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Codes with locality

Introduction: Big Data

Big Data players: Facebook, Instagram, Google, MSFT, etc.; Dropbox, Box, etc.
Companies marketing coding solutions: CleverSafe (RS codes) and others.

Cluster of machines running Hadoop at Yahoo!

Node failures are the norm
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Codes with locality

Is repair cost a real issue?

(Average number of failed nodes =20) ×15Tb = 300Tb
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Codes with locality

Two approaches to data coding in distributed storage

Codes with locality

Regenerating codes
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Codes with locality

Regenerating codes
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B symbols are encoded into nα symbols stored in n nodes

Downloading the data is possible by accessing any k nodes
Node repair (exact or functional) can be performed by downloading β < α symbols from any
subset of d nodes.
Repair bandwidth dβ

(n, k , d , {α, β}) regenerating codes
A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, Network coding for distributed storage

systems, 2010
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Codes with locality

Locally recoverable codes: Plan

In this part we focus on locally recoverable codes

LRC code: To recover one lost symbol of the encoding it suffices to access a small
number r of other symbols.

...1 Current solutions

...2 Parameters of LRC codes

...3 MDS-like codes with the locality property

...4 The availability problem: Multiple recovering sets

...5 Extensions

LRC codes on algebraic curves

Cyclic LRC codes
...6 Open problems: Bounds on codes; cyclic codes; list decoding
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Codes with locality

State-of-the-Art Coding technique

RAID: Redundant Array of Independent Disks

RAID 1 – Replication (currently 3x)

Provides high availability of information

Can tolerate any 2 disk failures

Widely used in Hadoop and many other systems

Storage overhead of 200%

RAID 6 uses [6,4,3] RS codes

[n, k ] RS codes

Can tolerate any n-k disk failures

Poor handling of single disk failures (The Repair Problem)
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Codes with locality

Limitations of Reed-Solomon codes

Example: [14, 10] RS code

Transmit 10 symbols to recover one lost value

Generates 10x more traffic for recovery of one drive
If large portion of the cluster is RS-coded, this leads to saturation of the network
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Codes with locality

Other constructions

A combination of local and global parity checks for single and multiple nodes failures

(C. Huang at al., Erasure coding in Windows Azure Storage, USENIX Conf. 2012)

Other similar constructions (Windows Azure code)

X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 Y4 Y5 Y6 P1 P2

Px Py

Pyramid codes (C. Huang et al., 2007)
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LRC Codes

Locally recoverable codes

The code C ⊂ Fn is locally recoverable
with locality r if every symbol can be
recovered by accessing some other r
symbols in the encoding (recovering set
of coordinate i)
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Table of codewords

I

a

a’
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LRC Codes

(n, k , r) LRC code

Let a ∈ F; consider the restriction CJ of C to a subset J ⊂ [n].
Let

CJ(a, i) = {x ∈ CJ : xi = a}, i ∈ [n].

.
Definition
..

......

Code C has locality r if for every i ∈ [n] there exists a subset Ji ⊂ [n]\i , |Ji | ≤ r such
that

CJi (a, i) ∩ CJi (a
′, i) = ∅, a ̸= a′

J. Han and L. Lastras-Montano, ISIT 2007;
C. Huang, M. Chen, and J. Li, Symp. Networks App. 2007;
F. Oggier and A. Datta ’10;
P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, IEEE Trans. Inf. Theory, Nov. 2012.
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Bounds

Parameters of LRC codes

.
Theorem
..

......

Let C be an (n, k , r) LRC code of cardinality qk over an alphabet of size q, then:
The rate of C satisfies

k
n

≤ r
r + 1

. (1)

The minimum distance of C satisfies

d ≤ n − k −
⌈

k
r

⌉
+ 2. (2)

Bound (2) is due to Gopalan e.a. (2011) and Papailiopoulos e.a. (2012).

Note that r = k reduces (2) to the Singleton bound

d ≤ n − k + 1
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Bounds

The distance bound

Main idea. Let C be a q-ary code of length n, size qk . The distance d(C) equals

d(C) = n − max
S⊂[n]

{|S| : |CS | < qk}

The Singleton bound (without locality): |S| = k − 1
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Let Ii ⊂ [n], |Ii | ≤ r be the recovering set for the symbol ci , i = 1, ..., n.

Let Jm = ∪m
i=1Ii , where m = ⌊(k − 1)/r⌋. Clearly |Jm| ≤ k − 1.

Consider the subset J ′
m = Jm ∪ {1, . . . ,m}. We have CJ′m ≤ qk−1.

If |J ′
m| < k − 1, add to J ′

m any k − 1 − |Jm| other coordinates to form the set Lm ⊂ [n].

We have
|CLm | < qk

|Lm| = k − 1 + m = k − 1 +
⌊k − 1

r

⌋
= k − 2 +

⌈k
r

⌉
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Bounds

Cadambe-Mazumdar bound

(n, k , r) LRC code C

k ≤ min
s≥1

(rs + k (q)
opt (n − s(r + 1), d))

Consider the sets of coordinates Ls constructed above, 1 ≤ s ≤ ⌊(k − 1)/r⌋.

|CLs | ≤ qrs

The shortening of the code C on the coordinates in Ls forms a code of length
n − s(r + 1) with distance d
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Bounds

Existence (Gilbert-Varshamov) bound

A linear q-ary [n, k ′, d ] code exists if

d−2∑
i=0

(
n − 1

i

)
(q − 1)i < qn−k′

Add ⌈n/(r + 1)⌉ local parities

k ≥ k ′ −
⌈ n

r + 1

⌉
Sequences of (R, δ) codes with locality r exist as long as

R <
r

r + 1
− δ logq

q − 1
δ

− (1 − δ) logq
1

1 − δ

R ≤ r
r + 1

− hq(δ)
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Constructions

Early constructions

...1 Optimal ((r + 1)⌈k/r⌉, k , r) LRC code

Prasanth, Kamath, Lalitha, and Kumar, ISIT 2012
Restricted length

...2 Optimal (n, k , r) LRC codes

Silberstein, Rawat, Koluoglu, and Vishwanath, ISIT 2013
Tamo, Papailiopoulos, and Dimakis, ISIT 2013

Almost any n, k , r

Field size q ∼ 2n
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Constructions RS-type codes

Reed-Solomon codes

An RS code C is a linear code of length n ≤ q − 1 over the field Fq

Given a polynomial f ∈ Fq[x ] and a set A = {P1, . . . ,Pn} ⊂ Fq define the map

evA : f 7→ (f (Pi), i = 1, . . . , n)

RS code C encodes messages of k symbols.
Let Vk (q) = {f ∈ Fq[x ] : deg(f ) ≤ k − 1}

C : Vk (q) → Fn
q

f 7→ evA(f ) = (f (Pi), i = 1, . . . , n)

Example: Let q = 8, f (x) = 1 + αx + αx2

f (x) 7→ (1, α4, α6, α4, α, α, α6)
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Constructions RS-type codes

Reed-Solomon codes
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Constructions RS-type codes

Reed-Solomon codes
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Constructions RS-type codes

LRC codes: Idea of construction

What if we can interpolate low-degree polynomials?
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Constructions RS-type codes

Construction of LRC codes: Limitations

We need a specially chosen set of points A

Restricted set of polynomials
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Constructions RS-type codes

Construction of (n, k , r) LRC codes: Example

Parameters: n = 9, k = 4, r = 2, q = 13;

Set of points: A={1,2,3,4,5,6,9,10,12}
A = {A1 = {1, 3, 9},A2 = {2, 6, 5},A3 = {4, 12, 10}}

Message: a = (a0,0, a0,1, a1,0, a1,1) ∈ Fk
q

Polynomial space:

Vk (q) := {a0,0 + a1,0x + a0,1x3 + a1,1x4}

E.g., a = (1, 1, 1, 1), fa(x) = 1 + x + x3 + x4; evA(f ) = (4, 8, 7, 1, 11, 2, 0, 0, 0)

Say c1 = fa(1) is erased. We access the recovering set A1 to construct a line
δ(x) = 2x + 2 such that δ(3) = 8, δ(9) = 7.

Compute c1 as δ(1) = 4

It works!
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Constructions RS-type codes

Construction of (n, k , r) LRC codes

Assume that q ≥ n, (r + 1)|n, r |k
Let A ⊆ Fq , |A| = n

Suppose there exists a polynomial g(x) ∈ F[x ] such that
...1 deg g = r + 1,
...2 There exists a partition A = {A1, ...,A n

r+1
} of A into sets of size r + 1, such that g

is constant on each set Ai in the partition. For all i = 1, . . . , n/(r + 1), and any
α, β ∈ Ai ,

g(α) = g(β).

E.g., n = 9, r = 2, q = 13;

A = {A1 = {1, 3, 9},A2 = {2, 6, 5},A3 = {4, 12, 10}},

Then g(x) = x3 is constant on each of the Ai ’s
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Constructions RS-type codes

Construction of (n, k , r) LRC codes

Given A ⊂ F, partition A into (r + 1)-subsets.

To encode the message a ∈ Fk , write a = (aij , i = 0, . . . , r − 1; j = 0, ..., k
r − 1)

Define the encoding polynomial

fa(x) =
r−1∑
i=0

fi(x)x i ,

where

fi(x) =

k
r −1∑
j=0

aijg(x)j , i = 0, ..., r − 1

A linear code C is constructed as follows:

Ev :Fk → Fn

a 7→ (fa(β), β ∈ A)
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Constructions RS-type codes

Recovery of erased symbol

Suppose that the location of erased symbol is α ∈ Aj ;Aj ∈ A

To find cα we rely on the recovering set Aj

Find a polynomial δ(x) s.t. δ(β) = cβ , β ∈ Aj\α; deg δ ≤ r − 1 :

δ(x) =
∑

β∈Aj\α

cβ

∏
β′∈Aj\{α,β}

x − β′

β − β′

Then cα = δ(α)
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Constructions RS-type codes

Properties of the construction

.
Theorem
..

......
The constructed linear codes are optimal (n, k , r) LRC codes with respect to the
“Singleton bound” (2).

Optimality is proved by counting degrees.

Locality: Let α ∈ Aj be the erased location. Define

∂(x) =
r−1∑
i=0

fi(α)x i

By the construction, for all β ∈ Aj

∂(β) = fa(β)

Since deg ∂ ≤ r − 1, we see that ∂(x) ≡ δ(x).
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Constructions RS-type codes

Constructing the polynomial g(x)

.
Proposition
..

......

Let H be a subgroup of F∗
q or F+

q . The annihilator polynomial of H

g(x) =
∏
h∈H

(x − h)

is constant on each coset of H.

Assume that H is a multiplicative subgroup and let a, ah be two elements of the coset
aH, where h ∈ H, then

g(ah) =
∏
h∈H

(ah − h) =h
|H| ∏

h∈H

(a − hh
−1

)

=
∏
h∈H

(a − h)

=g(a).
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Constructions RS-type codes

Some generalizations

The locator set A ⊂ F, A = ⊔m
i=1Ai . Consider the algebra

FA[x ] = {f ∈ F[x ] : f is constant on Ai , i = 1, . . . ,m; deg f < |A|}.

The properties of FA[x ] are summarized as follows:

...1 dim(FA[x ]) = m;

...2 Let α1, ..., αm be distinct nonzero elements of F, and let g be the polynomial of
degree deg(g) < |A| that satisfies g(Ai) = αi for all i = 1, ...,m. Then the
polynomials 1, g, ..., gm−1 form a basis of FA[x ].

General code construction: Let A ⊂ F, |A| = n; A = ⊔m
i=1Ai , |Ai | = r + 1 for all i .

Let Φ be an injective mapping from Fk to the space of polynomials

F r
A = ⊕r−1

i=0 FA[x ]x i .

The evaluation code obtained in this way is an (n, k , r) LRC code.
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Constructions Extensions

Extensions

...1 It is possible to lift the divisibility constraints r |k , (r + 1)|n

...2 It is possible to define a systematic algebraic encoding mapping.

...3 To improve data availability, replace [r + 1, r , 2] local codes with [r + ρ− 1, r ] MDS
codes. Then every ci is a function of any r out of r + ρ− 1 coordinates.
Bound on the distance:

d ≤ n − k + 1 −
(⌈k

r

⌉
− 1
)
(ρ− 1) (Kamath e.a., 2013)

Claim: Taking recovering sets of size |Ai | = r + ρ − 1 and a polynomial basis
of FA[x ], we can construct an (n, k , r) LRC code whose distance meets this
bound.
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Multiple recovering sets

Availability problem

“Hot data” accessed simultaneously by a very large number of users
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Multiple recovering sets

Multiple recovering sets: Definition

Every symbol in data encoding appears in several disjoint (orthogonal) parity checks

C ⊂ Fn a code of length n

Every coordinate is recoverable from the codeword symbols in several recovering sets:
i
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Multiple recovering sets

Multiple recovering sets: Definition

Let C(a, i) = {x ∈ C : xi = a}, a ∈ F, i ∈ [n]

The code C has two disjoint recovering sets if for every i ∈ [n] there are subsets
R1

i ,R
2
i ⊂ [n]\{i},R1

i ∩ R2
i = ∅ such that

C(a, i)Rj
i
∩ C(a′, i)Rj

i
= ∅, a ̸= a′; j = 1, 2
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Multiple recovering sets

Multiple recovering sets: Idea of construction
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Multiple recovering sets

Multiple recovering sets: Idea of construction
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faHxL

Γ

∆1HxL

∆2HxL

fa(γ) can be found
by interpolating δ1(x)
as well as δ2(x)
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Multiple recovering sets

Multiple recovering sets: Example

Take F = F13; G,H ≤ F∗; G = ⟨5⟩,H = ⟨3⟩

AG = {{1, 5, 12, 8}, {2, 10, 11, 3}, {4, 7, 9, 6}}
AH = {{1, 3, 9}, {2, 6, 5}, {4, 12, 10}, {7, 8, 11}}

Let
FAG [x ] = {f ∈ F[x ] : f is constant on Ai , i = 1, 2, 3; deg f < |F∗|}

FAG [x ] = ⟨1, x4, x8⟩, FAH [x ] = ⟨1, x3, x6, x9⟩

We construct an LRC (12, 4, {2, 3}), distance ≥ 6, code C : F4 → F12

a = (a0, a1, a2, a3) 7→ fa(x) = a0 + a1x + a2x4 + a3x6

fa(x) =
2∑

i=0

fi(x)x i , where f0(x) = a0 + a2x4, f1(x) = a1, f2(x) = a3x4; fi ∈ FA[x ]

fa(x) =
1∑

j=0

gj(x)x j where g0(x) = a0 + a3x6, g1(x) = a1 + a2x3; gj ∈ FAH [x ]

E.g., fa(1) can be recovered by computing δ1(x), x ∈ {5, 12, 8} OR δ2(x), x ∈ {3, 9}
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Multiple recovering sets

Multiple recovering sets

General Construction: A = {α1, . . . , αn} ⊆ F, |A| = n;

A =

A︷ ︸︸ ︷
⊔i≥0R1

i =

A′︷ ︸︸ ︷
⊔j≥0R2

j ; |R1
i | = r + 1, |R2

j | = s + 1

fa(x) =
k−1∑
i=0

aigi(x), gi(x) ∈ F r
A ∩ F s

A′

Evaluation map: (a1, . . . , ak )
C7→ (fa(α1), . . . , fa(αn))

Theorem: Assume that the partitions A,A′ are orthogonal. Then

Eval (f : f ∈ F r
A ∩ F s

A′), x ∈ A

gives an (n, k , {r , s}) LRC code with distance ≥ n − m + 1, where m is the largest
degree in F r

A ∩ F s
A′ .
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Multiple recovering sets

Constructing orthogonal partitions

Orthogonal partitions can be obtained from the structure of additive or multiplicative
subgroups of Fq

1. F13; G,H ≤ F∗
13; G = ⟨5⟩,H = ⟨3⟩;G ∩ H = id

AG = {{1, 5, 12, 8}, {2, 10, 11, 3}, {4, 7, 9, 6}}
AH = {{1, 3, 9}, {2, 6, 5}, {4, 12, 10}, {7, 8, 11}}

2. Take G,H ≤ F+
q , e.g., G ∼= H ∼= (Z2)

2;F+
16 = (Z2)

2 × (Z2)
2

G = {0000, 0001, 0010, 0011} and H = {0000, 0100, 1000, 1100}

AG = {{0, 1, α, α4}, {α5, α10, α2, α8}, {α6, α13, α11, α12}, {α7, α9, α14, α3}}

AH = {{0, α2, α3, α6}, {1, α8, α14, α13}, {α, α5, α9, α11}, {α4, α10, α7, α12}}

Proposition: Two subgroups G,H define orthogonal coset partitions if they intersect
trivially: G ∩ H = id
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Multiple recovering sets

Remarks

There are other ways of constructing codes with multiple (e.g., two) recovering sets:

Product codes, Bipartite-graph codes

A family of optimal locally recoverable codes, with I. Tamo, arXiv:1311.3284
(IT Trans., no. 8, 2014)
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Multiple recovering sets

Bounds on the parameters

.
Theorem
..

......

Let C be an (n, k , r , t) LRC code with t disjoint recovering sets of size r . Then the rate
of C satisfies

k
n

≤ 1∏t
j=1(1 + 1

jr )
≈ t−

1
r

The minimum distance of C is bounded above as follows:

d ≤ n −
t∑

i=0

⌊k − 1
r i

⌋
. (Tamo − B, 2014)

d ≤ n − k −
⌈

t(k − 1) + 1
t(r − 1) + 1

⌉
+ 2 (Rawat e.a., 2014)

It is likely that these bounds are not final
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Locally recoverable codes, Part II

LRC codes

A block code of length n over Fq is called LRC with locality r if every symbol of the
codeword can be found by accessing some r symbols of the codeword.

Regenerating codes: Data can be read off from any location

Last time we constructed RS-type LRC codes with q ≈ n, distance meeting the
Gopalan et al. Singleton bound:

d ≤ n − k −
⌈k

r

⌉
+ 2

Asymptotic GV bound with locality:

R ≥ r
r + 1

− hq(δ)
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Locally recoverable codes, Part II

Extensions

Reed-Solomon codes can be extended in two ways:

Codes on algebraic curves

Cyclic codes and subfield subcodes
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Locally recoverable codes, Part II

Algebraic codes

RS codes: n ≤ q − 1, 1 ≤ k ≤ n, d = n − k + 1

To construct the code, take A := (P1, . . . ,Pn) ⊂ Fq

Message a = (a1, . . . , ak ) ∈ Fk
q → f (x) =

∑k
i=1 aix i−1 → (f (P1), . . . , f (Pn))

Message space:
span over Fq of (x i , i = 0, . . . , k − 1)

By construction, n ≤ q (recall the MDS conjecture)

Longer codes? We need more points Pi

Curves to the rescue!
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Locally recoverable codes, Part II

AG codes in error correction

1. Gilbert-Varshamov bound
An [n, k , d ] code exists if

d−2∑
i=0

(
n − 1

i

)
(q − 1)i < qn−k

Let R = k/n, δ = d/n, take logs and divide by n:

R ≥ 1 − hq(δ)

2. Tsfasman-Vlăduţ-Zink bound
There exist explicit sequences of codes on algebraic curves with the parameters

R ≥ 1 − δ − 1√
q − 1
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Locally recoverable codes, Part II

RS type codes

Given A ⊂ F, partition it into (r + 1)-subsets.

To encode the message a ∈ Fk , write a = (aij , i = 0, . . . , r − 1; j = 0, ..., k
r − 1)

a → fa(x) =
r−1∑
i=0

fi(x)x i , where fi(x) =

k
r −1∑
j=0

aijg(x)j , i = 0, ..., r − 1

Message space:

span (g(x)jx i , i = 0, . . . , r − 1; j = 0, . . . ,
k
r
− 1)

Evaluation code C

Ev :Fk → Fn

a 7→ (fa(P),P ∈ A)
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Locally recoverable codes, Part II

RS-like codes

What is the meaning of g(x)?

It does not make sense that the functions are

g(x)jx i

They should really be
g(y)jx i
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Codes on curves

Geometric interpretation

A := {1, 2, 3, 4, 5, 6, 9, 10, 12} ⊂ F13

g(x) :A → F13

x 7→ x3

A = {A1 = {1, 3, 9},A2 = {2, 6, 5},A3 = {4, 12, 10}}

g(A1) = 1, g(A2) = 8, g(A3) = 12

g : Fq → Fq

|g−1(x)| = r + 1 for every x in the image of g

1 2 4
X 3 6 12

9 5 10

Y 1 8 12
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Codes on curves

LRC codes on curves

Consider the set of pairs (x , y) ∈ F9 that satisfy the equation x3 + x = y4

α7 • • • •
α6 •
α5 • • • •
α4 • • • •

x α3 • • • •
α2 •
α • • • •
1 • • • •
0 •

0 1 α α2 α3 α4 α5 α6 α7

y

27 points of the Hermitian curve over F9; α
2 = α+ 1
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Codes on curves

LRC codes on curves

Recall RS codes: C is a mapping Vk = ⟨1, x , . . . , xk−1⟩ → Fn
q

Hermitian codes
Take the space of functions V := ⟨1, y , y2, x , xy , xy2⟩
A={27 points of the Hermitian curve over F9}; n = 27, k = 6

C : V → Fn
9

E.g., message (1, α, α2, α3, α4, α5)

F (x , y) = 1 + αy + α2y2 + α3x + α4xy + α5xy2

F (0, 0) = 1 etc.
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Codes on curves

LRC codes on curves

α7 α α7 α5 0
α6 α2

α5 α6 α4 α2 0
α4 α7 α3 α5 α5

x α3 α3 α7 α α

α2 α3

α 0 0 0 0
1 1 α6 α4 0
0 1

0 1 α α2 α3 α4 α5 α6 α7

y
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LRC codes on curves

α7 α α7 α5 0
α6 α2

α5 α6 α4 α2 0
α4 α7 α3 α5 α5

x α3 α3 α7 α α

α2 α3

α X0 0 0 0
1 1 α6 α4 0
0 1

0 1 α α2 α3 α4 α5 α6 α7

y

Let P = (α, 1) be the erased location.

A. Barg (UMD) Coding for memory and storage January 27, 2015 55 / 73



Codes on curves

LRC codes on curves

α7 α α7 α5 0
α6 α2

α5 α6 α4 α2 0
α4 α7 α3 α5 α5

x α3 α3 α7 α α

α2 α3

α ? 0 0 0
1 1 α6 α4 0
0 1

0 1 α α2 α3 α4 α5 α6 α7

y
Let P = (α, 1) be the erased location. Recovering set IP = {(α4, 1), (α3, 1)}
Find f (x) : f (α4) = α7, f (α3) = α3

⇒ f (x) = αx − α2

f (α) = 0 = F (P)
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Codes on curves

Hermitian codes

q = q2
0 , q0 prime power

X : xq0 + x = yq0+1

X has q3
0 = q3/2 points in Fq

Let g : X → Y = P
1, g(P) = g(x , y) := y

We obtain a family of q-ary codes of length n = q3
0 ,

k = (t + 1)(q0 − 1), d ≥ n − tq0 − (q0 − 2)(q0 + 1)

with locality r = q0 − 1.

It is also possible to take g(P) = x (projection on x); we obtain LRC codes with locality
q0
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Codes on curves

Two recovering sets

α7 ◦ • ◦ ◦
α6 •
α5 • • • •
α4 ◦ ◦ ◦ ◦

x α3 ◦ ◦ ◦ ◦
α2 •
α ◦ ◦ ◦ ◦
1 ◦ • ◦ ◦
0 •

0 1 α α2 α3 α4 α5 α6 α7

y

Polynomial basis {x iy j , i = 0, 1, . . . , r1 − 1, j = 0, 1, . . . , r2 − 1}

(24, 6, {2, 3}) LRC(2) code over F9
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Codes on curves

General LRC codes on curves

Map of curves
X ,Y smooth projective absolutely irreducible curves over k

g : X → Y

rational separable map of degree r + 1.

Lift the points of Y
S = {P1, . . . ,Ps} ⊂ Y (k);Q∞ = π−1(∞), where π : Y → P

1
k. Assume that there is a

partition of points

A := g−1(S) = {Pij , i = 0, . . . , r , j = 1, . . . , s} ⊆ X (k)

such that
g(Pij) = Pj for all i , j .

Basis of the function space

{fjx i , i = 0, . . . , r − 1; j = 1, . . . ,m}

Construct LRC codes
Evaluation codes constructed on the set A have the locality property with parameter r .
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Codes on curves

Asymptotically good sequences of codes

Let q = q2
0 , where q0 is a prime power. Take Garcia-Stichtenoth towers of curves:

x0 := 1; X1 := P1,k(X1) = k(x1);

Xl : zq0
l + zl = xq0+1

l−1 , xl−1 :=
zl−1

xl−2
∈ k(Xl−1) (if l ≥ 3),

There exist families of q-ary LRC codes with locality r whose rate and relative dis-
tance satisfy

R ≥ r
r + 1

(
1 − δ − 3√

q + 1

)
, r =

√
q − 1

R ≥ r
r + 1

(
1 − δ −

2
√

q
q − 1

)
, r =

√
q

(better than the GV bound)

∗)Recall the TVZ bound without locality: R ≥ 1 − δ − 1√
q−1
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Codes on curves

Asymptotically good sequences of codes

Let q = q2
0 , where q0 is a prime power. Take Garcia-Stichtenoth towers of curves:
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)
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√
q − 1

R ≥ r
r + 1

(
1 − δ −

2
√

q
q − 1

)
, r =

√
q

(better than the GV bound)

Locally recoverable codes on algebraic curves, with I. Tamo and S. Vlăduţ, arXiv:1501.04904

A. Barg (UMD) Coding for memory and storage January 27, 2015 61 / 73



Codes on curves

What next?
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Cyclic LRC codes

Another connection: Cyclic codes and Binary cyclic codes

Consider an [n = 15, k = 4] RS code over F16; A = {1, α, α2, . . . , α14}

message (a1, a2, a3, a4); f (x) = a1 + a2x + a3x2 + a4x3

f (1) = ⟨(a1, a2, a3, a4), (1, 1, 1, 1)⟩

f (α) = ⟨(a1, a2, a3, a4), (1, α, α2, α3)⟩

f (α2) = ⟨(a1, a2, a3, a4), (1, α2, α4, α6)⟩

Generator matrix Parity-check matrix

G =


1 1 1 . . . 1
1 α α2 . . . α14

1 α2 α4 . . . α2·14

1 α3 α6 . . . α3·14

 H =


1 α α2 . . . α14

1 α2 α2·2 . . . α14·2

...
...

...
1 α11 α2·11 . . . α14·11



c = (c1, . . . , c15); c(x) =
∑15

i=1 cix i−1 : c(αi) = 0, i = 1, . . . , 14
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
1 1 1 . . . 1
1 α α2 . . . α14

1 α2 α4 . . . α2·14

1 α3 α6 . . . α3·14

 H =


1 α α2 . . . α14

1 α2 α2·2 . . . α14·2

...
...

...
1 α11 α2·11 . . . α14·11



c = (c1, . . . , c15); c(x) =
∑15

i=1 cix i−1 : c(αi) = 0, i = 1, . . . , 14
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Cyclic LRC codes

BCH codes: Subfield subcodes of RS codes

Consider the subset of vectors of the RS code with coordinates 0 or 1

c(x) =
∑n

i=1 x i : c(αj) = 0

They form a BCH code, a binary cyclic code of length 2m − 1

This construction is called a Subfield Subcode
Observation 1: expand parity-check matrix
Observaion 2: conjugate roots

A. Barg (UMD) Coding for memory and storage January 27, 2015 64 / 73



Cyclic LRC codes

Cyclic codes

Consider an [n|(q − 1), k = n − d + 1, d ] RS code C over Fq

A = (1, α, . . . , αn−1) where αn = 1

Generator matrix Parity-check matrix

G =


1 1 1 . . . 1
1 α α2 . . . αn−1

...
...

...
1 αk−1 α2(k−1) . . . α(k−1)(n−1)

 H =


1 α α2 . . . αn−1

1 α2 α2·2 . . . α2(n−1)

...
...

...
1 αn−k α2(n−k) . . . α(n−k)(n−1)


C is a cyclic code with zeros α, α2, . . . , αn−k

Consider a subfield subcode D ⊂ C,
D := {(c0, . . . , cn−1) ∈ C : cj ∈ Fp, 0 ≤ j ≤ n − 1}
Zeros of D: {(α, αp, . . . , αpm−1modn), . . . }
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Cyclic LRC codes

Cyclic codes: Example

RS code C of length n = 15, k = 8, d = 8, q = 24

Zeros of C: α, α2, α3, α4, α5, α6, α7

Generator polynomial g(x) =
∏t

i=1(x − αi), dim(C) = n − deg(g) = 8

BCH bound: d(C) ≥ number of consecutive 0’s + 1

Now suppose that C has zeros {α, . . . , α7} ∪ {α, α4, α7, α10, α13}. The distance is
the same, and we get the locality condition r = 2
Indeed,

fa(x) = a1 + a2x + a3x3 + a4x4 + a5x6 + a6x7

So the rows of G are 1, α, α3, α4, α6, α7

The rows of H are −([n]\{0, 1, 3, 4, 6, 7})

k = 6; d = 8 = n − k
r + 1

r
+ 2
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Cyclic LRC codes

Cyclic LRC codes

Main idea: Suppose that the zeros are arranged as follows:

The cyclic code with zeros {D ∪ L} has distance ≥ |D| and locality r .
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Cyclic LRC codes

Cyclic LRC codes: Details

The following result describes the cyclic case of the main construction.

Theorem (RS-type cyclic LRC codes): Let α be a primitive n-th root of unity, where
n|(q − 1); let l , 0 ≤ l ≤ r be an integer. Consider the following sets of elements of
Fq :

L = {αi , i mod(r + 1) = l},

and

D =
{
αj+s, s = 0, . . . , n − k

r
(r + 1)

}
,

where αj ∈ L. The cyclic code with the defining set of zeros L ∪ D is an optimal ∗)

(n, k , r) q-ary cyclic LRC code.

∗) Singleton-like optimality; see (1)
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Cyclic LRC codes

Locality and dual distance

Let C be a cyclic LRC code over Fq .

Dual code
C⊥ := {x ∈ Fq : ⟨x , c⟩ = 0 for all c ∈ C}

Locality of C:
r = d(C⊥) = d⊥(C)

In the cyclic case Locality=Dual distance
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Cyclic LRC codes

Subfield subcodes

What about binary codes?

Example:
Code C over F16 has zeros Z = {α, α2, α3, α4} ∪ {α, α4, α7, α10, α13}.

Binary subcode D ⊂ C : zeros Z and all conjugates
The locality of D may decrease; the distance may increase. The dimension becomes
smaller.
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Cyclic LRC codes

Subfield subcodes

What about binary codes?

Let C be a cyclic code over Fqm ; let D be the subfield subcode of C

D := {c = (c1, . . . , cn) ∈ C : ci ∈ Fq , i = 1, . . . , n}

We have:
d(D) ≥ d(C)

d⊥(D) ≤ d⊥(C)

r(D) ≤ r(C)
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Cyclic LRC codes

Subfield subcodes

The analysis: Ideas.

Take a subfield subcode D of the code C constructed in the RS-like LRC codes
Theorem.

Locality of D = distance of D⊥

Let q = 2m, Tm(x) = x + x2 + · · ·+ x2m−1
, x ∈ Fq

Tm(C) := {(Tm(c1), . . . ,Tm(cn)), c ∈ C}

Theorem (Delsarte ’74, Sidelnikov ’71): D = Tm(C⊥)

Analyze the locality of D using d(D⊥) (techniques: irreducible cyclic codes)
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Cyclic LRC codes

Some examples

n k d Z (D) r w Z ((C′)⊥) d⊥ SH LP locator field
35 20 3 {1, 15} r ≤ 3 4 {0, 1, 7, 15} 4 k ≤ 25 k ≤ 29 F212
45 33 3 {1} r ≤ 7 8 {0, 1, 3, 5, 9, 15, 21} 8 k ≤ 37 k ≤ 39 F212
27 7 6 {1, 9} r = 1 2 {0, 3} 2 F218
63 36 3 {1, 9, 11, 15, 23} r ≤ 3 4 {0, 1, 7, 9, 11, 15, 21, 23} 4 F26

Z (C) =defining set of of zeros of C, w is the number of recovering sets Ai

Cyclic LRC codes and their subfield subcodes, with I. Tamo, S. Goparaju, and
R. Calderbank, arXiv:1502.01414.

A. Barg (UMD) Coding for memory and storage January 27, 2015 73 / 73



Cyclic LRC codes

Some examples

n k d Z (D) r w Z ((C′)⊥) d⊥ SH LP locator field
35 20 3 {1, 15} r ≤ 3 4 {0, 1, 7, 15} 4 k ≤ 25 k ≤ 29 F212
45 33 3 {1} r ≤ 7 8 {0, 1, 3, 5, 9, 15, 21} 8 k ≤ 37 k ≤ 39 F212
27 7 6 {1, 9} r = 1 2 {0, 3} 2 F218
63 36 3 {1, 9, 11, 15, 23} r ≤ 3 4 {0, 1, 7, 9, 11, 15, 21, 23} 4 F26

Z (C) =defining set of of zeros of C, w is the number of recovering sets Ai

Cyclic LRC codes and their subfield subcodes, with I. Tamo, S. Goparaju, and
R. Calderbank, arXiv:1502.01414.

A. Barg (UMD) Coding for memory and storage January 27, 2015 73 / 73


	Codes with locality
	LRC Codes
	Bounds
	Constructions
	RS-type codes
	Extensions

	Multiple recovering sets
	Multiple recovering sets
	Locally recoverable codes, Part II
	Codes on curves
	Cyclic LRC codes

