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Introduction

Motivation

Reliable transmission of data at high speed has represented a

constant challenge for both engineers and researchers in

telecommunications.

Error-correcting codes have contributed in a significant way for both

the theoretical and technological advances in this area.

The storage and recovery of large amounts of data in semiconductor

memories have also benefited from error-correcting coding

techniques.
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Noise

Frequently in the context of digital communications we face problems of

detection or correction of errors caused by noise during transmission, or

which have affected stored data.

Example

In a banking data transmission network ideally errors should never occur.
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Communication systems

Digital communication systems keep changing their appearance as far as

circuits and components are concerned, as a consequence of changes in

technology.

Example

Old communication systems evolved from the electromechanical relay to

thermionic valves, later to transistors, and so on. A closer look at such

systems reveals that, in general, they can be represented by a block

diagram as shown next.



UFPE

Basic concepts Block codes Cyclic Codes Decoding Cyclic Codes

Introduction

Digital communication system
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Errors

Due to the presence of noise errors may occur during transmission or

storage of data.

Types of errors

Errors may occur sporadically and independently, in which case they are

referred to as random errors, or else errors can appear in bursts of many

errors each time it occurs, and are called burst errors, in which case the

channel is said to have a memory.
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Channel models

Ideally the receiver should be able to process a continuous signal

received from the channel. This situation is modeled by a channel

with a discrete input and a continuous output.

For practical reasons very often the receiver output needs to be

quantized into a finite number of levels, typically 8 or 16 levels,

which situation is modeled by a discrete channel.
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Channel models - example

Two typical discrete channel models are the binary symmetric

channel (BSC) and the binary erasure channel (BEC).

Each binary digit at the BSC output is either correct or assumes its

complementary value, while the BEC outputs are either correct

binary digits or are erased digits.
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Linear codes

The parity-check digits in a codeword result from a linear combination

involving information digits.

Nonlinear codes

The parity-check digits may result from nonlinear logical operations on

the information digits of a codeword, or else result from nonlinear

mappings over a given finite field or finite ring, of linear codes over a

finite field or finite ring of higher dimension.



UFPE

Basic concepts Block codes Cyclic Codes Decoding Cyclic Codes

Introduction

Types of codes

Depending on how the digits of redundancy are appended to the digits of

information, two different types of codes result: block codes and

convolutional codes.

Comment

Block codes and convolutional codes are competitive in many practical

situations. The final choice of one of them depends on factors such as

data format, delay in decoding, system complexity necessary to achieve a

given error rate, etc..



UFPE

Basic concepts Block codes Cyclic Codes Decoding Cyclic Codes

Introduction

Block codes

Codes for which redundancy in a block of digits checks the occurrence of

errors only in that particular block are called block codes.

Convolutional codes

Codes where the redundancy in a block checks the presence or absence of

errors in more than one block are called convolutional codes, and are a

special case of tree codes.
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Comment

The practical problem in coding theory is not the provision of error-free

communications but the design of systems that have an error rate

sufficiently low for the user.

Example

An error rate of 10−4 for the letters of a book is perfectly acceptable

while that same error rate for the digits of a computer operating

electronic funds transfer would be disastrous.
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Comment

The maximum potential of error-correcting codes was established in

1948, with the Shannon coding theorem for a noisy channel.

Theorem

For any memoryless channel, with a discrete input alphabet, there are

codes with information rate R (nats/symbol), with codewords of length

n digits, for which the probability of decoding error employing maximum

likelihood is bounded by Pe < e−nE(R), where E (R) > 0, 0 ≤ R < C , is

a decreasing convex-∪ function, specified by the channel transition

probabilities and C is the channel capacity.
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Comments

The coding theorem proves the existence of codes that can make the

probability of erroneous decoding very small, but gives no indication

of how to construct such codes.

Notice that Pe decreases exponentially when n is increased, which

usually entails an increase in system complexity.

Goals of coding theory

Finding long and efficient codes.

Finding practical methods for encoding and efficient decoding.
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Comments

Recent developments in digital hardware technology have made it

possible the use of sophisticated coding procedures, and the

corresponding circuits can be rather complex.

The current availability of complex processors makes the advantages

derived from the use of codes become even more accessible.
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Exercise

A source produces eight equally likely messages which are encoded

into eight distinct codewords as 0000000, 1110100, 1101001,

1010011, 0100111, 1001110, 0011101, 0111010.

The codewords are transmitted through a BSC with probability of

error p, p < 1/2.

Calculate the probability that an error pattern will not be detected

at the receiver.
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Solution

An error pattern will not be detected if the received word coincides

with a codeword.

For the set of codewords given, notice that the modulo 2 bit by bit

addition of any two codewords produces a valid codeword.

Therefore we conclude that if an error pattern coincides with a

codeword it will not be detected at the receiver.

The probability of undetected error is thus: (1− p)7 + 7p4(1 − p)3.
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Block codes

Block codes can be easily characterized by their encoding process.

The process of encoding consists in segmenting the message to be

transmitted in blocks of k digits and appending to each block n − k

redundant digits.

These n − k redundant digits are determined from the k -digit

message and are intended for just detecting errors, or for detection

and correction of errors, or correcting erasures which may appear

during transmission.
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Block codes may be linear or nonlinear.

For linear block codes, as mentioned in earlier, the redundant digits

are calculated as linear combinations of information digits.

Linear block codes represent the most well-developed part of the

theory of error-correcting codes. One could say that this is in part

due to the use of mathematical tools such as linear algebra and the

theory of finite fields, or Galois fields.
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Due to their importance in practice, in what follows we consider

mostly binary linear block codes, unless indicated otherwise.

In general, the code alphabet is q-ary, where q denotes a power of a

prime. Obviously for binary codes we have q = 2.

A q-ary (n, k , d) linear block code is defined as follows.

Definition

A q-ary (n, k , d) linear block code is a set of qk q-ary n-tuples, called

codewords, where any two distinct codewords differ in at least d

positions, and the set of qk codewords forms a subspace of the vector

space of all qn q-ary n-tuples.
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Block codes

Matrix representation

The code rate R, or code efficiency, is defined as R = k/n.

The codewords can be represented by vectors with n components.

The components of these vectors are generally elements of a finite

field with q elements, represented by GF(q), also called a Galois

field.

Very often we use the binary field, the elements of which are

represented by 0 and 1, i.e., GF(2).
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Matrix representation

As already mentioned, a linear code constitutes a subspace and thus

any codeword can be represented by a linear combination of the

basis vectors of the subspace, i.e., by a linear combination of linearly

independent vectors.

The basis vectors can be written as rows of a matrix, called the code

generator matrix.

Given a generator matrix G of a linear code with k rows and n

columns, we can form another matrix H, with n − k rows and n

columns, such that the row space of G is orthogonal to H,
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Block codes

Matrix representation

The G matrix can be written as

G = [Ik : g], (1)

where g denotes a k × (n − k) matrix and Ik denotes the k × k

identity matrix.

The form of G in (1) is called the reduced echelon form.
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Matrix representation

If vi is a vector in the row space of G then

viH
T = 0, 0 ≤ i ≤ 2k − 1.

The H matrix is called the code parity-check matrix and can be

represented as

H = [h : In−k ],

where h denotes an (n − k)× k matrix and In−k is the

(n − k)× (n − k) identity matrix.
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Block codes

Matrix representation

The g and h matrices are related by the expression g = hT .

Since the rows of H are linearly independent, they generate a

(n, n − k , d ′) linear code called the dual code of the (n, k , d) code

generated by G.

The code (n, n − k , d ′) can be considered as the dual space of the

(n, k , d) code generated by G.
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Block codes

Matrix representation

Using matrix representation, we find that an encoder has the

function of performing the product mG of a row matrix m, with k

elements which represent the information digits, by the G matrix.

The result of such an operation is a linear combination of the rows

of G and thus a codeword.

The ability of simply detecting errors, or error detection and error

correction of a code is directly linked to a quantity, defined later,

that is its minimum distance.
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Block codes

Hamming weight and Hamming distance

Before defining minimum distance we define Hamming weight of a vector

and the Hamming distance between two vectors.

Definition

The Hamming weight WH (v) of a vector v is the number of non-zero

coordinates in v.

Definition

The Hamming distance dH (v1,v2) between two vectors, v1 and v2,

having the same number of coordinates, is the number of positions is

which these two vectors differ.
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Block codes

Hamming distance

We observe that the Hamming distance is a metric.

Definition

The minimum distance of a code is the smallest Hamming distance

between pairs of distinct codewords.
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Exercise

Consider the vectors v1 = (0, 1, 0, 0, 2) and v2 = (1, 1, 0, 3, 2). Compute

their respective Hamming weights, WH (v1) and WH (v2), and the

Hamming distance dH (v1,v2).

Solution

The Hamming weights of v1 and v2 are, respectively, WH (v1) = 2 and

WH (v2) = 4 and the Hamming distance between v1 and v2 is

dH (v1,v2) = 2.
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Matrix representation

Denote by q = pm the cardinality of the code alphabet, where p is a

prime number and m is a positive integer.

Due to the linearity property, the modulo-q sum of any two

codewords of a linear code results in a codeword.

Suppose that vi ,vj and vl are codewords such that vi + vj = vl .
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Block codes

Matrix representation

From the definitions of Hamming distance and Hamming weight it

follows that dH (vi ,vj ) = WH (vl ).

Hence we conclude that, to determine the minimum distance of a

linear code means to find the minimum nonzero Hamming weight

among the codewords.

This last remark brings a great simplification to computing the

minimum distance of a linear code because if the code has M

codewords, instead of making C 2
M operations of addition modulo-q

and the corresponding Hamming weight calculation, it is sufficient to

calculate the Hamming weight of the M − 1 nonzero codewords only.
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Exercise

If d is an odd number, show that by adding an overall parity-check digit

to the codewords of a binary linear (n, k , d) code, a (n + 1, k , d + 1)

code results.

Solution

The minimum nonzero weight of a linear code is equal to d , which in this

problem is an odd number. Extending this binary code by appending an

overall parity-check digit to each codeword will make the weight of every

codeword an even number and thus the minimum nonzero weight will

become d + 1. Therefore the minimum distance of the extended code is

d + 1.
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Block codes

Matrix representation

In special situations where the code, besides linearity, has an

additional mathematical structure, the determination of the

minimum distance, or the determination of upper or lower bounds

for the minimum distance can be further simplified.

In a code with minimum distance d , the minimum number of

changes necessary to convert a codeword into another codeword is

at least d .

Therefore, the occurrence of up to d − 1 errors per codeword during

a transmission can be detected, because the result is an n-tuple that

does not belong to the code.
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Block codes

Matrix representation

Regarding error correction it is important to note that after

detecting the occurrence of errors, we must decide which codeword

is more likely to have been transmitted.

Assuming that the codewords are equiprobable, we decide for the

codeword nearest (in terms of Hamming distance) to the received

n-tuple.

Obviously this decision will be correct as long as an error pattern

containing up to t errors per codeword occurs, satisfying the relation

2t + 1 ≤ d .
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Error syndrome and decoding

Suppose a codeword v of a linear code with generator matrix G and

parity-check matrix H is transmitted through a noisy channel.

The signal associated with v arriving at the receiver is processed to

produce an n-tuple r defined over the code alphabet.

The n-tuple r may differ from v due to the noise added during

transmission.
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Error syndrome and decoding

The task of the decoder is to recover v from r.

The first step in decoding is to check whether r is a codeword.

This process can be represented by the following expression

rHT = s,

where s denotes a vector with n − k components, called syndrome.
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Error syndrome and decoding

If s = 0, i.e., a vector having the n − k components equal to zero,

we assume that no errors occurred, and thus r = v.

However if s 6= 0, r does not match a codeword in the row space of

G, and the decoder uses this error syndrome for detection, or for

detection and correction.

The received n-tuple r can be written as

r = v + e,

where + denotes componentwise addition and e is defined over the

code alphabet, denoting an n-tuple representing the error pattern.
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Error syndrome and decoding

The decoding process involves a decision about which codeword was

transmitted.

Considering a binary code, a systematic way to implement the

decision process is to distribute the 2n n-tuples into 2k disjoint sets,

each set having cardinality 2n−k , so that each one of them contains

only one codeword.

Thus the decoding is done correctly if the received n-tuple r is in

the subset of the transmitted codeword.
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Error syndrome and decoding

The 2n binary n-tuples are separated into cosets as follows.

The 2k codewords are written in one row then, below the all-zero

codeword, put an n-tuple e1 which is not present in the first row.

Form the second row by adding modulo-2 to e1 the elements of the

first row, as illustrated next.

0 v1 v2 · · · v2k−1

e1 e1 ⊕ v1 e1 ⊕ v2 · · · e1 ⊕ v2k−1,

where ⊕ denotes modulo-2 addition of corresponding coordinates.
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Error syndrome and decoding

Subsequent rows are formed similarly, and each new row begins with

an element not previously used.

In this manner we obtain the standard array:

0 v1 v2 · · · v2k−1

e1 e1 ⊕ v1 e1 ⊕ v2 · · · e1 ⊕ v2k−1

e2 e2 ⊕ v2 e2 ⊕ v2 · · · e2 ⊕ v2k−1

...
...

... · · ·
...

e2n−k−1 e2n−k−1 ⊕ v1 e2n−k−1 ⊕ v2 · · · e2n−k−1 ⊕ v2k−1
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Error syndrome and decoding

The standard array rows are called cosets and the leftmost element

in each coset is called a coset leader.

The procedure used to construct the given linear code standard array

is called the coset decomposition of the vector space of n-tuples

over GF(q).

In order to use the standard array it is necessary to find the row, and

therefore, the associated leader, to which the incoming n-tuple

belongs.
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Error syndrome and decoding

This is usually not easy to implement because 2n−k can be large, so

that the concept of the standard array is most useful as a way to

understand the structure of linear codes, rather than a practical

decoding algorithm.

Methods potentially practical for decoding linear codes are presented

next.



UFPE

Basic concepts Block codes Cyclic Codes Decoding Cyclic Codes

Block codes

Maximum likelihood decoding

If the codewords of a (n, k , d) code are selected independently and

all have the same probability of being sent through a channel, an

optimum way (in a sense we will explain shortly) to decode them is

as follows.

On receiving an n-tuple r, the decoder compares it with all possible

codewords. In the binary case, this means comparing r with 2k

distinct n-tuples that make up the code.

The codeword nearest to r in terms of the Hamming distance is

selected, i.e., we choose the codeword that differs from r in the least

number of positions.
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Block codes

Maximum likelihood decoding

This chosen codeword is supposedly the transmitted codeword.

Unfortunately, the time necessary to decode a received n-tuple may

become prohibitively long even for moderate values of k .

It should be noted that the decoder must compare r with 2k

codewords, for a time interval corresponding to the duration of n

channel digits.

This fact makes this process of decoding inappropriate in many

practical cases.
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Maximum likelihood decoding

A similar conclusion holds if one chooses to trade search time by a

parallel decoder implementation, due to high decoder complexity.

Let v denote a codeword and let P(r|v) denote the probability of r

being received when v is the transmitted codeword.

If all codewords have the same probability of being transmitted then

the probability P(v, r) of the pair (v, r) occurring is maximized

when we select that v which maximizes P(r|v), known in statistics

as the likelihood function.
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Decoding by systematic search

A general procedure for decoding linear block codes consists of

associating each non-zero syndrome with one correctable error

pattern.

One of the properties of the standard array is that all n-tuples

belonging to the same coset have the same syndrome.

Furthermore, each coset leader should be chosen as the most likely

error pattern in the respective coset.
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Decoding by systematic search

Based in these standard array properties, it is possible to apply the

following procedure for decoding.

1) Calculate the syndrome for the received n-tuple.

2) By systematic search, find the pattern of correctable errors, i.e., the

coset leader, associated with the syndrome of the received n-tuple.

3) Subtract from the received n-tuple the error pattern found in the

previous step, in order to perform error-correction.
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Decoding by systematic search

In order to implement this procedure it is necessary to generate

successively all configurations of correctable errors and feed them

into a combinational circuit, which outputs the corresponding

syndromes.

Using a logic gate with multiple entries, we can detect when the

locally generated syndrome coincides with the syndrome of the

received n-tuple.
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Decoding by systematic search

If a (n, k , d) code corrects t errors per block then the number of

distinct configurations of correctable errors that are necessary to

generate by this systematic search process is given by

C 1
n + C 2

n + · · ·+ C t
n =

t
∑

i=1

C i
n ≤ 2n−k − 1. (2)

We observe in (2) that the number of distinct configurations grows

rapidly with n and t .

For this reason, this decoding technique is of limited applicability.
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Probabilistic decoding

In recent years, there have appeared in the literature various

decoding algorithms of a probabilistic nature, which in principle can

operate on unquantized coordinate values of the received n-tuple.

For practical reasons channel output quantization is employed.

If the code used is binary and the number of channel output

quantization levels is 2 than the decoding technique is called

hard-decision, otherwise it is called a soft-decision decoding

technique.
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Probabilistic decoding

Hartmann and Rudolph (1976) introduced a probabilistic decoding

algorithm which is optimal in the sense that it minimizes the

probability of error per digit, when the codewords are equiprobable

and are transmitted in the presence of additive noise in a memoryless

channel.

This algorithm is exhaustive in that every codeword of the dual

code is used in the decoding process.

This feature makes it practical for use with high rate codes, contrary

to what happens with most conventional techniques.
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Probabilistic decoding

Another decoding algorithm was introduced (Wolf, 1978) which is a

rule to walk in a trellis type structure, and depends on the code H

matrix.

The received n-tuple is used to determine the most probable path in

the trellis, i.e., the transmitted codeword.

Trellis decoders for block codes for practical applications are

addressed in the literature.
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Simple codes

In the sequel we present some codes of relatively simple structure,

which will allow an understanding of more sophisticated coding

mechanisms in future.
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Block codes

Binary repetition code

The code parameters are: k = 1, n − k = c ≥ 1 and

n = k + c = 1 + c.

Because k = 1, this code has only two codewords, one is a sequence

of n zeros and the other is a sequence of n 1’s.

The parity-check digits are all identical and are a repetition of the

information digit.
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Block codes

Binary repetition code

A simple decoding rule in this case is to declare as the information

digit transmitted the one that most often occurs in the received

word. This will always be possible when n is odd.

If n is even, and there is a tie in the count of occurrence of zeros

and 1’s, we simply detect the occurrence of errors.

The minimum distance is d = n and the efficiency (or code rate) is

R = 1/n. Obviously any pattern with t ≤ ⌊n/2⌋ errors is

correctable.
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Block codes

Binary single parity-check code

As the title indicates, this code has a single redundant digit per

codeword.

The redundant digit is calculated so as to make even the number of

1’s in the codeword.

We count the number of 1’s in the information section. If the result

is odd the parity-check digit is made equal to 1, otherwise it is made

equal to zero.
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Block codes

Binary single parity-check code

The code parameters are: k ≥ 1, n − k = 1, i.e., n = k + 1.

The Hamming distance and efficiency are respectively d = 2 and

R = k/n = k/(k + 1).

The rule used for decoding single parity-check codes is to count the

number of 1’s in the received word.
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Block codes

Binary single parity-check code

If the resulting count is even, the block received is assumed to be

free of errors and is delivered to the recipient.

Otherwise, the received block contains errors and the recipient is

then notified of the fact.

These codes, while allowing only to detect an odd number of errors,

are effective when used in systems that operate with a return

channel to request retransmission of messages, or when decoded

with soft-decision.
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Block codes

Binary Hamming code

We now consider the construction of the (7, 4, 3) Hamming code.

The ideas described are easily generalized to any (n, k , 3) Hamming code.

The number of parity-check digits of the (7, 4, 3) code is

n − k = 7− 4 = 3.
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Block codes

Binary Hamming code

Consider the distinct non-zero binary numbers that can be formed

with n − k = 3 binary digits. That is,

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

c1 c2 k1 c3 k2 k3 k4.

Hamming associated the numbers of the form 2j , j = 0, 1, 2, . . .

with parity-check positions.

The unused numbers were associated with information digits.
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Block codes

Binary Hamming code

Looking alongside the rows in the list, the parity-check equations

denoted as ci , 1 ≤ i ≤ 3, are written as modulo-2 sums of

information positions where a 1 appears in the particular row

considered, i.e.,

c1 = k1 ⊕ k2 ⊕ k4

c2 = k1 ⊕ k3 ⊕ k4

c3 = k2 ⊕ k3 ⊕ k4.

Upon receiving a word, the decoder recalculates the parity-check

digits and adds them modulo-2 to their corresponding parity-check

digits in the received word in order to obtain the syndrome.



UFPE

Basic concepts Block codes Cyclic Codes Decoding Cyclic Codes

Block codes

Binary Hamming code

If, for example, an error has hit the digit k3 the syndrome digits in

positions c2 and c3 will be 1 and will indicate failure, while in

position c1 no failure is indicated because c1 does not check k3.

The situation is represented as :

(c3, c2, c1) = (1, 1, 0),

which corresponds to the column for k3 on the list considered.

The error has thus been located and can then be corrected.

Obviously, this procedure can be applied to any value of n.
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Block codes

Binary Hamming code

Hamming codes are special in the sense that no other class of

non-trivial codes can be so easily decoded and also because they are

perfect, as defined next.

Definition

An (n, k , d) error-correcting code over GF(q), which corrects t errors, is

defined as perfect if and only if

t
∑

i=0

(q − 1)iC i
n = qn−k .



UFPE

Basic concepts Block codes Cyclic Codes Decoding Cyclic Codes

Block codes

Perfect codes

With the exception of Hamming codes, the binary (23, 12, 7) Golay

code and the (11, 6, 5) ternary Golay code, there are no other

nontrivial linear perfect codes.

Nonlinear single error-correcting codes, with parameters identical to

Hamming codes, were introduced by Vasilev in 1962.
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Exercise

Consider the (7, 3, 4) binary linear code having the following expressions

for computing the redundant digits, also called parity-check digits.

c1 = k1 ⊕ k2, c2 = k2 ⊕ k3,

c3 = k1 ⊕ k3, c4 = k1 ⊕ k2 ⊕ k3.

Each block containing three information digits is encoded into a seven

digit codeword. Determine the set of codewords for this code.
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Exercise

Solution

Employing c1 = k1 ⊕ k2, c2 = k2 ⊕ k3, c3 = k1 ⊕ k3, c4 = k1 ⊕ k2 ⊕ k3 the

following set of codewords results.

MESSAGES CODEWORDS




































0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

k1 k2 k3





































⇒





































0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 1 1 0 1

0 1 1 1 0 1 0

1 0 0 1 0 1 1

1 0 1 1 1 0 0

1 1 0 0 1 1 0

1 1 1 0 0 0 1

k1 k2 k3 c1 c2 c3 c4




































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Exercise

Write the generator matrix and the parity-check matrix for the code in

the previous exercise, both in reduced echelon form.
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Exercise

Solution

G =













1 0 0 1 0 1 1

0 1 0 1 1 0 1

0 0 1 0 1 1 1

k1 k2 k3 c1 c2 c3 c4













.

Therefore, it follows that

g =







1 0 1 1

1 1 0 1

0 1 1 1






, h = gT =













1 1 0

0 1 1

1 0 1

1 1 1













.
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Exercise

Solution

The code parity-check matrix H takes the following form:

H =

















1 1 0 1 0 0 0

0 1 1 0 1 0 0

1 0 1 0 0 1 0

1 1 1 0 0 0 1

k1 k2 k3 c1 c2 c3 c4
















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Block codes

Low-density parity-check codes

In 1993 the coding community was surprised with the discovery of

turbo codes, more than 40 years after Shannon’s capacity theorem,

referred to by many as Shannon’s promised land.

Turbo codes were the first capacity approaching practical codes.

Not long after the discovery of turbo codes, their strongest

competitors called low-density parity-check (LDPC) codes were

rediscovered.
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Block codes

Low-density parity-check codes

LDPC codes have proved to perform better than turbo codes in

many applications.

LDPC codes are linear block codes discovered by Gallager in 1960,

which have a decoding complexity that increases linearly with block

length.

At the time of their discovery there was no computational means for

their implementation in practice nor to perform computer

simulations.
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Block codes

Low-density parity-check codes

Some 20 years later a graphical representation of LDPC codes was

introduced (Tanner, 1981) which paved the way to their rediscovery,

accompanied by further theoretical advances.

It was shown that long LDPC codes with iterative decoding achieve

a performance, in terms of error rate, very close to the Shannon

capacity.



UFPE

Basic concepts Block codes Cyclic Codes Decoding Cyclic Codes

Block codes

Low-density parity-check codes

LDPC codes have the following advantages with respect to turbo

codes.

1) Do not require a long interleaver in order to achieve low error rates.

2) Achieve lower block error rates and their error floor occurs at lower

bit error rates, for a decoder complexity comparable to that of turbo

codes.
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Block codes

Low-density parity-check codes

LDPC codes are defined by their parity-check matrix H.

Let ρ and γ denote positive integers, where ρ is small in comparison

with the code block length and γ is small in comparison with the

number of rows in H.

Definition

A binary LDPC code is defined as the set of codewords that satisfy a

parity-check matrix H, where H has ρ 1’s per row and γ 1’s per column.

The number of 1’s in common between any two columns in H, denoted

by λ, is at most 1, i.e., λ ≤ 1.
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Block codes

Low-density parity-check codes

After their rediscovery by MacKay and Neal (1996) a number of

good LDPC codes were constructed by computer search, which

meant that such codes lacked in mathematical structure and

consequently had more complex encoding than naturally systematic

LDPC codes.

The construction of systematic algebraic LDPC codes based on finite

geometries was introduced by Lin and others.
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Cyclic Codes

Among the codes in the class of block codes cyclic codes are the most

important from the point of view of practical engineering applications.

Cyclic codes are used in communication protocols, in music CDs, in

magnetic recording, etc.. This is due to their structure being based on

discrete mathematics, which allows a considerable simplification in the

implementation of encoders and decoders.

The formal treatment of cyclic codes is done in terms of polynomial

rings, with polynomial coefficients belonging to a Galois field GF(q),

modulo xn − 1, where n denotes the block length.
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Definition

A block code is called a cyclic code whenever a cyclic shift, applied to

any of its codewords, produces a codeword in the same code, i.e., if

v = (v0, v1, v2, . . . , vn−1) is a codeword then

vi = (vn−i , vn−i+1, . . . , v0, v1, . . . , vn−i−1)

obtained by shifting v cyclically by i places to the right, is also a

codeword in the same code, where the indices in v are reduced modulo n.

An n-tuple v can be represented by a polynomial of degree at most n − 1

as follows:

v(x ) = v0 + v1x + v2x
2 + · · ·+ vn−1x

n−1.
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Matrix representation

Using properties of finite fields it can be shown that all the codewords of

a (n, k , d) cyclic code are multiples of a well defined polynomial g(x ), of

degree n − k , and conversely that all polynomials of degree at most

n − 1 which are divisible by g(x ) are codewords of this code.

The polynomial g(x ) is called the code generator polynomial and is a

factor of xn − 1.

Each codeword of a cyclic code is a multiple of the code generator

polynomial g(x ). It follows that the polynomials

g(x ), xg(x ), x 2g(x ), . . . , x k−1g(x ) are codewords. We also note that

such codewords in particular are linearly independent.
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The codewords g(x ), xg(x ), x 2g(x ), . . . , x k−1g(x ) (linearly

independent) can be used to construct a generator matrix G for the

cyclic code which has g(x ) as its generator polynomial, as follows.

G =



















x k−1g(x )
...

x 2g(x )

xg(x )

g(x )



















,

where we assume that each row of G contains n elements, consisting of

the coefficients of the corresponding row polynomial and the remaining

empty positions are filled with zeros.

For encoding purposes, the cyclic shift property of cyclic codes allows a

sequential implementation of the G matrix which is presented next.
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Encoder with n − k stages of shift-register

This encoding procedure is based on the property that each codeword in

a cyclic code is a multiple of the code generator polynomial g(x ). The k

information digits can be represented by a polynomial I (x ), of degree at

most k − 1.

Multiplying the polynomial I (x ) by xn−k we obtain I (x )xn−k , which is a

polynomial of degree at most n − 1 which does not contain nonzero

terms of degree lower than n − k .

Dividing I (x )xn−k by g(x ) we obtain:

I (x )xn−k = Q(x )g(x ) + R(x ).
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Polynomials Q(x ) and R(x ) are, respectively, the quotient polynomial

and the remainder polynomial. R(x ) has degree lower than g(x ), i.e.,

R(x ) has degree at most n − k − 1.

If R(x ) is subtracted from I (x )xn−k , the result is a multiple of g(x ), i.e.,

the result is a codeword.

R(x ) represents the parity-check digits and has got no terms overlapping

with I (x )xn−k , as follows from our earlier considerations.
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Let g(x ) = xn−k + gn−k−1x
n−k−1 + · · ·+ g1x + 1. The circuit shown

next employs n − k stages of a shift-register and pre-multiplies the

information polynomial I (x ) by xn−k .

Encoder for a binary cyclic code
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Another sequential encoding procedure exists for cyclic codes based on

the polynomial h(x ) = (xn − 1)/g(x ), which employs k stages of

shift-register. We chose not to present this procedure here, however it

can be easily found in the coding literature.
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Cyclic Hamming codes

The Hamming codes seen have a cyclic representation. Cyclic Hamming

codes have a primitive polynomial p(x ) of degree m as their generator

polynomial, and have the following parameters:

n = 2m − 1, k = 2m −m − 1, d = 3.

Cyclic Hamming codes are easily decodable by a Megitt decoder, or by an

error-trapping decoder, which are described later.

Because Hamming codes are perfect codes, very often they appear in the

literature in most varied applications, as for example their codewords

being used as protocol sequences for the collision channel without

feedback.
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Maximum-length-sequence codes

The maximum period possible for a q-ary sequence generated by a

shift-register of m stages, employing linear feedback, is qm − 1.

We now look at binary maximum-length-sequence (m-sequence) codes,

i.e., we consider q = 2.
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Maximum-length-sequence codes

The m-sequence codes are cyclic, are dual codes of Hamming codes, and

have the following parameters:

n = 2m − 1, k = m, d = 2m−1, for m ≥ 2.

The generator polynomial of an m-sequence code has the form

g(x ) = (xn − 1)/p(x ), where p(x ) denotes a degree m primitive

polynomial.
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Maximum-length-sequence codes

The dictionary of an m-sequence code has an all-zeros codeword, and n

non-zero codewords which result from n cyclic shifts of a non-zero

codeword. It follows that all non-zero codewords have the same

Hamming weight.

The m-sequence codes are also called equidistant codes or simplex codes.
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Maximum-length-sequence codes

The m-sequence codes are completely orthogonalizable in one-step and

as a consequence they are easily decodable by majority logic.

The non-zero codewords of an m-sequence code have many applications,

including direct sequence spread spectrum, radar and location techniques.
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Bose-Chaudhuri-Hocquenghem codes

Bose-Chaudhuri-Hocquenghem codes (BCH codes) were discovered

independently and described in papers by Bose and Chaudhury (1960)

and Hocquenghem (1959).

The BCH codes are cyclic codes and represent one of the most important

classes of block codes having algebraic decoding algorithms.



UFPE

Basic concepts Block codes Cyclic Codes Decoding Cyclic Codes

Bose-Chaudhuri-Hocquenghem codes

For any two given positive integers m, t there is a BCH code with the

following parameters:

n = qm − 1, n − k ≤ mt , d ≥ 2t + 1.

The BCH codes can be seen as a generalization of Hamming codes,

capable of correcting multiple errors in a codeword. One convenient

manner of defining BCH codes is by specifying the roots of the generator

polynomial.
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Bose-Chaudhuri-Hocquenghem codes

Definition

A primitive BCH code over GF(q), capable of correcting t errors, having

block length n = qm − 1, has as roots of its generator polynomial

g(x ), αh0 , αh0+1, . . . , αh0+2t−1, for any integer h0, where α denotes a

primitive element of GF(qm ).

It follows that the generator polynomial g(x ) of a BCH code can be

written as the least common multiple (LCM) of the minimal polynomials.

g(x ) = LCM{m0(x ),m1(x ), ...,m2t−1(x )},

where mi(x ) denotes the minimal polynomial of αh0+i , 0 ≤ i ≤ 2t − 1.



UFPE

Basic concepts Block codes Cyclic Codes Decoding Cyclic Codes

Bose-Chaudhuri-Hocquenghem codes

When α is not a primitive element GF(qm ) the resulting codes are called

non-primitive BCH codes.

It follows that the respective block length is given by the multiplicative

order of α. BCH codes with h0 = 1 are called narrow sense BCH codes.

An alternative definition for BCH codes can be given in terms of the

finite field Fourier transform of the generator polynomial g(x ).
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Bose-Chaudhuri-Hocquenghem codes

The roots αh0+i , 0 ≤ i ≤ 2t − 1, of g(x ) correspond to the zero

components in the spectrum G(z ), in positions h0 + i , 0 ≤ i ≤ 2t − 1.

Definition

A primitive BCH code over GF(q), capable of correcting t errors, having

block length n = qm − 1, is the set of all codewords over GF(q) whose

spectrum is zero in 2t consecutive components h0 + i , 0 ≤ i ≤ 2t − 1.

The 2t consecutive roots of g(x ) or, equivalently, the 2t null spectral

components of G(z ) guarantee a minimum distance δ = 2t + 1, called

the designed distance of the code, as shown next in a theorem known as

the BCH bound theorem.
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Bose-Chaudhuri-Hocquenghem codes

Theorem

Let n be a divisor of qm − 1, for some positive integer m. If any non-zero

vector v in GF(q)n has a vector spectrum V with d − 1 consecutive null

components, Vj = 0, j = h0, h0 + 1, . . . , h0 + d − 2, then v has at least

d non-zero components.
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Reed-Solomon codes

Non-binary BCH codes

Reed-Solomon (RS) codes are non-binary BCH codes, with m = h0 = 1,

defined by the parameters:

n = q − 1, n − k = 2t , d = 2t + 1.

Generator polynomial

Given an element α primitive in GF(q), the generator polynomial of an

RS code has the following form:

g(x ) = (x − α)(x − α2)(x − α3)...(x − α2t ).



UFPE

Basic concepts Block codes Cyclic Codes Decoding Cyclic Codes

Reed-Solomon codes

Binary mapping of RS codes

Many practical applications employ binary digits, therefore RS codes with

q = 2r are a natural choice, having each 2r -ary symbol represented by r

binary digits.

Maximum distance separable codes

Since their minimum distance is equal to n − k + 1, RS codes constitute

a class of maximum distance separable codes.
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Reed-Solomon codes

Correction of random and phased bursts of errors

When mapped to binary, an RS code defined over GF(2r ) becomes a

binary code of block length nr which is capable of correcting both

random errors and burst errors.

Serial concatenation

Very often RS codes are employed as outer codes in serially concatenated

coding schemes.
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Golay codes

Code parameters

The Golay codes have the following parameters n = 23, k = 12, d = 7,

with a binary alphabet, and n = 11, k = 6, d = 5, with a ternary

alphabet.

Perfect codes with t > 1

The Golay codes are the only existent perfect codes with t > 1.
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The binary (23, 12, 7) Golay code

Let α be a primitive element of GF(211) and notice that

211 − 1 = 89× 23.

It follows that β = α89 is a non-primitive element of order 23.

The (23, 12, 7) binary cyclic Golay code is specified by the generator

polynomial g(x ) having β as a root.
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The binary (23, 12, 7) Golay code

Roots of the minimal polynomial of β

The roots of the minimal polynomial of β are:

β, β2, β4, β8, β16, β9, β18, β13, β3, β6, β12,

where the fact that β23 = 1 has been used.

Factoring of x 23 + 1 over GF(2)

The factoring of x 23 + 1 over GF(2) produces x 23 + 1 =

(x +1)(x 11+x 10+x 6+x 5+x 4+x 2+1)(x 11+x 9+x 7+x 6+x 5+x+1).
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The binary (23, 12, 7) Golay code

Degree 11 factors of x 23 + 1

Depending on the choice of the primitive polynomial that generates

GF(211), one of the two degree 11 factors of x 23 + 1 will have β, β2, β3

and β4 as the longest string of consecutive roots while the other degree

11 factor will have β19, β20, β21 and β22 as the longest string of

consecutive roots.

Any of these two degree 11 factors of x 23 + 1 can be the code generator

polynomial.
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The binary (23, 12, 7) Golay code

BCH bound

Notice that by the BCH bound this code has a designed distance δ = 5,

while the code true minimum distance is 7.

The extended (24, 12, 8) binary Golay code

The extended (24, 12, 8) binary Golay code is obtained from the

(23, 12, 7) Golay code by appending to each codeword an overall

parity-check digit, i.e., by appending a digit that makes even the total

number of 1’s in a codeword.
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The ternary (11, 6, 5) Golay code

Non-primitive BCH code over GF(3)

The (11, 6, 5) ternary Golay code can also be seen as a non-primitive

BCH code over GF(3).

Roots of x 11 − 1

If β is a primitive element in GF(35) then (β22)11 = β242 = 1.

Therefore, by considering α = β22, it follows that the powers

αi = (β22)i , 0 ≤ i ≤ 10, are the roots of x 11 − 1.
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The ternary (11, 6, 5) Golay code

Cyclotomic classes

The roots of x 11 − 1 split into cyclotomic classes as {1},

{α, α3, α9, α5, α4}, {α2, α6, α7, α10, α8}.

Irreducible factorization of x 11 − 1 over GF(3)

The binomial x 11 − 1 factors into irreducible polynomials over GF(3) as

x 11 − 1 = (x − 1)(x 5 + x 4 + 2x 3 + x 2 + 2)(x 5 + 2x 3 + x 2 + 2x + 2),

where the roots of x 5 + x 4 + 2x 3 + x 2 + 2 are {α, α3, α9, α5, α4} and

the roots of x 5 + 2x 3 + x 2 + 2x + 2 are {α2, α6, α7, α10, α8}.
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The ternary (11, 6, 5) Golay code

Ternary cyclic (11, 6, 5) Golay code

Consider the ternary cyclic (11, 6, 5) Golay code with generator

polynomial g(x ) = x 5 + x 4 + 2x 3 + x 2 + 2.

BCH bound

The set of roots of g(x ) contains a maximum of three consecutive roots,

namely α3, α4 and α5, and thus by the BCH bound it guarantees a

minimum Hamming distance of 4 but not 5 as required for a double-error

correcting code.
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The ternary (11, 6, 5) Golay code

We can also consider the (11, 6, 5) ternary Golay code generated by

x 5 + 2x 3 + x 2 + 2x + 2, having α6, α7 and α8 as its longest string of

consecutive roots of the generator polynomial.

Extended (12, 6, 6) ternary Golay code

The extended (12, 6, 6) ternary Golay code is obtained from the (11, 6, 5)

Golay code by appending to each codeword an overall parity-check digit,

i.e., by appending a digit that makes equal to zero the modulo 3 sum of

the digits in a codeword.
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Reed-Muller codes

Reed-Muller (RM) codes are binary codes which are equivalent to cyclic

codes with an overall parity-check digit attached.

Hadamard product of vectors of the same length

The vector whose components are the product of the corresponding

components of the factors.

Example

The abc Hadamard product of vectors a = (a1, a2, . . . , an),

b = (b1, b2, . . . , bn) and c = (c1, c2, . . . , cn) is given by:

abc = (a1b1c1, a2b2c2, ...., anbncn).
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Reed-Muller codes

Let v0 be the vector having 2m components, all of which are equal to 1.

Let v1,v2, . . . ,vm be vectors forming the rows of a matrix whose 2m

columns are all the distinct binary m-tuples.

Definition

The RM code of order r is defined by the generator matrix whose rows

are the vectors v0,v1, . . . ,vm and their respective Hadamard products

two at a time, three at a time, . . ., r at a time. For any positive integer

m, the RM code of order r has the following parameters:

n = 2m , k =

r
∑

i=0

C i
m , d = 2m−r .
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Reed-Muller codes

The RM codes are a large class of codes but have an error correction

power in general lower than that of BCH codes of equivalent rate.

Two important aspects characterize RM codes.

1 They are easily decodable by majority logic.

2 They are a sub-class of codes constructed from the Euclidean

geometry.
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Quadratic residue codes

Quadratic residues

Before defining quadratic residue codes it is necessary to introduce

quadratic residues.

Definition

An integer r is a quadratic residue of a prime number p, if and only if

there exists an integer s such that s2 ≡ r mod p.
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Quadratic residue codes

It can be shown that if n = 8m ± 1 is a prime number then 2 is a

quadratic residue of n. In this case xn + 1 can be factored as

(x + 1)Gr (x )Gr (x ), where:

Gr (x ) =
∏

r∈R0

(x + αr ) and Gr (x ) =
∏

r∈R0

(x + αr ),

where α denotes an element of multiplicative order n in an extension field

of GF(2), R0 denotes the set of quadratic residues modulo n and R0

denotes the set of quadratic non-residues modulo n.

The cyclic codes with generator polynomials

Gr (x ), (1 + x )Gr (x ), Gr (x ) and (x + 1)Gr (x ) are called quadratic

residue codes.
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Quadratic residue codes

An efficient way of decoding quadratic residue codes is by means of

permutations. Permutation decoders are usually more complex than

algebraic BCH decoders.

However, the minimum distance of some quadratic residue codes of

moderate length is greater than the minimum distance of BCH codes of

comparable block length.
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Alternant codes

The class of alternant codes is of great importance for including, as

particular cases, the BCH codes, Goppa codes, Srivastava codes and

Chien-Choy codes.

Alternant codes are constructed by a simple modification of the

parity-check matrix of a BCH code.
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Alternant codes

A BCH code of block length n and designed distance δ over GF(q) has a

parity-check matrix H = [hij ], where

hij = αij , 1 ≤ i ≤ δ − 1, 0 ≤ j ≤ n − 1, and α ∈ GF(qm ) is a primitive

nth root of unity.

Alternant codes are obtained by considering hij = x i−1
j yj , where

x = (x1, x2, . . . , xn) is a vector with distinct components, belonging to

GF(qm ) and y = (y1, y2, . . . , yn) is a vector with non-zero components,

also belonging to GF(qm ).
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Exercise

Consider the (2m − 1, 2m −m − 2, 3) binary cyclic Hamming code

generated by p(x ), a primitive polynomial of degree m. Show that this

code is capable of correcting any pattern containing at most two erasures.

Solution: By changing the values of at most two positions in a codeword

of a code with minimum distance 3 cannot produce another codeword.

Therefore by trial and error, at most four binary patterns need to be

tested as replacements for two erasures, which are corrected in this

manner.
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Exercise

Construct a table with the elements of GF(8) expressed as powers of a

primitive element α which is a root of x 3 + x + 1.

Solution:

Exponential form Polynomial form

0 0

1 1

α α

α2 α2

α3 α+ 1

α4 α2 + α

α5 α2 + α+ 1

α6 α2 + 1
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Exercise

Construct a table with the elements of GF(16) expressed as powers of a

primitive element α which is a root of x 4 + x + 1.

Solution:

Exp. form Poly. form

0 0

1 1

α α

α2 α2

α3 α3

α4 α+ 1

α5 α2 + α

α6 α3 + α2

Exp. form Poly. form

α7 α3 + α+ 1

α8 α2 + 1

α9 α3 + α

α10 α2 + α+ 1

α11 α3 + α2 + α

α12 α3 + α2 + α+ 1

α13 α3 + α2 + 1

α14 α3 + 1
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Exercise

Let α be a root in GF(8) of the binary primitive polynomial

p(x ) = x 3 + x + 1. Determine the generator polynomial g(x ) of an RS

code in GF(8) with minimum distance 5, such that g(α) = 0.

Solution: The generator polynomial g(x ) is required to have four

consecutive roots, where α is one of them. Using the roots α, α2, α3 and

α4, and using a table of elements of GF(8) to simplify the result we

obtain g(x ) = x 4 + α3x 3 + x 2 + αx + α3. Verify that α4, α5, α6 and α,

although not all consecutive roots, offer another solution to this problem.
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Exercise

Determine the generator polynomial g(x ) of the (15, 5, 7) binary BCH

code, having roots αi , 1 ≤ i ≤ 6.

Solution: Let g(x ) = m1(x )m3(x )m5(x ) denote the generator

polynomial. Using a table of elements of GF(16) we obtain

m1(x ) = x 4 + x + 1, m3(x ) = x 4 + x 3 + x 2 + x + 1, and

m5(x ) = x 2 + x + 1. Simplifying we obtain

g(x ) = x 10 + x 8 + x 5 + x 4 + x 2 + x + 1.



UFPE

Basic concepts Block codes Cyclic Codes Decoding Cyclic Codes

Decoding cyclic codes

The decoding procedures for linear block codes are also applicable to

cyclic codes.

The algebraic properties associated with the cyclic structure allow

important simplifications when implementing a decoder for a cyclic code,

both for calculating the syndrome and for correcting errors.
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Decoding cyclic codes

The syndrome computation consists in dividing by the generator

polynomial g(x ) the polynomial representing the word received from the

channel.

The remainder of this division is the syndrome, denoted by s(x ).

If s(x ) = 0, the received word is accepted as being a codeword.

If s(x ) 6= 0, declare that errors have occurred.
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Decoding cyclic codes

Error detection

It follows that a circuit to detect errors with a cyclic code is rather simple.

Error correction

The problem of locating error positions in a received word for correction

in general requires more elaborate techniques in order to be implemented

in practice.
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Berlekamp-Massey algorithm and the Euclidean

algorithm

So far, the most important algebraic decoding techniques for cyclic codes

are those based on the Berlekamp-Massey algorithm and on the

Euclidean algorithm.

In the sequel we give a brief presentation of the more relevant decoding

procedures for cyclic codes.
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Meggitt decoder

The Meggitt decoder employs a circuit to identify those syndromes that

correspond to error patterns containing an error in the highest order

position of the received word, i.e., an error at position xn−1.

When the digit at position xn−1 is being delivered to the sink it can be

altered or not, depending on the decision determined by the circuit that

identifies errors in that position.
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Meggitt decoder

By cyclically shifting the received word, digit by digit with a shift-register,

all digits will necessarily occupy position xn−1 after a certain number of

shifts, and will be examined by the circuit that identifies errors in that

position.

The decision for choosing a Meggitt decoder depends on the complexity

of the circuit that identifies errors at position xn−1 of the received word.

A straightforward way of implementing a Meggitt decoder is by the use of

programmable memories.
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Error-trapping decoder

The decoding algorithm known as error trapping operates by cyclically

shifting the syndrome shift-register, bit by bit, loaded with the syndrome

of the received word, and computing its Hamming weight at each step.

If a syndrome of Hamming weight at most t (number of correctable

errors) is detected, then the corresponding length n − k segment of the

error vector, containing all the errors, coincides with this shifted

syndrome.
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Error-trapping decoder

Once the error pattern is identified, or trapped, error correction is

immediate.

However, a situation may occur where, after n cyclic shifts, the Hamming

weight of the syndrome was never t or less.

In this case the decoder declares the occurrence of an error pattern that

spreads over a length of cyclically consecutive positions greater than

n − k .
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Error-trapping decoder

This decoding procedure is more appropriate for use with low rate codes,

since for a code with block length n, having k information digits and

capable of correcting t errors per block, the efficient application of error

trapping requires the condition

n/k = 1/R > t

to be satisfied.
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Information set decoding

In a linear (n, k , d) code any set of k positions that can be independently

specified in a codeword constitutes an information set.

As a consequence, the symbols in an information set define a codeword.

If an information set in a received n-tuple contains no errors then it is

possible to reconstitute the transmitted codeword.
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Information set decoding

The decoding algorithm based on information sets consists of the

following steps:

1) Construct several information sets for the given code.

2) Form various estimates of the transmitted codeword, by decoding the

received word using each of the information sets obtained in the

previous step.

3) Compare the received word with the estimates obtained in the previous

step and decide for the codeword nearest to the received word.
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Threshold decoding

Majority logic decoding

Threshold decoding is also known as majority logic decoding. A great

number of applications of this technique concentrates on cyclic codes.

Before describing threshold decoding it is necessary to introduce the

concept of parity-check sums or simply parity sums.
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Threshold decoding

Syndrome

The syndrome is represented by a vector having n − k coordinates,

s = (s0, s1, . . . , sn−k−1), where, for a given (n, k , d) linear code with

parity-check matrix H = [hij ] and an error vector (e0, e1, . . . , en−1) we

have the relation:

s = eHT ,

where each syndrome component sj , 0 ≤ j ≤ n − k − 1, is given by

sj =

n−1
∑

i=0

eihij .
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Threshold decoding

Parity-check sum

The linear combination of syndrome digits A =
∑n−k−1

i=0 aisi , where ai is

either 0 or 1, with the help of sj =
∑n−1

i=0 eihij can be written as

A =

n−1
∑

i=0

biei , (3)

where bi is either 1 or 0.

An error in position ei is said to be checked by A if the corresponding

coefficient bi in (3) is 1. Expression (3) is called a parity-check sum.
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Orthogonal set

Definition

Given a set of J parity-check sums A1,A2, . . . ,AJ , such that a position

el in the error vector is checked by all parity sums and all other positions

ei , i 6= l , in the error vector are checked at most once, then this set is

said to be orthogonal on position el .
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Threshold decoding

Assuming the occurrence of t ≤ ⌊J/2⌋ errors in the received word, the

threshold decoding procedure is based on the following reasoning:

i) el = 1. This means that the remaining t − 1 errors will affect at

most t − 1 ≤ ⌊J/2⌋ − 1 of the J parity sums, thus leaving at least

J − ⌊J/2⌋+ 1 = ⌈J/2⌉+ 1 parity sums equal to 1.

ii) el = 0. In this case the t errors will affect at most ⌊J/2⌋ parity

sums, i.e., half of the parity sums in the worst case situation.
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Threshold decoding

The threshold decoding rule consists in making el = 1, i.e., to declare the

presence of an error in this position, whenever the majority of the parity

sums are equal to 1.

Otherwise, make el = 0, i.e., in case the number of parity sums equal to

1 coincides with the number of parity sums equal to 0, or if the majority

of the parity sums are equal to 0.
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Threshold decoding

For a cyclic code, after decoding a given position in a codeword a cyclic

shift is applied to that codeword and the same set of J parity-check sums

are used to decode position el−1, and so on in a similar manner for

decoding the remaining codeword positions until the complete codeword

is decoded.

Codes for which J = d − 1 are said to be completely orthogonalizable.
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Threshold decoding

However, it is not always possible to obtain directly J parity sums

orthogonal on a given position of a codeword.

For various classes of codes orthogonal parity sums are obtained in L

steps, where at each step one uses parity sums orthogonal on a sum of

codeword positions.
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Exercise

Consider the binary maximum-length sequence (7, 3, 4) code generated by

g(x ) = x 4 + x 3 + x 2 + 1. Determine three parity-check sums, orthogonal

on position e6.

Solution: The code parity-check matrix H is given by

H =

















1 0 1 1 0 0 0

1 1 1 0 1 0 0

1 1 0 0 0 1 0

0 1 1 0 0 0 1

e6 e5 e4 e3 e2 e1 e0
















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Exercise

A1 = s3 = e6 + e4 + e3

A2 = s1 = e6 + e5 + e1

A3 = s2 + s0 = e6 + e2 + e0.

The three parity-check sums, A1,A2 and A3, orthogonal on position e6,

are obtained.

Since J = 3 = d − 1, we conclude that this code is completely

orthogonalizable in one-step, and by threshold decoding it corrects one

error per codeword.
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Exercise

Consider the binary cyclic (7, 4, 3) Hamming code generated by

g(x ) = x 3 + x + 1. This code is the dual of the (7, 3, 4) code of the

previous Exercise and is threshold decodable in two-steps. We describe a

two-step decoding algorithm for this code, with the help of the code H

matrix.

Solution: The corresponding parity-check matrix H is given by

H =







1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 1 0 1 0 0 1






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Exercise

Using the H matrix we obtain the following parity sums.

A1 = s2 = e6 + e5 + e4 + e2

A2 = s2 + s1 = e6 + e3 + e2 + e1

A3 = s0 = e6 + e5 + e3 + e0.

Notice that A1 and A2 are orthogonal on the sum e6 + e2, and that A1

and A3 are orthogonal on the sum e6 + e5.



UFPE

Basic concepts Block codes Cyclic Codes Decoding Cyclic Codes

Exercise

Use the sums A1 and A2 to estimate the sum e6 + e2, and use the sums

A1 and A3 to estimate e6 + e5. This concludes the first decoding step.

Use the two estimated sums, denoted by A4 and A5, respectively, i.e.,

A4 = e6 + e2

A5 = e6 + e5,

which are orthogonal on e6, constitute the second decoding step and

complete the orthogonalization process for this code.
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Algebraic decoding

In general, for a given (n, k , d) code the decoding process has always a

complexity higher than the corresponding encoding process.

From a practical point of view the best code is chosen subject to a

specified budget.

This financial constraint can force the choice of suboptimum codes,

however having a decoder which is amenable to practical implementation.
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Algebraic decoding

Fortunately, for some classes of algebraic codes decoding algorithms were

developed which are computationally efficient.

The problem of decoding algebraic codes consists in solving a system of

nonlinear equations, whose direct solution in general is not obvious.
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Berlekamp-Massey time domain decoding

An important algebraic decoding algorithm for BCH codes was published

by Berlekamp in 1968.

Analyzing Berlekamp’s algorithm, Massey (1969) showed that it provided

a general solution to the problem of synthesizing the shortest linear

feedback shift-register capable of generating a prescribed finite sequence

of digits.

Since then this algorithm is known as the Berlekamp-Massey (BM)

algorithm.
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Berlekamp-Massey time domain decoding

The BM algorithm is widely applicable for decoding algebraic codes,

including RS codes and BCH codes.

For binary BCH codes, there is no need to calculate error magnitude

values, since in GF(2) it is sufficient to determine the positions of the

errors to perform error correction.

For non-binary BCH codes, including RS codes, both error location and

error magnitudes have to be determined to perform error correction.
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Flow chart of the Berlekamp-Massey algorithm
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Let (n, k , d) denote an algebraic code (BCH or RS) with generator

polynomial g(x ) having coefficients in some finite field GF(q) and having

roots α, α2, . . . , α2t .

Let c(x ) =
∑n−1

i=0 cix
i denote a codeword polynomial, let

e(x ) =
∑n−1

i=0 eix
i denote the error polynomial with coefficients in

GF(q) and let r(x ) = c(x ) + e(x ), with addition over GF(q), denote the

received n-tuple in polynomial form.
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The approach used for algebraic decoding contains the following steps.

1) Compute the first 2t coefficients s0, s1, . . . , s2t−1 of the syndrome

polynomial s(x ) = s0 + s1x + · · ·+ s2t−1x
2t−1 + · · · , where

s0 = r(α), s1 = r(α2), . . . , s2t−1 = r(α2t ).

2) Use the sequence s0, s1, . . . , s2t−1 as input to the BM algorithm and

compute the error-locator polynomial σ(x ), of degree τ , τ ≤ t , where

σ(x ) = 1 + σ1x + σ2x
2 + · · ·+ στx

τ .

3) Find the roots of σ(x ), denoted by β1, β2, . . . , βτ , whose

multiplicative inverses give the error locations.

4) Compute the error magnitudes in case of non-binary codes.
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Berlekamp (1968) introduced a procedure for computing error

magnitudes for non-binary cyclic codes and defined the polynomial

Z (x ) = 1 + (s0 + σ1)x + (s1 + σ1s0 + σ2)x
2 + · · ·

· · ·+ (sτ−1 + σ1sτ−2 + σ2sτ−3 + · · ·+ στ )x
τ . (4)

Error magnitudes at positions β−1
i , 1 ≤ i ≤ τ, are calculated as

ei =
Z (βi)

∏τ
j=1,j 6=i (1− β−1

j βi)
. (5)
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In the block diagram of the BM algorithm C (D) plays the role of σ(x ).

By applying the BM algorithm to a received word an estimate of the error

pattern is obtained, which has minimum Hamming weight and satisfies all

the syndrome equations.

Whether or not such an estimate will be the true error pattern that

occurred on the channel will depend on its Hamming weight τ in

comparison to t .

Decoding succeeds whenever the condition τ ≤ t is satisfied.
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The Euclidean algorithm

The Euclidean algorithm is a technique which allows the calculation of

the greatest common divisor of two integers, or of two polynomials.

Our main interest is to solve the key equation for decoding cyclic codes,

and not to calculate the greatest common divisor.



UFPE

Basic concepts Block codes Cyclic Codes Decoding Cyclic Codes

The Euclidean algorithm

Beginning with two polynomials, a(z ) and b(z ), the Euclidean algorithm

employs the following relationship:

fi(z )a(z ) + gi(z )b(z ) = ri(z ),

where, for any one of the polynomials fi(z ), gi(z ) or ri(z ) replacing

hi(z ), the following recurrence relation is applied:

hi(z ) = hi−2(z ) − qi(z )hi−1(z ),

subject to the following initial conditions.
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The Euclidean algorithm

f−1(z ) = g0(z ) = 1

f0(z ) = g−1(z ) = 0

r−1(z ) = a(z )

r0(z ) = b(z ).
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The Euclidean algorithm

The polynomial qi(z ) is given by the integer part with non-negative

exponents of the quotient

ri−2(z )/ri−1(z ).

In order to solve the key equation we consider

a(z ) = z 2t and b(z ) = S (z ),

and apply the Euclidean algorithm, stopping when the degree of ri(z ) is

less than t . We then take

L(z ) = gi(z ).
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Exercise

BM decoding of a BCH code

Consider the (15, 7, 5) binary BCH code, with g(x ) = m1(x )m3(x )

= (x 4 + x + 1)(x 4 + x 3 + x 2 + x + 1) as generator polynomial and

decode the received polynomial r(x ) = x + x 9 with the BM algorithm.

Solution: The syndrome coefficients for the received polynomial

r(x ) = x + x 9 are calculated using a table of elements of GF(16) as

s0 = r(α) = α+ α9 = α3

s1 = r(α2) = α2 + α18 = α6

s2 = r(α3) = α3 + α27 = α10

s3 = r(α4) = α4 + α36 = α12.
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Exercise

Evolution of the BM algorithm for the input sequence

(s0, s1, s2, s3) = (α3, α6, α10, α12).

n sn δ T (D) C (D) = σ(X ) L C ∗(D) δ∗ x

0 α3 α3 − 1 0 1 1 1

1 α6 0 1 1 + α3D 1 1 α3 1

2 α10 α13 1 1 + α3D 1 1 α3 2

3 α12 0 1 + α3D 1 + α3D + α10D2 2 1 + α3D α13 1
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Exercise

The previous table is used to compute the error-locator polynomial with

the BM algorithm for the input sequence s0, s1, s2, s3 = α3, α6, α10, α12.

C (D) = 1 + α3D + α10D2 is the error-locator polynomial, or

σ(x ) = 1 + α3x + α10x 2, the roots of which are found by an exhaustive

search to be β1 = α6 and β2 = α14.
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Exercise

The error positions are the exponents of α in the representation of β−1
1

and β−1
2 , i.e., β−1

1 = α−6 = α9 and β−1
2 = α−14 = α.

Two errors are thus located, at positions x and x 9, respectively.

After the operation of error correction is completed, the decoded word is

the all-zero codeword, i.e., c(x ) = 0.
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Exercise

BM decoding of an RS code

Consider the (7, 5, 3) RS code over GF(8), with generator polynomial

g(x ) = (x − α)(x − α2) and decode the received polynomial

r(x ) = α2x 3 using the BM algorithm.

Solution: The syndrome coefficients for the received polynomial

r(x ) = α2x 3 are calculated using a table of elements of GF(8) as

s0 = r(α) = α5

s1 = r(α2) = α8 = α.
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Exercise

Evolution of the BM algorithm for the input sequence (s0, s1) = (α5, α).

n sn δ T (D) C (D) = σ(X ) L C ∗(D) δ∗ x

0 α5 α5 − 1 0 1 1 1

1 α 1 1 1 + α5D 1 1 α5 1

1 + α5D 1 + α3D 1 1 + α5D 1 1

This table is used to compute the error-location polynomial with the BM

algorithm for the input sequence s0, s1 = α5, α.
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Exercise

The polynomial C (D) = 1 + α3D is the error-locator polynomial, and

since C (D) = σ(x ) we write

σ(x ) = 1 + α3x ,

whose root is found by an exhaustive search to be β = α4.

The error position is the exponent of α in the representation of β−1, i.e.,

β−1 = α−4 = α3. Therefore, an error occurring at x 3 has been found,

i.e., e(x ) = e3x
3.
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Exercise

In case of just a single error occurring, the error magnitude is easily found

as follows.

s0 = e(α) = α5 = e3α
3,

and thus e3 = α2.

Therefore, e(x ) = α2x 3 and c(x ) = r(x )− e(x ) = 0, i.e., the decoded

polynomial is the all-zero polynomial.

It is clear that to correct single errors it is not necessary to resort to (4)

and (5).
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Exercise

BM decoding of an RS code

Consider the (15, 11, 5) RS code over GF(16), with generator polynomial

g(x ) = (x − α)(x − α2)(x − α3)(x − α4) and decode the received

polynomial r(x ) = α2x + α3x 9 with the BM algorithm.

Solution: The syndrome coefficients for the received polynomial

r(x ) = α2x + α3x 9 are calculated using a table of elements of GF(16).

as
s0 = r(α) = α3 + α12 = α10

s1 = r(α2) = α4 + α6 = α12

s2 = r(α3) = α5 + 1 = α10

s3 = r(α4) = α6 + α9 = α5.
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Exercise

Evolution of the BM algorithm for the input sequence

(s0, s1, s2, s3) = (α10, α12, α10, α5), where a(x ) = 1 + α2D + αD2.

n sn δ T (D) C (D) L C ∗(D) δ∗ x

0 α10 α10 − 1 0 1 1 1

1 α12 α14 1 1 + α10D 1 1 α10 1

2 α10 α11 1 + α10D 1 + α2D 1 1 α10 2

3 α5 α2 1 + α2D 1 + α2D + αD2 2 1 + α2D α11 1

a(x ) 1 + α3D + α10D2 2 a(x ) α11 2

This table is used to compute the error-locator polynomial with the BM

algorithm for the input sequence s0, s1, s2, s3 = α10, α12, α10, α5.
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Exercise

The polynomial C (D) = 1 + α3D + α10D2 is the error-locator

polynomial, and since C (D) = σ(x ) we write

σ(x ) = 1 + α3x + α10x 2 = (1 + αx )(1 + α9x ),

the roots of which are found by an exhaustive search to be β1 = α14 and

β2 = α6.

The error positions are the exponents of α in the representation of β−1
1

and β−1
2 , i.e., β−1

1 = α−14 = α and β−1
2 = α−6 = α9.
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Exercise

Two errors are thus located, at positions x and x 9, respectively. The

error magnitudes are found with the help of (4) and (5) as follows.

Z (x ) = 1 + (s0 + σ1)x + (s1 + σ1s0 + σ2)x
2

= 1 + (α10 + α3)x + (α12 + α3α10 + α10)x 2

= 1 + α12x + α8x 2.
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Exercise

Then

e1 =
Z (β1)

(1 + β−1
2 β1)

=
1 + α12α14 + α8α13

(1 + α9α14)
=

α4

α2
= α2

e2 =
Z (β2)

(1 + β−1
1 β2)

=
1 + α12α6 + α8α12

(1 + αα6)
=

α12

α9
= α3.

The error polynomial is thus α2x + α3x 9. After the operation of error

correction is completed, the decoded polynomial is the all-zero

polynomial, i.e., c(x ) = 0.
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Finite Field Fourier Transform

Definition

Let v = (v0, v1, . . . , vi , . . . , vn−1) be an n-tuple with coefficients in

GF(q), where n divides qm − 1 for some positive integer m, and let α be

an element of multiplicative order n in GF(qm). The n-tuple

V = (V0,V1, . . . ,Vj , . . . ,Vn−1) defined over GF(qm), whose

components are given by:

Vj =

n−1
∑

i=0

αij vi , j = 0, 1, . . . , n − 1,

is called the finite field Fourier transform of v.
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Finite Field Fourier Transform

Vectors v and V constitute a Fourier transform pair, usually represented

as:

v⇐⇒ V

or

{vi} ←→ {Vj}.

Indices i and j are referred to as time and frequency, respectively. Some

important properties of the FFFT which have great utility in algebraic

coding are presented next.
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Finite Field Fourier Transform

PROPERTY 1 - Over GF(q), a finite field of characteristic p, the

components vi , 0 ≤ i ≤ n − 1, of a vector v are related to the

components Vj , 0 ≤ j ≤ n − 1, of its finite field Fourier transform V

through the expressions:

Vj =

n−1
∑

i=0

αij vi

vi =
1

(n mod p)

n−1
∑

j=0

α−ijVj .
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Finite Field Fourier Transform

PROPERTY 2 - Given a Fourier transform pair {vi} ↔ {Vj} and

constants c, i0 and k , then:

a) c{vi} ←→ c{Vj} (Linearity)

b) {vi−i0} ←→ {Vjα
ji0} (Time shift)

c) {vki} ←→ {Vj/k} (Scaling)(k , n) = 1.
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Finite Field Fourier Transform

PROPERTY 3 - Given two Fourier transform pairs

{fi} ←→ {Fj}

and

{gi} ←→ {Gj},

then:

{figi} ←→ {(1/n)FkGj−k} (Frequency domain convolution).
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Finite Field Fourier Transform

Vectors v and V are also usually represented by polynomials as follows.

v(x ) = vn−1x
n−1 + vn−2x

n−2 + · · ·+ v1x + v0

V (z ) = Vn−1z
n−1 + Vn−2z

n−2 + · · ·+V1z +V0.

It follows from this polynomial representation of v and V that

Vj =

n−1
∑

i=0

αij vi = v(αj )

vi = (1/n)

n−1
∑

j=0

α−ijVj = (1/n)V (α−i ).
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Finite Field Fourier Transform

The roots of a polynomial in one domain and the components of the

corresponding FFFT pair in the other domain are related as follows.

v(x ) has a root αj , i.e., v(αj ) = 0, if and only if Vj = 0. Conversely,

V (z ) has a root α−i , i.e., V (α−i) = 0, if and only if vi = 0.
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Euclidean frequency domain decoding

The decoding procedure known as algebraic decoding in the frequency

domain is applicable to any cyclic code, being however more efficient for

BCH codes.

The received vector r is assumed to result from the sum v + e over

GF(q) of a codeword v and an error vector e, i.e., r = v + e.

The steps required for using this decoding procedure are described next.
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Euclidean frequency domain decoding

Fourier transform of the received vector

The Fourier transform R of the received vector r is computed. Due

to linearity R can be expressed as a function of the corresponding

Fourier transforms of v and e, i.e., as R = V+E.

Syndrome calculation

S (z ) =

2t−1
∑

j=0

Sj z
j ,

Sj = Rj+h0
=

n−1
∑

i=0

riα
i(j+h0), j = 0, 1, . . . , 2t − 1.
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Euclidean frequency domain decoding

Error locator polynomial calculation

This step is also known as the solution of the key equation. The

error locator polynomial, L(z ), has the form:

L(z ) =
ν−1
∑

k=0

Lz z
k =

ν
∏

k=1

(1 − zαik ),

where ν ≤ t and i1, i2, . . . , iν , correspond to the error locations.

The Euclidean algorithm is applied with a(z ) = z 2t and b(z ) = S (z ),

stopping when the degree of ri(z ) becomes less than t . We take

L(z ) = gi(z ).
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Euclidean frequency domain decoding

Error vector Fourier transform calculation

The error vector e has its Fourier transform denoted by E, which

has the following polynomial representation

E (z ) =

n−1
∑

j=0

Ej z
j .

Since the code is assumed to have 2t consecutive roots, it follows

that the coefficients Ej , j = h0, h0 + 1, . . . , h0 + 2t − 1, are known.



UFPE

Basic concepts Block codes Cyclic Codes Decoding Cyclic Codes

Euclidean frequency domain decoding

The remaining unknown coefficients are calculated by means of the

following recursive formula

n−1
∑

k=0

LkEj−k = 0,

which can be slightly simplified to

Ej =

ν−1
∑

k=0

LkEj−k ,

because L0 = 1 and L(z ) has degree ν − 1 ≤ t − 1.
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Euclidean frequency domain decoding

Error correction

The error vector is obtained as the inverse Fourier transform of

vector E, obtained in the previous step.

Finally, the estimated transmitted codeword is given by

v = r− e.
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Exercise

Frequency domain decoding

Consider the binary (7, 4, 3) BCH code having α, α2 and α4, as roots of

the generator polynomial, where α denotes a primitive element of

GF(23). Decode the received word r(x ) = x 6 + x 3 using the Euclidean

frequency domain decoder.

Solution: The received word r(x ) in vector form is expressed as

r = (1, 0, 0, 1, 0, 0, 0).
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Exercise

The Fourier transform of r(x )

From r(x ) we compute R and obtain

R = (α2, α4, α2, α, α, α4, 0),

where

Rj =

6
∑

i=0

riα
ij = α6j + α3j .

Syndrome calculation

For the syndrome we obtain Sj = Rj+1, j = 0, 1, which gives:

S0 = R1 = α4, S1 = R2 = α,

and therefore, S (z ) = αz + α4.
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Exercise

Error locator calculation

We find L(z) by means of the Euclidean algorithm.

i gi(z ) ri(z ) qi(z )

−1 0 z 2 −

0 1 αz + α4 −

1 α6z + α2 α6 α6z + α2

therefore, L(z ) = α6z + α2.

Error vector Fourier transform calculation

ν−1
∑

k=0

LkEj−k = 0

L0Ej + L1Ej−1 = 0.
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Exercise

We know that Ej = Sj−1, j = 1, 2. It thus follows that E1 = α4 and

E2 = α. From L(z ) = α6z + α2 we extract L0 = α2 and L1 = α6, which

are then applied to the recursion L0Ej + L1Ej−1 = 0 to produce

Ej = α4Ej−1.

We use the recursion Ej = α4Ej−1 to compute the remaining unknown

values of E and obtain:

E = (α3, α6, α2, α5, α, α4, 1).



UFPE

Basic concepts Block codes Cyclic Codes Decoding Cyclic Codes

Exercise

Error correction

The inverse Fourier transform of E is the following:

e = (0, 0, 1, 0, 0, 0, 0).

Therefore, we obtain e(x ) = x 4, and the corrected word is given by:

v(x ) = r(x )− e(x ), i.e., v(x ) = x 6 + x 4 + x 3.
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Soft-decision Decoding

Probabilistic decoding

Probabilistic decoding algorithms are used in soft-decision decoding.

A soft-decision decoder employs received symbol reliability information

supplied by the demodulator when deciding which codeword was

transmitted.

Typically soft-decision decoding leads to a gain of at least 2.0 dB with

respect to hard-decision decoding.



UFPE

Basic concepts Block codes Cyclic Codes Decoding Cyclic Codes

Decoding LDPC Codes

Efficient decoding of LDPC codes relies on the sum-product algorithm

(SPA), which is a symbol-by-symbol soft-in soft-out iterative decoding

algorithm.

The received symbols are fed to the decoder which employs iterations

based on the code parity-check matrix H to improve the reliability of the

decoded symbols.
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Decoding LDPC Codes

After each iteration the available symbol reliability values are used to

make hard decisions and to output a decoded binary n-tuple z.

If zHT = 0 then z is a codeword and decoding stops.

If zHT 6= 0 then z is not a codeword and another iteration is performed

by the decoder.
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Decoding LDPC Codes

A stop condition is defined by specifying a maximum number of decoder

iterations.

A decoding failure occurs if the maximum number of iterations is reached

and the decoder does not find a codeword.
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Decoding LDPC Codes

Let v = (v1, v2, . . . , vi , . . . , vn) denote a codeword and let y denote a

received n-tuple with real valued coordinates.

The SPA is implemented by computing the marginal probabilities

P(vi |y), for 1 ≤ i ≤ n.
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This SHORT COURSE is now concluded.

THANK YOU!
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