A study of cyclic codes BCH and Reed-Solomon code

Welington Santos

UFPR

January 2015
Cyclic Codes

Definition
A linear \((n, k)\) code \(C\) over \(\mathbb{F}_q\) is called cyclic if \((a_0, a_1, \ldots, a_{n-1}) \in C\) implies \((a_{n-1}, a_0, \ldots, a_{n-2}) \in C\).

But this definition is not good to work, so we will identify a cyclic code with polynomial ring.

Let \((x^n - 1)\) be the ideal generated by \(x^n - 1 \in \mathbb{F}_q[x]\). Then all elements of \(\mathbb{F}_q[x]/(x^n - 1)\) can be represented by polynomials of degree less than \(n\) and clearly this residue class ring is isomorphic to \(\mathbb{F}_q^n\) as a vector space over \(\mathbb{F}_q\). An isomorphism given by

\[
\psi(a_0, a_1, \ldots, a_{n-1}) = [a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}].
\]

Theorem
The linear code \(C\) is cyclic if only if \(\psi(C)\) is an ideal of \(\mathbb{F}_q[x]/(x^n - 1)\).
BCH-codes

One particular subclass of cyclic codes are codes known as BCH codes. This codes are defined from an integer b and a n-th root of unity as follows

Definition

Let b be a nonnegative integer and let $\alpha \in \mathbb{F}_{q^m}$ be a primitive n th root of unity, where m is the multiplicative order of q modulo n. A BCH code over \mathbb{F}_q of length n and designed distance δ, $2 \leq \delta \leq n$, is a cyclic code defined by the roots

$$\alpha^b, \alpha^{b+1}, \ldots, \alpha^{b+\delta-2}$$

of the generator polynomial.

An important property of BCH codes is that, the minimum distance of a BCH code of designed distance d is at least δ.
Reed-Solomon codes

Definition
A Reed-Solomon code is a cyclic BCH code of length $n = q - 1$, and generator polynomial

$$g(x) = (x - \alpha^{b+1})(x - \alpha^{b+2})\ldots(x - \alpha^{b+\delta-1})$$

Where α be a primitive element of \mathbb{F}_q, $b \geq 0$ and $2 \leq \delta \leq q - 1$.

Definition
A linear code of parameters $[n, k, d]$ is said MDS (maximum distance separable) if, the equality $d = n - k + 1$ is valid.

Theorem
The Reed-Solomon codes are MDS codes.
My Objectives

We would like to study MDS codes for poset metric.

Definition
The \mathbb{P}-weight of a element $x \in \mathbb{F}_q^n$ is the cardinality of ideal of \mathbb{P} generated by the support of x i.e.

$$w_\mathbb{P}(x) = | < \text{supp}(x) >_\mathbb{P} |$$

Where $\text{supp}(x) = \{ i : x_i \neq 0 \}$.

Definition
If $\mathbb{P} = ([n], \preceq)$ is a poset, then the \mathbb{P}-distance $d_\mathbb{P}(x, y)$ between $x, y \in \mathbb{F}_q^n$ is defined by

$$d_\mathbb{P}(x, y) = w_\mathbb{P}(x - y).$$

- S.T. Dougherty; M. M. Skriganov - *Maximum Distance Separable Codes in the ρ Metric over Arbitrary Alphabets*, Journal of Algebraic Combinatorics 16 (2002), 71–81
