Explicit Constructions of Weakly Secure Regenerating Codes for Distributed Storage

Swanand Kadhe
Advisor: Prof. Alex Sprintson

Texas A&M University

SPCodingSchool
January 19th to 30th 2015 - Campinas, Brazil
Weakly Secure Distributed Storage

- Eve should not learn about *any* small group of files
 - No loss in storage capacity! 😊

- Example: Suppose there are 4 files \(\{S_1, S_2, S_3, S_4\} \in \mathbb{F}_4 \)

 \[
 \begin{align*}
 S_1 + S_2 + S_3 \\
 S_1 + S_2 \\
 S_1 + S_2 + S_3 + S_4 \\
 S_1 + 5S_2 + 12S_3 + 8S_4
 \end{align*}
 \]

 - Eve can decode third file
 \[
 I(S_{G'}, E) = 0 \quad \forall G' : |G'| \leq g + 1
 \]

 - Eve cannot infer anything about any group of two files

- Equivalent to **maximizing the minimum Hamming weight** of any vector in the span of eavesdropped codewords

[1] Bhattad and Narayanan [2005]
Weakly Secure Regenerating Codes

• Regenerating Codes: Minimize the repair bandwidth by trading off storage space – focus on exact codes

• Generator matrix of a regenerating code is typically sparse

• e.g., generator matrix of a Product-Matrix framework based regenerating code (MBR point)

\[
G_e = \begin{bmatrix}
\Psi(e, 1) & \Psi(e, 2) & \Psi(e, 3) & \Psi(e, 4) & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \Psi(e, 1) & 0 & 0 & \Psi(e, 2) & \Psi(e, 3) & \Psi(e, 4) & 0 & 0 \\
0 & 0 & \Psi(e, 1) & 0 & 0 & \Psi(e, 2) & 0 & \Psi(e, 3) & \Psi(e, 4) \\
0 & 0 & 0 & \Psi(e, 1) & 0 & 0 & \Psi(e, 2) & 0 & \Psi(e, 3)
\end{bmatrix}
\]

\((n = 5, k = 3, d = 4, \alpha = 4, \beta = 1)\)-Regenerating Code

• Not weakly secure against 2 guesses – outer code can help!

Can we use elegant structure of Product-Matrix codes to explicitly design H such that small field size is sufficient?
Explicit Outer Code Design

• Design H such that it has the same structure as G

$$H = \begin{bmatrix}
0 & \hat{\Psi}(1, 1) & 0 & 0 & \hat{\Psi}(1, 2) & \hat{\Psi}(1, 3) & \hat{\Psi}(1, 4) & 0 & 0 \\
0 & \hat{\Psi}(2, 1) & 0 & 0 & \hat{\Psi}(2, 2) & \hat{\Psi}(2, 3) & \hat{\Psi}(2, 4) & 0 & 0 \\
0 & \hat{\Psi}(3, 1) & 0 & 0 & \hat{\Psi}(3, 2) & \hat{\Psi}(3, 3) & \hat{\Psi}(3, 4) & 0 & 0 \\
0 & 0 & \hat{\Psi}(1, 1) & 0 & 0 & \hat{\Psi}(1, 2) & \hat{\Psi}(1, 3) & \hat{\Psi}(1, 4) & 0 \\
0 & 0 & \hat{\Psi}(2, 1) & 0 & 0 & \hat{\Psi}(2, 2) & \hat{\Psi}(2, 3) & \hat{\Psi}(2, 4) & 0 \\
0 & 0 & \hat{\Psi}(3, 1) & 0 & 0 & \hat{\Psi}(3, 2) & \hat{\Psi}(3, 3) & \hat{\Psi}(3, 4) & 0 \\
0 & 0 & 0 & \hat{\Psi}(1, 1) & 0 & 0 & \hat{\Psi}(1, 2) & \hat{\Psi}(1, 3) & 0 \\
0 & 0 & 0 & 0 & \hat{\Psi}(1, 1) & 0 & 0 & \hat{\Psi}(1, 2) & 0 & \hat{\Psi}(1, 3) \\
\end{bmatrix}$$

$(n = 5, k = 3, d = 4, \alpha = 4, \beta = 1)$-Regenerating Code

• Features:
 • Fixed one or two units loss in capacity
 o Almost achieves the insecure storage capacity
 • Twofold enhancement over uncoded security level
 ✓ $g_{max} \approx 2g_{uncoded}$

[NetCod 14: MBR case, Allerton 14: MSR case]