l=1

[f ](zl) (Â1
zl

)k + [f ′](zl) (Â2
zl

)k

≈ τ
(2)
k ũk +

L∑

l=1

[f ](zl) (Â1
zl

)k + [f ′](zl) (Â2
zl

)k,

= τ
(2)
k h

N−1∑

j=0

e−i2πkxj (f+
j −

L∑

l=1

[f ](zl) A1
zl

(xj) +

+[f ′](zl)A2
zl

(xj) ) +
L∑

l=1

[f ](zl) (Â1
zl

)k + [f ′](zl) (Â2
zl

)k,

and the approximation,

f̂k ≈ τ
(2)
k f̃+

k −∑L
l=1 [f ](zl) (τ (2)

k (Ã1
zl

)k − (Â1
zl

)k)
+[f ′](zl) (τ (2)

k (Ã2
zl

)k − (Â2
zl

)k).

This gives rise to the second degree formula

g̃+
k = σ

(2)
k f̂k −

∑L
l=1 [g](zl) (σ(2)

k (Â1
zl

)k − (Ã1
zl

)k )+
+ [g′](zl) (σ(2)

k (Â2
zl

)k − (Ã2
zl

)k ),

where, as before, the {g+
j }

N−1

j=0
are the approximations pro-

vided by the method to the values of f(x+
j ) for j =

0, 1, . . . , N−1, after applying the IDFT to the last expression.
In the same way as the first degree case, that is, using the

N -periodicity of the DFT, we can build a linear system that
gives the approximations for the amplitudes of the jumps at
the singular points. Therefore, from the fact that g̃+

k+N = g̃+
k ,

we have that for k = k1, . . . , k2L,

σ
(2)
k+N f̂k+N − σ

(2)
k f̂k =

L∑

l=1

( σ
(2)
k+N Â1

k+N,zl
− σ

(2)
k Â1

k,zl
) [g](zl)+

+( σ
(2)
k+N Â2

k+N,zl
− σ

(2)
k Â2

k,zl
) [g′](zl). (16)
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It follows the algorithm that corresponds to the second
degree filtering

Algorithm 3:
Given the Fourier coefficients {f̂k}N/2−1+L

k=−N/2−L and the L
discontinuity points of the function and its derivatives:

Step 1: Compute f
(2)
j = ifftj (σ(2)

k f̂k),

a
(1)
jl (zl) = ifftj (σ(2)

k Â1
k,zl

− Ã1
k,zl

),

a
(2)
jl (zl) = ifftj (σ(2)

k Â2
k,zl

− Ã2
k,zl

).

Step 2: Approximate the jumps [g](zl) and [g′](zl)
through solving the linear system (16).

Step 3: Compute the approximations of the point values of
f using the reconstruction formula,

gj = f
(2)
j −

L∑

l=1

[g](zl) a
(1)
jl (zl) + [g′](zl) a

(2)
jl (zl).

Remark 1: In all the examples considered, the discontinuity
points of the function and its derivative are the same.
Approximations of the discontinuity points of f ′ could
be obtained using the same algorithm that determines
the approximations for the discontinuities of f , but
modifying the Fourier coefficients in the following way:
d̂fk = ikπf̂k +

∑L1
l=1[f ](zl)e−ikπzl for k 6= 0, and

d̂f0 = −∑L1
l=1[f ](zl).

Remark 2: The choices of A0
zl

, A1
zl

and A2
zl

are not unique,
but are the simplest ones for the calculations.

IV. NUMERICAL EXAMPLES

In this section, we show the results obtained when applying
the new filters to the following functions.

f1(x) =
{

x2 x ∈ [0, 1],
0 x 6∈ [0, 1].

f2(x) =
{

x2 x ∈ [0, 0.5 + 1/256],
cos(x) x 6∈ [0, 0.5 + 1/256].

f3(x) =





exp 5x 0 ≤ x ≤ 0.3,
2 0.3 < x ≤ 0.5,

−4 cos(πx) 0.5 < x ≤ 1,

Notice that f1 is analytic in the interval (0, 1) but f1(1) 6=
f1(0). Figures 1-3 show, for each function, the graphics of the
logarithm of the pointwise error of the reconstruction for each
of the algorithms described in the previous sections. Also we
show comparisons with the errors obtained when using the
polynomial filters of [24]. The reconstructions are not shown
because of the high resolution obtained, that does not allow
a visual comparison. In all cases N = 64. For the piecewise
quadratic function, as expected, accuracy was the order of the
machine precission when using the second degree spline filter
(Figure 1(c)), better than accuracy obtained by zeroth and first

0 0.5 1
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−3.5
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−2.5

(a)
0 0.5 1
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−2.5

(b)
0 0.5 1

−14.5

−14

−13.5

−13

−12.5

−12

−11.5

−11

−10.5

(c)

Fig. 1. Log10 of the reconstruction error for f1: (a) zeroth degree spline
filter (b) first degree polynomial/spline filter (c) second degree spline filter
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(a)
0 0.2 0.4 0.6 0.8 1
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−2.5

(b)

0 0.2 0.4 0.6 0.8 1
−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

(c)
0 0.2 0.4 0.6 0.8 1

−6

−5.5
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(d)

Fig. 2. Log10 of the reconstruction error for f2: (a) zeroth degree spline
filter (b) first degree polynomial filter (c) first degree spline filter (d) second
degree spline filter

degree spline filters (Figure 1(a-b)). The error for the first
degree polynomial and spline filters were indistinguishable.
Comparison of these methods with the direct IFFT approach
(with different filters) appeared in [24] and [21].

For f2 the reconstruction error for the second degree spline
filter (Figure 2(d)) looks significantly lower than the others.
The same can be said for f3; this is clearly seen in Figure
3(a-d).

For a global comparison we define the Mean Square Error
(MSE) as

√√√√ 1
N

N−1∑

j=0

(fj − gj)
2
.

The gj’s correspond to the point values of the function.
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Fig. 3. Log10 of the reconstruction error for f3: (a) zeroth degree spline
filter (b) first degree polynomial filter (c) first degree spline filter (d) spline
filter degree two

N σ
(0)
k σ

p(1)
k σ

sp(1)
k σ

sp(2)
k

64 4.0675e-004 — 4.0619e-005 1.5600e-012
128 1.4535e-004 — 1.0149e-005 5.5160e-013
256 5.1663e-005 — 2.5539e-006 1.9503e-013

TABLE I
MSE FOR THE RECONSTRUCTION OF THE FUNCTION f1

Tables I, II and III show the MSE’s for the three functions
and three different values of N . σ

(0)
k denotes the zeroth degree

method, σ
p(1)
k the first degree polynomial method, σ

sp(1)
k the

first degree spline method, and σ
sp(2)
k the second degree spline

method. The results obtained are consistent with the estimates
shown in the Appendix.

We define the signal-to-noise ratio (SNR) as

SNR =

√√√√
∑

j(fj − f̄)2∑
j(ξj − ξ̄)2

, (17)

where f̄ = 1
N

∑
j fj is the signal average and η̂ = 1

N

∑
j ηj

the corresponding noise.

N σ
(0)
k σ

p(1)
k σ

sp(1)
k σ

sp(2)
k

64 4.8671e-004 2.3148e-004 3.4991e-004 2.9100e-006
128 3.2773e-004 1.6907e-004 1.6611e-004 3.4484e-007
256 5.3404e-005 2.0768e-006 2.0420e-006 9.2083e-008

TABLE II
MSE FOR THE RECONSTRUCTION OF THE FUNCTION f2

N σ
(0)
k σ

p(1)
k σ

sp(1)
k σ

sp(2)
k

64 0.0157 8.0745e-004 6.1055e-004 8.2598e-005
128 0.0091 2.3852e-004 1.3852e-004 1.0258e-005
256 0.0015 5.0275e-005 3.5651e-005 2.7998e-006

TABLE III
MSE FOR THE RECONSTRUCTION OF THE FUNCTION f3
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Splines second degree reconstruction method with noisy coefficients

Fig. 4. Pointwise reconstruction error log10|g(x) − f1(x)| with N=128,
g(x) is the second degree splines reconstruction formula. SNR=14
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Splines second degree reconstruction method with noisy coefficients

Fig. 5. Pointwise reconstruction error log10|g(x) − f2(x)| with N=128,
g(x) is the second degree splines reconstruction formula. SNR=22

Figures 4-6 show the errors for the second degree spline
filter applied to the three functions with the respective SNR’s
(around 20%). With those levels of errors, the results deterio-
rate significantly as expected for all methods trying to perform
this task, but still better for higher degree filters.

V. CONCLUSION

We have presented general spline filters that are able to
reconstruct piecewise smooth functions from a finite number
of their Fourier coefficients with any given accuracy, assuming
known the discontinuity points and their amplitudes. These
results solve a problem posed in a previous paper [24]. The
natural continuation is the development of iterative methods
based on the new filters to detect the discontinuities as in
[22]. This is the subject of a forthcoming article. We are
now working on extensions of our approach to a broader
family of functions with discontinuous derivatives as well
as on applications where data is given by two dimensional
Fourier coefficients. Another research direction (suggested by
a reviewer) is the possibility of using other interpolating
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Fig. 6. Pointwise reconstruction error log10|g(x) − f3(x)| with N=128,
g(x) is the second degree splines reconstruction formula. SNR=21

kernels like, for example, those generated by wavelets, as in
[20].

APPENDIX
ERROR ESTIMATES

In what follows we assume that
• f has at most a finite number L ≥ 0 of jumps,
{z1, . . . , zL}.

• If Z = {z1, . . . , zL} denotes the set of jumps, then for
x ∈ [0, 1] and x 6∈ Z, f ′(x), f ′′(x), f ′′′(x) exist and are
bounded, that is, : sup

x∈[0,1]

|f(x)| < C, sup
x 6∈Z

|f ′(x)| <

C1, sup
x6∈Z

|f ′′(x)| < C2, and sup
x6∈Z

|f ′′′(x)| < C3 for

some constants C, C1, C2 and C3.
• If L > 1, jumps should be enough separated, i.e.,

N min
r 6=l

dql,qr À 1, where ql denotes the subindex of

the mesh point zl and

djl = mink∈{−1,0,1}||xj − xl − k| − 1
2N

|.

We present error estimates for the reconstruction methods
using degree 2 splines that can be generalized to higher
degrees. The estimates will be obtained in the Fourier space.
So we will estimate

ê
(2)
k = f̂k − (p̂2

f )
k

= ûk − (p̂2
u)k.

where p2
u(x) corresponds to the spline interpolator of degree

2 of the continuous function u(x). Therefore,

ê
(2)
k =

∫ 1

0
(u(x)− p

(2)
u (x))e−i2πkx dx.

Because of the fact that the approximation given by p
(2)
u (x)

is an interval approximation, we consider the difference
d2(x) = u(x) − p

(2)
u (x), for each subinterval [xj , xj+1], for

j = 0, 1, . . . , N−1. Let z be a discontinuity point and xqz the
closest point to z in the uniform mesh. For those subintervals
without discontinuity points it is possible to assume that the
function u is regular enough, so, the following estimate given

by the approximation error for the interpolating splines of
degree 2 are valid:

max
x∈(xj ,xj+1)/j 6=qz,qz−1

|d2(x)| ≤ K C3h
3,

where K is a constant (an explanation for the origin of this
constant can be found in [13] and [5] ). So, we have that,

|ê(2)
k | = |

N−1∑

j=0,j 6=qz,qz−1

∫ xj+1

xj

d2(x) e−i2πkx dx+

+
∫ xqz+1

xqz−1

d2(x) e−i2πkx dx|,

≤ (N − 2)KC3h
4 + |

∫ xqz+1

xqz−1

d2(x) e−i2πkx dx|.

It remains now to find bounds for the second part of the
expression. In order to do this we will assume that the point
z ∈ (xqz

, xqz+1); so, it is still possible to assume the regularity
of the function for the interval (xqz−1, xqz ), thus obtaining

|
∫ xqz+1

xqz−1

d2(x) e−i2πkx dx| ≤ KC3h
4+

|
∫ xqz+1

xqz

d2(x) e−i2πkx dx|.

For x ∈ (xqz , xqz+1), the approximation given by the
degree two splines can be written as p2

u(x) = Lqz (x) +
(x − xqz )(x − xqz+1) Mq, where Lqz (x) corresponds to
the linear approximation of the function u(x) at the interval
(xqz , xqz+1), and Mq = [xqz+1, xqz , x]u is the second order
divided difference of the function u(x) , that is

Mq = 1
(x−xqz ) [

p2
u(x)−u(xqz )

(x−xqz ) − u(xqz )−u(xqz+1)
(xqz−xqz+1)

].

p2
u(x) ∈ C1[0, 1], so, from the continuity condition for the

first derivative at x = xqz , we get

L′qz−1(x) + 2(x− (xqz−1 + xqz )
2

) Mq−1 =

L′qz
(x) + 2(x− (xqz+1 + xqz )

2
) Mq.

And we obtain that,

hMq−1 + (x− xqz )Mq =

u(xqz+1)− 2u(xqz ) + u(xqz−1)
h2

(x−xqz )+(xqz+1−x)Mq−1,

then,

Mq =
u(xqz+1)− 2u(xqz ) + u(xqz−1)

h2
−Mq−1.
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∆2h =
1
h2
{(u(xqz+1)− u(z)) + (u(z)− u(xqz

))+

+(u(xqz−1)− u(xqz ))}
=

1
h2
{u′(z+)(xqz+1 − z) +

1
2
u′′(z+)(xqz+1 − z)2+

+
1
6
u′′′(ξ1)(xqz+1 − z)3 − (u′(z−)(xqz

− z)+

+
1
2
u′′(z−)(xqz

− z)2 +
1
6
u′′′(ξ2)(xqz

− z)3)

−(h u′(xqz
)− 1

2
u′′(xqz

) h2 +
1
6
u′′′(ξ3) h3)},

=
1
h2
{(xqz+1 − z) [u′](z) + h (u′(z−)− u′(xqz

))+

+
1
2
(u′′(z+)(xqz+1 − z)2 − u′′(z−)(xqz − z)2+

+u′′(xqz ) h2) +
1
6
(u′′′(ξ1)(xqz+1 − z)3−

−u′′′(ξ2)(xqz − z)3 − u′′′(ξ3) h3)},
=

1
h2
{(xqz+1 − z) [u′](z) + h (u′′(z−)(xqz − z)+

+
1
2
u′′′(ξ4)(xqz − z)2) +

1
2
(u′′(z+)(xqz+1 − z)2−

−u′′(z−)(xqz
− z)2 + u′′(xqz

) h2)+

+
1
6
(u′′′(ξ1)(xqz+1 − z)3−

−u′′′(ξ2)(xqz − z)3 − u′′′(ξ3) h3)},

where we have used the following expressions,

u(xqz+1) = u(z) + u′(z+)(xqz+1 − z)+
1
2

u′′(z+)(xqz+1 − z)2 +
1
6

u′′′(ξ1)(xqz+1 − z)3;

u(xqz ) = u(z) + u′(z−)(xqz − z) +
1
2

u′′(z−)(xqz − z)2+
1
6

u′′′(ξ2)(xqz − z)3);

u(xqz−1) = u(xqz )− h u′(xqz ) +
1
2

u′′(xqz ) h2+

+
1
6

u′′′(ξ3) h3;

where ξ1 ∈ (z, xqz+1), ξ2 ∈ (xqz , z) and ξ3 ∈ (xqz , x).

Assuming that [u′](z) = 0, we have that, |∆2h| ≤
2C2 + hC3, then |Mq| ≤ 3C2 + hC3.

Considering now the values of x at the subinterval [xqz , z),
we will estimate the difference d2(x) = u(x)− p2

u(x) :

d2(x) = u(x)− Lqz (x)− (x− xqz )(x− xqz+1) Mq

At the subinterval [xqz , z), u(x) is regular enough and the
following inequalities are valid:

u(x) = u(z) + u′(z−)(x− z) +
1
2

u′′(θ1)(x− z)2;

for θ1 ∈ (x, z),
u(xqz+1) = u(z) + u′(z+)(xqz+1 − z)+

+
1
2

u′′(θ2)(xqz+1 − z)2; for θ2 ∈ (z, xqz+1),

u(x) = u(xqz ) + u′(xqz )(x− xqz ) +
1
2

u′′(θ3)(x− xqz )2;

for θ3 ∈ (xqz , x).

So,

u(x)− Lqz (x) =
1
h

[(u(x)− u(xqz+1))(x− xqz )+

+(u(x)− u(xqz
))(x− xqz+1)

=
1
h

[(x− xqz
)(u′(z−)(x− z)− u′(z+)(xqz+1 − z)+

+
1
2

u′′(θ1)(x− z)2 − −1
2

u′′(θ2)(xqz+1 − z)2)+

+(x− xqz+1)(u′(xqz
)(x− xqz

) +
1
2

u′′(θ3)(x− xqz
)2)],

=
1
h

[(x− xqz )(xqz+1 − z) (u′(z−)− u′(z+))+

+(u′(z−)− u′(xqz ))(x− xqz )(x− xqz+1)+

+
(x− xqz )

2
[u′′(θ1)(x− z)2 − u′′(θ2)(xqz+1 − z)2−

−u′′(θ3)(x− xqz
)(x− xqz+1)]],

=
1
h

[(x− xqz
)(xqz+1 − z) [u′](z)+

+u′′(θ4)(xqz − z)(x− xqz )(x− xqz+1)+

+
(x− xqz )

2
[u′′(θ1)(x− z)2 − u′′(θ2)(xqz+1 − z)2−

−u′′(θ3)(x− xqz
)(x− xqz+1)]],

because u′(xqz
) = u′(z−)+u′′(θ4)(x−xqz

); θ4 ∈ (xqz
, z).

Substituting the expression obtained for u(x)−Lqz (x) in d2(x)
we get that,

d2(x) =
1
h

[(x− xqz ) (xqz+1 − z) [u′](z)+

+u′′(θ4) (xqz − z)(x− xqz )(x− xqz+1)+

+
(x− xqz )

2
[u′′(θ1)(x− z)2 − u′′(θ2)(xqz+1 − z)2−

−u′′(θ3) (x− xqz )(x− xqz+1)] ]−
−(x− xqz )(x− xqz+1) Mq.

We have that,

|d2(x)| ≤ h [u′](z) + h2(u′′(θ4) +
1
2
(u′′(θ1) + u′′(θ2)+

+u′′(θ3) ) + h2 Mq,

≤ h [u′](z) +
5
2

C2h
2 + h2(3C2 + hC3) =

11
2

C2h
2 + h3C3.

So, the contribution of d2(x) for the spectral error at this
subinterval is of order O(h3),

|
∫ z

xqz

d2(x) e−i2πkx dx | ≤ 11
4

C2h
3 + O(h4).

Similarly we obtain that, |
∫ xqz+1

z

d2(x) e−i2πkx dx | ≤
R C2h

3.

For the case in which the discontinuity point z ∈
[xqz−1, xqz ], using Lqz−1 instead of Lqz , and proceeding in
the same manner it is possible to obtain a similar estimate. So,
the error estimate, in the presence of L discontinuity points,
for the approximation in the frequency space for the degree 2
method is of order h3:

|ê(2)
k | ≤ (N − 1)KC3h

4 +
11
4

C2h
3 + RC2h

3 + O(h4)

≈ (KC3 + C2(
11
4

+ R))L h3.
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In the same way, for the reconstruction formulas using filters
of higher degrees, say r, it is possible to obtain error estimates
of order hr+1.
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