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1  Why this Circle Fitting Puzzle in a Tutorial?

e Quantitative: CGA at work in engineering setting
e Shows how to use the CGA primitives effectively
e A good example of GA differentiation techniques

e Direct CGA solution is competitive with best speci-
calized solutions

e Shows how anyone is empowered with the right tool

e Solution is directly implementable without CGA
package

e We will learn something about CGA itself (the basis)



2 Motivation: Accurate Fitting of Spatial Circles

FUGRO: Large international company specialized in measurement of geodata.

Focus: Accurate measurement of undersea pipes for construction and maintenance.

s to be modelled.

Money no objection: 1 M€ /day for repairs on the sea floor.

Have enormous 3D point cloud




3 Overview: How to fit a circle to 3D point data?

e Pick the right representation (CGA)

e First focus on sphere fitting

e Solve optimal sphere fitting as an eigenproblem
e (Circle fitting by sphere fitting

e PR: Implement by standard Matlab code

e Evaluation of comparative accuracy



4 Circle definition, in geometry and algebra

We want to fit circles to point data. A circle is the intersection of a sphere and a plane.

There is an algebra that directly implements this definition:
K=0NT.

For the fit, use the geometric algebra of a vector space in which all elements in the fit are basic:
its vectors represent spheres, including planes (spheres of infinite radius) and points (spheres of
zero radius).

This algebra is called CGA (conformal geometric algebra).
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5 First, Let’s Do Optimal Fitting of Spheres

Given N data point vectors p; in n-D, what is the best fitting hypersphere?
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6 CGA Refresher: the Algebra of Spheres, Planes and Points

Recipe for CGA (Conformal Geometric Algebra [Angles 1980, Hestenes 1984)):
e Embed your space R” in R"™! (so Minkowski space of two more dimensions)

e Choose basis with R"*1! with Euclidean part, plus n, and ne for the extra dimensions.
Pick the metric such that n, - n, = Ny - Noe = 0, and n, - Ny = —1.

e A point at location p is represented as the vector

p=n,+p-+ %Hsznoo.

You may think of n, as point at origin, n., as point at infinity.

e This gives an isometric model with squared Euclidean distances as dot products:
1 2
p-q=—3|p—d

For a point, p - p = 0, so points are represented as null vectors.



7 CGA: the Geometry of Spheres, Planes and Points (continued)

e A sphere with center ¢ and radius squared p? is (dually) represented by a vector:
s=c— %,027100.

NowO0=1xz-5 & |x—c|?*=p"

e A plane with normal n through p is (dually) represented as the vector:
T=n+(n-p)ne.

e A circle is the intersection of a sphere and a plane, or of two spheres.
It is (dually) represented as a 2-D subspace using the outer product of geometric algebra:

K=S8/NT =81/ 89.

e Perpendicularity of geometrical elements represented by x and y is algebraically: x -y = 0.
A point p on a sphere s is a small sphere perpendicular to it, so p-s = 0.

e As a true geometric algebra, CGA has a geometric product.

This permits division by vectors and other subspaces. For vectors, 2! = z/(z - x).



8 Distance of Point and Hypersphere

For a dual sphere o = ¢ — %anoo and a point p, the CGA dot product o - p gives a somewhat
strange squared distance measure between point and sphere [Perwass & Forstner 2006], [Rock-

wood & Hildenbrand 2010]:

However, for point p a small signed distance ¢ outside the sphere:

F20-p= i(d%(c,p) —p2) — i((p+ 16])* —p2> ~2p0

Therefore, using p? = o2



9 An Algebraically Natural Approximate Criterion

Good approximation to sum of squares of distances ¢; of
points p; to (dual) hypersphere o with radius p = vV o?:
0; 0;

2 (pi'U)Q/UQZZi 522(1+;+ <%

(This actually contains an automatic bias correction for

)2> ~ Y 67

points inside and outside the sphere, more later!)

So we try to solve in R*™1! given conformal points p;:

25

[IE=3 3

D 1 1 1 L 1 1 L
-1 08 06 04 02 0 0z 04 06 08 1

Find an x that minimizes: L(x) =

Si (py - @)/

1

To unclutter our work we set Plz] = +X; p; (p; - ©) (a symmetric linear function):

N

Find an x that minimizes: L(x)=x"1- Plz].




10 Straightforward Solution by Coordinate-free Differentiation 0,

0 = 0.L(x )
= 0p (¢! Pla])
= —x 1P[ |2~ + Pla™ ] standard GA differentiation
= (—x Plz] + Plx]x) 2~ rearranging by linearity
= (—x Plz] + Plx ] T)x by symmetry of P[]

= 2(Plz]Nx)z~ by definition of outer product
Multiply by the invertible vector %x?’ and rewrite:

Plz] AN x = 0.
This is an eigenproblem! Any solution x, is an eigenvector of the operator
Pl R"M S RYH o L8 p(ps - ).
The eigenvalue is the cost of the solution, i.e. the realized mean of squared distances:
L(x,) =" Ple,) = M-z, = A

Minimize the £ with a real sphere z,: pick A\, as minimal non-negative eigenvalue of P|].
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11  Problem solved: Optimal Sphere Found

The sphere x, = ¢ — %,027%0 minimizing the sum of approzimate squared distances of a set of
conformal points {p;} is the (normalized) eigenvector of minimum nonnegative eigenvalue of the

linear operator P[] = %; p; (pi - [])-
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sphere_fit(50,0.01,0.5) sphere_£fit(100,0.01,0.1)
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12 Optimal Sphere Fitting Solution: the Recipe

Pi
1. Put the IV point data p; in a data matrix [D] with column ¢ equal to [ 1 ] :
slpill?]

Lx, 0 O
2. Make a matrix [P] as [P] = [D] [D|*[M]/N, where [M] = [ o 0 -1 ]
o’ -1 0
3. Solve the eigenproblem for [P], giving minimum eigenvalue A\, and its eigenvector x,.

4. Interpret the solution: normalize the eigenvector [x,] to have [x,],_1 equal to 1.

C
It then relates to the best-fit hypersphere parameters as [z,] = [ 1 ] :
s(llell® = 0%
The first n components of [z.] give center c; then radius p = /|c|> — 2[z4]s0-

This sphere fitting recipe can be implemented in Matlab without any knowledge of CGA.

12



13 The Eigenvectors of [P] Represent Orthogonal Spheres

TTATE

1 il

These spheres intersect orthogonally in circles.

P[] is a symmetric operator, so its

eigenvectors form an orthonormal basis
for Rn+1,1

The eigenvectors represent (n + 2)
orthogonal spheres! Such spheres have
been studied before [Raynor 1934].

ON N+2 MUTUALLY ORTHOGONAL HYPERSPHERES
IN EUCLIDEAN N-SPACE

By G. E. RAYNOR, Lehigh University

1. Introduction. In an interesting paper? N. A. Court has developed many
properties of the circles, spheres and tetrahedra related to the configuration of
five mutually orthogonal spheres.? Such a system of spheres is amazingly pro-
lific in interesting relations and is well worth study on its own account. But in
addition to its intrinsic interest it is of importance in other connections. It

Intersecting the two best orthogonal spheres gives the best circle! (7)
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14 The 5-Sphere Orhtogonal Basis Makes Sense (We Knew This, Sort Of...)

The usual orthonormal basis {ey, e, €3, e,,e_} of R*™1! consists of 3 dual coordinate planes,
and a real and imaginary dual sphere. By a conformal versor (with (") DoF), these can be
transformed into other spheres without affecting their orthogonality.
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15 The Best Fitting Circle is the Intersection of the Best Fitting Spheres

The best fitting sphere takes care of minimizing the ‘radial error’ in the point set.
The next best fitting sphere then minimizes the remaining error, because it is orthogonal to the

first.

Matlab.... Best sphere and best circle in red.

Take Home Message: the best fitting circle is NOT the best sphere cut by the best plane!
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16 Algorithm for Optimal (Hyper-)Circle Fitting

e On the vector basis {ey, - ,€,, N, N}, construct the (n + 2) X (n + 2) matrix [P] =
(D] [D)" [M].

e Solve the eigenproblem for [P], and save the two eigenvectors x; and xo with smallest
non-negative eigenvalues.

e Compute the intersection z; A z9 of the two hyperspheres x; and x».

On the bivector basis {€23, €31, €12 | €01, €02, €03 | €150, €200, €300 | Cono }, this employs an ("5%) x

(n + 2) matrix:

o0 o
Yo [1] -y 0
N\ x| = Lo
[y ] Yo [1] 0 y T
OT Yo Yo >

e Interpret the eigenbivector components as hypercircle parameters (see Appendix).
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17 This Works

circle_£fit(100,0.1,0.2) circle_£fit(50,0.05,0.05)

Black is ground truth circle for noisy point generation; blue is best fit circle.
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18 What Distance Does This Optimize?

Take a circle X in an orthogonal factorization X = o1 A oy with o109 = 0. [Dorst 2014] shows
that the method minimizes the ‘same’ distance formula as spheres:

2
—(p- X)/X* = ~(p- (01 N0w)) /(=0io3) = (p-1)° /o + (- 02)" /3.
Picking the orthogonal factorization in which one of the factors is a plane 7, we get:
—(p- X?/X?=(p-7) /7 + (p-0)*)0”.

This is the sum of the exact squared distance to the carrier plane, plus the approximate squared
distance to the carrier hypersphere. Very reasonable measure to minimize.

Cross section of equidistance lines
of —(p-X)?/X* for circle X (seen
on end).

Figure [Perwass 2009].
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19 The Geometry of Fitting Spheres and Circles (in 3D)

Demonstration in GAViewer: ganew/sphere fit/sphere_eigen(); label(p[1]);
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20 Summary: How to fit a circle to 3D point data?

e Pick the right representation (CGA)

e First focus on sphere fitting

e Solve optimal sphere fitting as an eigenproblem
e (Circle fitting by sphere fitting

e PR: Implement by standard Matlab code

e Evaluation of comparative accuracy
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21 The Fits Are Optimal (Though Not ‘Hyperaccurate’)

e Good overview of 2-D circle fitting methods in [Al-Sharadqah & Chernov 2009].
Our hypersphere is n-D version of 2D circle ‘algebraic fit” from [Pratt 1987].

e Optimal in MSE accuracy: achieves KCR lower bound of variance. Optimal in speed.

e Eispecially: our fit is as optimal as the fit according to geometric least squares.
(which is 20 times slower, due to e.g Levenberg-Marquardt)

e For very large number of points N > 1000, there exists a hyperaccurate fit (see [Al-S&Ch)).
Surprise: it is not geometric least squares, that is biased!

e Elegance: In LA, Pratt fit gives a generalized eigenproblem. In CGA, pure eigenproblem.

e Relationship of circle fit to sphere fit is new.
Best 2D circle fit in 3D is intersection of two best orthogonal spheres.
Best 2D circle fit in 3D is not the best circle in the best plane!

e We have extended our method to k-spheres in n-D, for JMIV 2014.
(Extra for 3D: optimally fit point pair without splitting the data.)

e Plane and line fits can be done in CGA too, and also lead to pure eigenproblems.
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Journal of Mathematical Imaging and Vision, 2014, DOI 10.1007/s10851-014-0495-2
Total Least Squares Fitting of k-Spheres in n-D Euclidean Space
Using an (7 + 2)-D Isometric Representation

Leo Dorst

Abstract We fit k-spheres optimally to n-D point data, in a
geometrically total least squares sense. A specific practical
instance is the optimal fitting of 2D-circles to a 3D point set.

Among the optimal fitting methods for 2D-circles based
on 2D (!) point data compared in Al-Sharadqah and Cher-
nov (Electron. J. Stat. 3:886-911, 2009). there is one with
an algebraic form that permits its extension to optimally fit-
ting k-spheres in n-D. We embed this ‘Pratt 2D circle fit’
into the framework of conformal geometric algebra (CGA),
and doing so naturally enables the generalization. The pro-
cedure involves a representation of the points in rn-D as vec-
tors in an (r 4+ 2)-D space with attractive metric properties.
The hypersphere [it then becomes an eigenproblem ol a spe-
cific symmetric linear operator determined by the data. The
eigenvectors of this operator form an orthonormal basis rep-
resenting perpendicular hyperspheres. The intersection of
these are the optimal k-spheres; in CGA the intersection is a
straightforward outer product of vectors.

The resulting optimal fitting procedure can easily be im-
plemented using a standard linear algebra package: we show
this for the 3D case of [itting spheres, circles and point pairs.
The fits are optimal (in the sense of achieving the KCR lower
bound on the variance).

We use the framework to show how the hyperaccurate
fit hypersphere of Al-Sharadgah and Chernov (Electron. J.
Stat. 3:886-911, 2009) is a minor rescaling of the Pratt fit
hypersphere.
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Fig. 8 Radius determination as a function of the radial noise standard
deviation opggial, for spheres based on 100 data points, generated from a
unit sphere, with angular standard deviation of 1 radian. With 50 trials
per fit, we show average and standard deviation. Note the scale, all fits
perform well (Color figure online)
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22 Note on Hyperaccuracy (Kanatani 2012, ‘my best work’)

Kanatani says: In geometric data processing we do not want estimators with good asymptotic
behavior in the limit of infinite data, and/or large variance (the classical approach in estima-
tion): we have finite/minimal amount of data N, of usually rather small variance o.

The Mean Square Error of a consistent estimator (which returns the true value when o = 0)
can be shown to be:

MSE = variance + bias* = O(c*/N) + O(c*).

An optimal estimator minimizes the variance (achieves the ‘Kanatani-Cramer-Rao lower bound”).

For large enough N, the bias term may become important, even for small o.
A hyperaccurate estimator makes the O(o?) term (the ‘essential bias’) equal to zero.

For 2D circles, a hyperaccurate estimator has been found in [Al-Sharadqah & Chernov 2009,
prompting Kanatani to develop a general theory soon thereafter.

For 2D circles, it manifests itself when o = 0.05p for N > 1000.
For smaller IV, all optimal estimators are equivalent. Our fit is optimal.

24



23 Unpacking the Circle Parameters with CGA Software

Given a (dual) circle k, retrieve its parameters n, c, p.

View the circle as formed by intersection of a sphere o with a plane 7
oNT =K.
First, let us find the plane of k. Just wedge the point at infinity onto it:
T =N A K,  which means that 7™ = n., - k.

[ts normal vector is n, easy to read out as Euclidean part after normalization as 7 /v 72,

Now find the center and radius of the encompassing sphere using o - 7 = 0 (orthogonality!)
Adding those equations, o m = k. Geometric product invertible, so:

o =k/T=K/(N * K).

This sphere is normalized, so read off Euclidean part as ¢, and p* = 0.
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24 Unpacking the Hypercircle Parameters (Gory but Straightforward)

The general expression for a (dual) circle k in CGA, as the intersection of a hyperplane 7 with
normal vector n containing ¢, and a sphere o with radius p around c:

K = mTN0o
= a(n+(c-n)nx) A (n,+ c+ 3(c* — p*) neo)
= oz(n/\%+n/\c— (c-n)n, Ane + (3(c = p*)n— (c-n)c) noo).
e Thus —amn can be retrieved immediately as the components of {e,;}, normalization then
splits it in « and n if necessary:.

e The Euclidean e;; and e, parts then give the outer and inner product of ¢ and n.
Using the matrix implementation of the geometric product:

HEE

we can solve for c. (Effectively, geometric division in 3D, as implemented in linear algebra.)

e With o, n and ¢ known, p? can be derived from the {e;,.} component vector v, as

= llc|]|? —2n-vy/a —2(c-n)?
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