Feedback Systems using Non-Binary LDPC Codes with a Limited Number of Transmissions

SP Coding School 2015

Kasra Vakilinia
Contributors: Dariush Divsalar, and Richard D. Wesel

Communication Systems Laboratory
University of California, Los Angeles

January 2015
Variable Feedback Coding (VLF): Two Phase

- **Tx**
- **Rx**
- Noiseless feedback
- Coded Confirmation

Diagram:
- Variables: I_1, A_1, I_2, A_2, I_3, ...
- AWGN channel

Kasra Vakilinia (UCLA)
SP Coding School 2015
January 2015
2 / 4
Exhaustive Search (ES) with exponential complexity versus Sequential Differential Approximation (SDA) with linear complexity

Table: Optimized \(\{N_1, N_2, \ldots, N_m\} \), \(R_T \), and \(\lambda \) from ES and SDA for \(k = 96 \) bits for VLFT on a 2 dB SNR binary-input AWGN channel with capacity of 0.642.

<table>
<thead>
<tr>
<th>Alg.</th>
<th>(m)</th>
<th>({N_1, N_2, \ldots, N_m})</th>
<th>(R_T)</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES, SDA</td>
<td>2</td>
<td>158, 188</td>
<td>0.566</td>
<td>169.6</td>
</tr>
<tr>
<td>ES</td>
<td>3</td>
<td>150, 167, 194</td>
<td>0.58638</td>
<td>163.71</td>
</tr>
<tr>
<td>SDA</td>
<td>3</td>
<td>150, 167, 195</td>
<td>0.58635</td>
<td>163.72</td>
</tr>
<tr>
<td>ES</td>
<td>4</td>
<td>146, 158, 172, 198</td>
<td>0.59709</td>
<td>160.77</td>
</tr>
<tr>
<td>SDA</td>
<td>4</td>
<td>146, 158, 172, 197</td>
<td>0.59707</td>
<td>160.78</td>
</tr>
<tr>
<td>ES, SDA</td>
<td>5</td>
<td>143, 153, 163, 176, 201</td>
<td>0.603</td>
<td>159.2</td>
</tr>
<tr>
<td>ES, SDA</td>
<td>6</td>
<td>140, 149, 157, 166, 179, 204</td>
<td>0.608</td>
<td>157.9</td>
</tr>
<tr>
<td>ES, SDA</td>
<td>7</td>
<td>139, 147, 154, 161, 170, 182, 206</td>
<td>0.611</td>
<td>157.1</td>
</tr>
</tbody>
</table>
VLFT using NB-LDPC codes achieves about 92% of RCSP throughput for average blocklengths in the range of 150-450 bits.

VLF using NB-LDPC codes with $m = 5$ achieves about 90% of capacity for average blocklengths of 150-450 bits.

This range of blocklengths is interesting:
1. it is still small enough that feedback provides a throughput gain,
2. it is large enough to have practical potential.