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Information Theory and other Areas 

 The IT landscape: 

IT 

Communications 

      Theory 

Probability 

Statistics 

Mathematics 

Economics 

Biology 

Physics 

Computer  

 Science 



Entropy 

 Definition:    H(X) = The entropy of X 

 Let X be a discrete random variable taking values in 

{x1, x2, ..., xM} with probabilities p = {p1, p2, ..., pM}. 

 

 H(X) = H(p) =   𝑝 𝑥𝑘  𝑙𝑜𝑔2
1

𝑝(𝑥𝑘)
𝑀
𝑘=1   (bits) =  

 

         = E ( 𝑙𝑜𝑔2
1

𝑝(𝑥𝑘)
 ) bits 

H(X) is a measure of the uncertainty of X. 



How can H(X) arise naturally? 

 Let X1, X2, ... be independent and identically distributed 

(i.i.d.) according to p(x). 

 Then  

 p(x1, x2, ..., xn)  =  p(x1)p(x2) ... p(xn) =    p(xi)  = 

 

= 2  𝑙𝑜𝑔2𝑝
𝑛
𝑘=1 𝑥

𝑖 = 2 𝑛
 

(𝑗)
𝑛
 𝑙𝑜𝑔2𝑝 𝑥𝑗

𝑚
𝑗=1    

 

 → 2−𝑛𝐻 𝑋       

i=1   

n 

     Asymptotic  Equipartition Property 



Change of base 

 Hb(X)= E ( 𝑙𝑜𝑔𝑏
1

𝑝(𝑥𝑘)
 ) = 𝑙𝑜𝑔𝑏a   Ha(X) 

 

 Units of Entropy: 

   Base 2  bits 

   Base 10  dits or Hartleys 

   Base e  nats 

   Base 3  trits (why not?) 

 



Examples 

 Ex. 1)      X  {0,1},   p(X=0)=0,  p(X=1)=1  

            

      H(X) = - 0 log 0 - 1 log 1  = 0 

 

 Note:   lim p log p = 0          by l’Hôpital’s rule   
P0 

No uncertainty !                  X is deterministic  



Examples (continued) 

 Ex. 2)      X  {0,1},    p(X=0)=p,  p(X=1) =1-p,  

               H(X) =  – p log p – (1-p) log (1-p)  

                      =  h(p) 

 

 

h(p) 

p 

1 

0 1 1/2 

h(p) is the binary entropy function 



Lemma 

             ln x ≤ x-1,            x>0 

 Proof: Taylor series with remainder 

0 1 

x-1 ln x 

x 



Relative Entropy (Kulbach-Leibler divergence) 

 Let p(x) and q(x) be two probability mass functions 

defined on alphabet X. 

 

 The K-L divergence of p w.r.t. q is 

 

            D(p  q) =  𝑝 𝑥 log
𝑝(𝑥)

𝑞(𝑥)
 
  

X 



Proposition: Information Inequality 

      D(p  q) ≥ 0    with equality if and only if (iff) pq 

 Proof: Let A = {x : p(x) > 0}  

 Have       ln x ≤ x-1   (Lemma) 

 Thus         ln 
𝑞(𝑥)

𝑝(𝑥)
 ≤ 
𝑞(𝑥)

𝑝(𝑥)
-1 

 Multiply by p(x) and sum over x  A 

        𝑝 𝑥 log
𝑞(𝑥)

𝑝(𝑥)
 
  ≤  𝑝 𝑥 (

𝑞(𝑥)

𝑝(𝑥)
 
  - 1) ≤ 0 

         - D(p  q) ≤ 0      D(p  q) ≥ 0      

           equality iff p = q in A, then p  q .           QED 



Remark 

 

 The K-L Divergence is very useful in IT, 

 but it is not a metric. 

 

 It is not symmetric and does not satisfy the triangle 

inequality 



Application 

 Let q be the uniform distribution  

                 qi = 1/n for i=1,...,n 

                  p = {p1, p2, ..., pn} 

 Then D(p  q) ≥ 0 

          𝑝𝑖 log
𝑝𝑖
𝑞
𝑖

 
  ≥ 0 

  𝑝𝑖 log 𝑝𝑖
 
  ≥  𝑝𝑖 log 𝑞𝑖

 
  =  𝑝𝑖 log 1/𝑛

 
   

 Thus    H(p) ≤ log n  

 The uniform distribution has maximum entropy. 



Joint, marginal and conditional distributions 

 Joint Distribution: 

X 
Y 

yN 

y2 

y1 

xM x2 x1 .... 

p(xi,yj) 

p(xi) 

p(yj) 

𝑝(𝑦𝑗) =  𝑝 𝑥𝑖, 𝑦𝑗
 
  

𝑝(𝑥𝑖) =  𝑝 𝑥𝑖, 𝑦𝑗
 
  

Marginal distributions: 

 

 

𝑥𝑖 

𝑦𝑗 

p(x1)   ...     p(xM)   

p(y1) 

p(yN) 



Conditional Distributions: 

              𝑝 𝑦𝑗 𝑥𝑖 = 
𝑝(𝑥𝑖,𝑦𝑗)

𝑝(𝑥𝑖)
  

 

               𝑝 𝑥𝑖 𝑦𝑗 = 
𝑝(𝑥𝑖,𝑦𝑗)

𝑝(𝑦
𝑗
)

 

 

The joint distribution determines the marginal  

and the conditional distributions. 

 

The opposite is not true. 



     Joint Entropy 

 

 

 

 H(X,Y) = H(p(x,y)) =   𝑝 𝑥𝑖 , 𝑦𝑗  𝑙𝑜𝑔
1

𝑝(𝑥𝑖,𝑦𝑗)
  

 
𝑥𝑖 , 𝑦𝑗  



Conditional Entropy 

 

 H(X|Y) =   𝑝 𝑥𝑖 , 𝑦𝑗  𝑙𝑜𝑔
1

𝑝(𝑥𝑖|𝑦𝑗)
 = E (𝑙𝑜𝑔 𝑝(𝑥𝑖|𝑦𝑗) ) 

 

 

 

 H(Y|X) =   𝑝 𝑦𝑗 , 𝑥𝑖  𝑙𝑜𝑔
1

𝑝(𝑦𝑗|𝑥𝑖)
 = E (𝑙𝑜𝑔 𝑝(𝑦𝑗|𝑥𝑖) ) 

 

 

 



Chain Rule (like peeling an onion): 

           H(X,Y) = H(X) + H(Y|X) 

                   = H(Y) + H(X|Y)  

 Proof: Do it for homework.  

           Simple algebraic manipulation. 

 

 Corollary (conditional form): 

        H(X,Y|Z) = H(X|Z) + H(Y|X,Z) 

                      = H(Y|Z) + H(X|Y,Z)  

 



Mutual Information 

 The Mutual information between X and Y is  

 the K-L divergence of the joint distribution p(x,y) 

and the product of the marginals p(x) p(y). 

 I(X;Y)  =  D(p(x,y)  p(x) p(y) ) 

 

            =     𝑝 𝑥, 𝑦 log
𝑝(𝑥,𝑦)

𝑝 𝑥 𝑝(𝑦)
 
  

 

 

X Y 



Properties of I(X;Y) 

 1) Non-negativity:  I(X;Y) ≥ 0 , with equality  

      iff X and Y are independent. 

 Proof: I(X;Y) is a K-L divergence. 

 

 2) Symmetry: 

     I(X;Y) = I(Y;X)  

 Proof: Trivial (p(x)p(y) = p(y)p(x)) 



Mutual Information and Entropy 

 I(X;Y) =     𝑝 𝑥, 𝑦 log
𝑝(𝑥,𝑦)

𝑝 𝑥 𝑝(𝑦)
 
  

 = H(X) + H(Y) – H(X,Y)      (from above) 

 = H(X) – H(X|Y)                (from chain rule) 

 = H(Y) – H(Y|X)                (alternative form) 

 

 Note: The Mutual Information between two random 

variables is the residual uncertainty about one r.v. 

after the other is revealed. 



A Venn Diagram 

 Works well for two random variables 

H(Y|X) 

H(X) 

H(X|Y) 

H(Y) 

 I(X;Y) 



Information can’t hurt 

 Conditioning reduces entropy: 

 

                       H(X|Y) ≤ H(X) 

 

 Proof:      I(X;Y) = H(X) – H(X|Y) ≥ 0      

 

 On average the knowledge of Y cannot increase 

the uncertainty about X.           

 



Entropy as self-information 

 

 

         I(X;X) = H(X) – H(X|X) = H(X) 

 

 The entropy is the amount of information that a 

random variable conveys about itself. 



Passing on Information 

 Let X and Y be dependent r.v.’s 

 

 

 

    Proposition:    I(X;Y) ≥ I(X; (Y)) 

 Proof: I(X;Y) = H(X) – H(X|Y)  

                    = H(X) – H(X|Y, (Y))  

                     ≥  H(X) – H(X|(Y)) = I(X; (Y))      

 

 This is a simple form of the Data Processing Inequality. 

X 
Y 

(Y) Random  

mechanism 
(•) 

Conditioning  

reduces entropy 



Convexity – quick review 

 Convex sets: 

 

 

 

 Non-convex sets: 



Convex Functions: 

 A function f(x) is convex if the set of points above its 

graph is convex. 

 Examples: f(x) = x2                    f(x) = ex 

 

Mnemonic: The exponential function is convex 



Concave functions 

 f(x) is concave if {- f(x)} is convex. 

 

 Examples:   

 

             f(x) = log(x)                           f(x) = -|x| 



Some are neither, some are both 

 Neither: 

 

 

 

 

 Both: 

 

f(x)=x3 

f(x)=ax+b 



Jensen’s Inequality 

 Let X be a random variable and f(x) a convex function. 

                             Then E[f(X)] ≥ f(EX) 
f(x) 

x 

Ef(X) 

f(EX) 

EX 

Mnemonic: The chord is above the arc. 

Proofs: Induction, 

   Taylor series (when f´´(x) exists). 



Concavity of H(p) 

 Proposition: H(p) is a concave function of p. 

 Proof: Let X1 be distributed as p1 and X2 as p2. 

 Let index   {1,2} with probabilities (, 1-) 

 Let Z = X . Then Z is distributed as  p1 + (1-) p2 .  

 Now since conditioning reduces uncertainty 

 H(Z) ≤ H(Z| ).    Equivalently 

 H( p1 + (1-) p2) ≥  H(p1)+ (1-) H(p2)  

 showing that h(•) is a concave function. 

 Note: Mixing two gases of equal entropy results in       

    a gas with higher entropy. 



Additional topics: 

 Log-Sum Inequality 

 

 Convexity of D(p  q) in the pair (p,q) 

 

 I(X;Y) as a function of p(x,y) = p(x) p(y|x)  

          is a concave function of p(x) and  

          a convex function of p(y|x). 



Additional topics (continued): 

   Markov Chains 

 

 Data Processing Inequality 

 

 Sufficient Statistics 

 

 Fano´s Inequality 

 



Asymptotic Equipartition Property 

 Let X1, X2, …, Xn be i.i.d. according to p(x) 

 Sample space = set of all  

sequences (x1, x2, …, xn) 

A=Set of  

typical sequences 

• 

• 

• 

• 
• 

• 
• • 

• 1) Pr{A} ≥ 1- 
2) p(x)  2–nH(X)  

3) A  2nH(X)  
 

A.E.P. { 
This is the DNA of IT ! 



An example of typical sequences 

 Let X be a biased coin with  

             P(Head)=0.9 and P(Tail) = 0.1 

 

 Consider the set of 1000-long sequences of coin tosses. 

 Typical sequences are those that have approximately 

900 Heads and 100 Tails. 

 

 Note: The most likely sequence, namely the one  

          with 1000 Heads, is not Typical ! 



Conclusion 

 

 

 

                        Better bet on A ! 



Entropy Rate of Random Processes 

 The concept of Entropy can be extended to Random 
Processes: 

 Let  X= {Xi, i=1,2,…,n} be a collection of random 

variables forming a stationary process. 

 Entropy Rate: 

 H(X) = lim H(Xn | Xn-1, Xn-2, …, X1) bits/symbol 

 

          = lim    
H(X1, X2, …, Xn 

)
𝑛

  bits/symbol 

 

 For stationary X these limits exist and are equal. 

N 

N 



Exercise: 

 Coin weighing: 

 Suppose that we have 12 coins, among which there 

may or may not be one counterfeit coin. If there is 

one counterfeit coin it will be heavier or lighter than 

the legitimate coins. The coins are weighted by a 

two plate balance. What is a weighing strategy to 

determine to identify the odd coin, if there is one, 

with 3 weighings. Note: This problem can be solved 

with a ternary Hamming code. 



Data Compression (Source Coding) 

 Want to represent a source efficiently. 

Source 
Source  

encoder 

index 
X 

Source Space Reproduction Space 

𝑋  Source  

decoder 



Source Code for a r.v. X 

 A Source Code for X is a mapping from the 

alphabet of X to a finite sequence of a D-ary code 

alphabet. 

 Examples: 

 Source alphabet =  X  = {a, b, c, d, e}  

 Code alphabet = D = {0, 1}  

 Code example:  

 C(a)=00, C(b)=01, C(c)=10, C(d)=11, C(e)=001 

 

Note: This code is not instantaneous 



Instantaneous codes (Prefix-free) 

 A code is a prefix-free code or a instantaneous code if 

no codeword is a prefix of another codeword. 

 

 

 An instantaneous code is a self-punctuating code. 

 We can add commas without looking ahead. 



Classification of Codes 

 Classes: 

All codes 
Nonsingular  

codes 
  Uniquely 

decodable  

    codes 

Instantaneous  

codes 



Classes of codes 

  Source  

Alphabet 

      X 

Singular  Nonsingular but not 

uniquely decodable 

Uniquely Decodable 

but not Instantaneous 

Instantaneous 

A 0 0 10 0 

B 1 010 00 10 

C 0 01 11 110 

D 1 10 101 111 

Binary code alphabet 

Want small average code length per source symbol. 

That depends on the source distribution. 



Examples of codes 

  X P(X) Code 1 Code 2 ( a comma code) Code 3 

A 1/2 00 1 0 

B 1/4 01 01 10 

C 1/8 10 001 110 

D 1/8 11 0001 111 

Binary code alphabet 

Code 1: Average length = 2 bits per source symbol 

Code 2: Average length = 1.875 bits/source symbol 

Code 3: Average length = 1.75 bits/source symbol = H(X)  



Kraft Inequality 

 For any instantaneous code over a code alphabet 

of size D, the codeword lengths l 1, l2, …, lm must 

satisfy the inequality 

 

                        𝐷−l i   ≤   1 
𝑖  

 Example for Code 3: 

 l 1 =1, l 2 =2, l 3=3, l 4=3  

   𝐷−l i  = 𝑖 2-1 + 2-2 + 2-3 + 2-3 = 1     ok 

 

 

 

 



Length Bounds for Optimal Codes 

 First Shannon Theorem: The expected length L of any 

instantaneous D-ary code for a r.v. X is bounded below 

by the entropy HD(X): 

                                 L ≥ HD(X) 

Proof: Expanding L - HD(X) =  𝑝𝑖 l𝑖  -  𝑝𝑖 𝑙𝑜𝑔𝐷  
1

𝑝𝑖
 have 

L - HD(X) = D(p  r) + 𝑙𝑜𝑔𝐷
1

𝑐
 , where 𝑟𝑖 = 

𝐷−l i
𝑐
 and 

𝑐=   𝐷−l i
 
.  

Thus L - HD(X) ≥ 0 with equality if pr and 𝑐 = 1 ,  

i.e., the code meets Kraft inequality with equality. 



Efficient Codes: Shannon Code 

 

 Choose  l 𝑖 = 𝑙𝑜𝑔𝐷
1

𝑝𝑖
 , 

 use a suitable codeword with this length. 

 

 This code satisfies 

                 HD(X) ≤  L ≤ HD(X) +1 

 



Efficient Codes: Huffmann Codes (1952) 

 The Huffman Code is the optimal prefix code (shortest 

expected length) for a given source distribution p(x). 

   Example: 

 X     p(x)                                                         Code                                        

 1     0.25        0.3       0.45       0.55       1        01 

 2     0.25        0.25     0.3         0.45                 10 

 3     0.2          0.25     0.25                               11 

 4     0.15        0.2                                             000 

 5     0.15                                                          001 

This code has average length 2.3 bits/source symbol. 

0 

1 



Efficient Codes: 

                       

                      Other efficient codes:  

 

 Shannon-Fano-Elias Codes 

 Arithmetic Codes 

 Lempel-Ziv Codes (Universal – learns source distribution) 

 Run-length codes + Golomb codes (very simple code) 

 

 



Run-length + Golomb Codes 

 Run-length codes used to encode long binary sequences 

where 0’s are (much) more likely than 1’s (or vice versa) . 

 Initial step: Run length code 

 Represent the zero runs as integers. 

 Example: 

 Input = 00000100000010001000000000001001… 

 Runs: 5 6 3 11 2 …           Now use Golomb code. 



Golomb code of Order m 

 Variable length code for integers 

 Choose suitable order m. 

 Represent each integer as n = qm+r 

 (integer divide n by m to get quocient q and remainder r) 

 Use unary code for q (sequence of q 1’s), use comma = 0; 

 Use prefix code (with m leaves) for r  

       Example: m=5 

Code for r: 

r{0,1,2,3,4} 
1 0 

3 

2 

4 

r output 

0 00 

1 01 

2 10 

3 110 

4 111 

0 1 



Golomb code (m=5) 

 Example:   Runs = {5 6 3 11 2} 

 Sequence of (q,r)’s = {(1,0) (1,1) (0,3) (2,1) (0,2)} 

 

 Code sequence = {(1-0-00)(1-0-01) (0-110) (11-0-01) 

                             (0-10)} 

 Input length = 32 

 Output length = 20 

 Compression ratio = 20/32 = 0.625 

 Typically can get excess rates of less than 1%. 

1 



Selecting the order m 

 Approximate solution: Find 𝑚 such that 

                              𝑝𝑚 =
1

2
,      where p = Pr{X=0}. 

 Thus m  
−1

𝑙𝑜𝑔2𝑝
. 

 Remarks: Very simple implementation 

               Need good tuning of order parameter 𝑚 

               Can be made adaptive 

               Variable to variable length code 

               Terminate input sequence with a 1 

 

 

 

 



Transmission over Unreliable Channels 

 The Channel Coding Problem: 

 

 

 

 

 W  {1,2,…,2𝑛𝑅} = message set of rate R 

 X  = (x1 x2 … xn) = codeword input to channel 

 Y  = (y1 y2 … yn) = codeword output from channel 

 𝑊 = decoded message              P(error) = P{W𝑊}  

 

 

𝑊  W 
X Y 

Channel  

Encoder 

Channel  

𝑝(𝑦|𝑥) 

Channel  

Decoder 



Simple examples 

 Noiseless typewriter: 

4 

3 

2 

1 

4 

3 

2 

1 

  Can transmit R = 𝑙𝑜𝑔2 4 = 2 bits/transmission   

Number of noise free symbols = 4 

Output Y Input X 



Simple examples 

 Noisy typewriter (type 1): 

4 

3 

2 

1 

4 

3 

2 

1 

  Can transmit R = 𝑙𝑜𝑔2 2 = 1 bit/transmission   

Number of noise free symbols = 2 

Output Y Input X 

0.5 

0.5 

0.5 

0.5 



Simple examples 

 Noisy typewriter (type 2): 

4 

3 

2 

1 

4 

3 

2 

1 

  Can transmit R = 𝑙𝑜𝑔2 2 = 1 bit/transmission   

Number of noise free symbols = 2 

Output Y Input X 

0.5 

0.5 

0.5 

0.5 



Simple examples 

 Noisy typewriter (type 3): 

4 

3 

2 

1 

4 

3 

2 

1 

  Can transmit R = 𝑙𝑜𝑔2 2 = 1 bit/transmission   

Number of noise free symbols = 2         Use X=1 and X=3 

Output Y Input X 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 



Simple examples 

 A tricky typewriter: 

4 

3 

2 

1 

3 

2 

1 

Output Y Input X 

4 

5 5 

0.5 

0.5 

0.5 

0.5 

0.5 

How many noise free symbols?    

Clearly at least 2, hopefully more. 



Simple examples 

 Consider the n=2 extension of the channel: 

4 

X1 

X2 
2 1 

4 

3 

2 

1 

5 

5 

Which code  

squares to pick? 

3 



Simple examples 

 Consider the n=2 extension of the channel: 

4 

X1 

X2 

3 2 1 

4 

3 

2 

1 

5 

5 

Let {X1,X2} be  

{(1,1), (2,3), 

(3,5), (4,2), 

(5,4)} 



Reminder of the channel 

 A tricky typewriter: 

4 

3 

2 

1 

3 

2 

1 

Output Y Input X 

4 

5 5 

0.5 

0.5 

0.5 

0.5 

0.5 

How many noise free symbols?    

Clearly at least 2, hopefully more. 



Simple examples 

 Looking at the outputs: 

4 

Y1 

Y2 

3 2 1 

4 

3 

2 

1 

5 

5 

Let {X1,X2} be  

{(1,1), (2,3), 

(3,5), (4,2), 

(5,4)} 



Simple examples - observations 

 Note that we get 5 noise-free symbols in n=2 
transmissions. 

 

 Thus achieve rate 
𝑙𝑜𝑔25

2
 = 1.16 bits/transmission 

 with P(error) = 0. 

 

 For arbitrarily small P(error) can use long codes 
(n ) to achieve 1.32 bits/transmission, the 
channel capacity. 

 

 



The Binary Symmetric Channel (BSC)  

 How many noise free symbols? 

0 
 

1- 
0 

1 1 

 X 

1- 

A.: Clearly for n=1 there are none.  

     How about using n large? 

Y 



Shannon’s Second Theorem 

 Using the channel 𝑛 times: 

Xn Yn 

• 
• 

• 
• 

• 



Shannon’s Second Theorem 

 The Information Channel Capacity of a discrete 

memoryless channel is 

 

                              𝐶 = max 𝐼(𝑋; 𝑌). 

 

 Note: 𝐼 𝑋; 𝑌 is a function of 𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑝 𝑦 𝑥 . 

 But 𝑝 𝑦 𝑥  is fixed by the channel. 

 𝑝(𝑥) 



Shannon’s Second Theorem 

 Theorem: For a discrete memoryless channel, all rates 
𝑅 below the information channel capacity 𝐶 are 
achievable with maximum probability of error 
arbitrarily small. Conversely, if the rate is above 𝐶, the 
probability of error is bounded away from zero. 

 

 Proof: Achievability: Use random coding to generate 
codes with a particular 𝑝 𝑥 distribution in the 
codewords. Then show that the average P(error) tends 
to zero with n if 𝑅 < 𝐶.  Then expurgate bad 
codewords to get a code with small maximum P(error). 



Shannon’s Second Theorem 

 Proof of Converse (sketch using AEP):  

Xn 
Yn 

• 
• 

• 
• 

• 

Yn 2𝑛𝐻(𝑌) 

typical ball 2𝑛𝐻(𝑌|𝑋) 



 Shannon’s Second Theorem 

 Proof of Converse (sketch using AEP): 

 Recall the sphere packing problem. 

   Maximum number of non-overlapping balls is bounded by 

 

                      
2𝑛𝐻(𝑌)

2𝑛𝐻(𝑌|𝑋)
 = 2𝐼(𝑋:𝑌) ≤ 2𝐶 

              

 Thus 2𝑅 ≤ 2𝐶   and  𝑅 ≤ 𝐶.  

 A formal proof uses Fano’s inequality. 



Example: The Binary Symmetric Channel 

   

 

 

 

 

 C = max (H(Y) – H(Y|X))  

    = 1 – h() bits/transmission 

 

 Note: C=0 for  = ½ . 

0 
 

1- 
0 

1 1 

 X 

1- 

Y 

       

C()  

1 0  ½ 



Example: The Binary Erasure Channel 

   

 

 

 

 

 C = max (H(Y) – H(Y|X))  

    = 1 –    bits/transmission 

 

0 
 

1- 
0 

1 1 

 
X 

1- 

Y 

      

C()  

1 0  ½ 

E 

Note: C=0 for  = 1. 

Capacity is achieved with 

𝑝 𝑋 = 0 = 𝑝 𝑋 = 1 =½ . 



Example: The Z Channel 

   

 

 

 

 

 C = max (H(Y) – H(Y|X)) = 𝑙𝑜𝑔2 5 − 2 = 0.322 
𝑏𝑖𝑡

𝑡𝑟.
  

 

 Note: Maximizing 𝑝 𝑋 = 1 =
2

5
. 

 Homework: Obtain this capacity. 

 

 

0 0 

1 1 

X Y 

½ 

½ 

𝑝(𝑥) 



Example: Noisy typewriter 

   

 

 

 

 

 

 C = max (H(Y) – H(Y|X))  

    = 𝑙𝑜𝑔226 − 𝑙𝑜𝑔22 =  𝑙𝑜𝑔213 bits/transmission 

 Achieved with uniform distribution on the inputs. 

 

A 

C 

D 

½ 

X 

½ 

Y 

A 

B B 

C 

D 

E 

Z Z • 
• 
• 



Remark: 

 

 

 For this example, we can also achieve  

 𝐶 = 𝑙𝑜𝑔213 bits/transmission with P(error)=0 and  

 n = 1 by transmitting alternating input symbols, i.e., 

 X = {A C E … Z}. 

 



Differential Entropy 

 Let 𝑋 be a continuous random variable with density 

𝑓 𝑥   and support 𝑆. The differential entropy of 𝑋 is 

 

                ℎ 𝑋 = −  𝑓 𝑥 log 𝑓 𝑥 𝑑𝑥 
 

𝑆
      (if it exists). 

 

Note:  Also written as ℎ 𝑓 . 

 

 



Examples: Uniform distribution 

 Let 𝑋 be uniform in the interval 0, 𝑎 . Then  

 𝑓 𝑥 =
1

𝑎
 in the interval and 𝑓 𝑥 = 0  outside. 

 

 ℎ 𝑋 = − 
1

𝑎
  𝑙𝑜𝑔 

𝑎

0

1

𝑎
 𝑑𝑥 = log 𝑎  

 Note that ℎ 𝑋  can be negative for 𝑎 < 1. 

 However, 2ℎ(𝑓) = 2log 𝑎 = 𝑎   is the size of the 

support set, which is non-negative. 



Example: Gaussian distribution 

 Let 𝑋  ~  𝑥 =  
1

 22
 𝑒𝑥𝑝 (

−𝑥2

22
) 

 Then ℎ 𝑋 = ℎ  = −  𝑥 [−
𝑥2

22
 − 𝑙𝑛 22] 𝑑𝑥 

 = 
𝐸𝑋2

22
  + 

1

2
 𝑙𝑛 22 

 =
1

2
 𝑙𝑛 2e2 nats 

 Changing the base we have ℎ 𝑋 =
1

2
 𝑙𝑜𝑔 2e2 bits 

 



Relation of Differential and Discrete Entropies 

 Consider a quantization of X, denoted by X 

 

 

 

 

 

 Let X = 𝑥𝑖  inside the 𝑖th interval. 
 

Then 𝐻(𝑋)  = -  𝑝𝑖  
 
𝑖 𝑙𝑜𝑔 𝑝𝑖

  

                              = -  𝑓(𝑥𝑖) 
 
𝑖 𝑙𝑜𝑔 𝑓(𝑥𝑖)

  -  𝑙𝑜𝑔 
 

                       ℎ 𝑓   − log 

  



Differential Entropy 

 So the two entropies differ by the log of the 

quantization level . 

 

 We can define joint differential entropy, conditional 

differential entropy, K-L divergence and mutual 

information with some care to avoid infinite 

differential entropies. 



K-L divergence and Mutual Information 

                     

                   𝐷 𝑓  g =    𝑓 𝑙𝑜𝑔 
𝑓

𝑔
  

 

        𝐼 𝑋; 𝑌 =   𝑓 𝑥, 𝑦  𝑙𝑜𝑔
𝑓(𝑥,𝑦)

𝑓 𝑥 𝑔(𝑦)
𝑑𝑥 𝑑𝑦 

 

      Thus,  I(X;Y) = h(X) + h(Y) – h(X,Y). 



Differential entropy of a Gaussian vector 

 Theorem: Let 𝑿 be a Gaussian n-dimensional vector 

with mean  and covariance matrix 𝐾. Then 

 

                   ℎ 𝑿 =  
1

2
log(2𝑒)𝑛 𝐾  

 where 𝐾  denotes the determinant of 𝐾. 

 

 Proof: Algebraic manipulation. 

 

 



The Gaussian Channel 

 The Gaussian Channel Problem: 

 

 

 

 

 

 W  {1,2,…,2𝑛𝑅} = message set of rate R 

 X  = (x1 x2 … xn) = codeword input to channel 

 Y  = (y1 y2 … yn) = codeword output from channel 

 𝑊 = decoded message              P(error) = P{W𝑊}  

 

 

𝑊  W 
X Y 

Channel  

Encoder 

Channel  

Decoder 

Z~N (0, N I) 

+ 

Power constraint: EX2≤P 



The Gaussian Channel 

   

 C𝑎𝑝𝑎𝑐𝑖𝑡𝑦         𝐶 =    max       𝐼(𝑋; 𝑌) 

 

 

 𝐼 𝑋; 𝑌 = ℎ 𝑌 − ℎ 𝑌 𝑋 = ℎ 𝑌 − ℎ 𝑋 + 𝑍|𝑋  

       = ℎ 𝑌 − ℎ 𝑍 ≤
1

2
 log 2e 𝑃 + 𝑁 −

1

2
 log 2e𝑁 

       =
1

2
log 1 +

𝑃

𝑁
 bits/transmission 

f(x): EX2≤P 



The Gaussian Channel 

           

       The capacity of the discrete time additive      

  Gaussian channel: 

 

         𝐶 =
1

2
log 1 +

𝑃

𝑁
 bits/transmission 

 

         achieved with X ~ N(0 , P). 

 

 

 



Bandlimited Gaussian Channel 

 Consider the channel with continuous waveform  inputs x(t) 

with power constraint (
1

𝑇
 𝑥2
𝑇

0
𝑡 𝑑𝑡 ≤ 𝑃)  and Bandwidth 

limited to W. The channel has white Gaussian noise with 

power spectral density N0/2 watt/Hz. 

 In the interval (0,T) we can specify the code waveform by 

2WT samples (Nyquist criterion). We can transmit these 

samples over discrete time Gaussian channels with noise 

variance N0/2. This gives 

                           𝐶 = 𝑊 log (1+ 
𝑃

𝑁0𝑊
 )  bit/second 

 



Bandlimited Gaussian Channel 

                 

                 𝐶 = 𝑊 log (1+ 
𝑃

𝑁0𝑊
 )  bit/second 

 

    Note: If W   

 

             we have C = 
𝑃

𝑁0
 𝑙𝑜𝑔2𝑒 bits/second. 

 



Bandlimited Gaussian Channel 

 Let 
𝑅

𝑊
 be the spectral density  in bits per second 

per Hertz. Also let 𝑃 = 𝐸𝑏𝑅 where 𝐸𝑏 is the 

available energy per information bit. 

 We get  

  
𝑅

𝑊
≤  
𝐶

𝑊
 =  log (1+ 

𝐸𝑏𝑅

𝑁0𝑊
 )  bit/second. 

 Thus  

                            
𝐸𝑏

𝑁0
≥
2−1


 

This relation defines the so called Shannon Bound. 



The Shannon Bound 

                              
𝐸𝑏

𝑁0
≥
2−1


 

 

 

 

 
  
𝐸𝑏
𝑁0

   
𝐸𝑏

𝑁0
 (dB) 

0 0.69 -1.59 

0.1 0.718 -1.44 

0.25 0.757 -1.21 

0.5 0.828 -0.82 

1 1 0 

2 1.5 1.76 

4 3.75 5.74 

8 31.87 15.03 

 • 

 • 

 • 

 •   

 – 

 – 

 – 

 – 

 – 

 – 

              

  
𝐸𝑏

𝑁0
 (dB) 

 

 
Shannon Bound 

0 

5 

4 

3 

2 

1 

6 5 4 3 2 1 -1 



Shannon’s Water Filling Solution 



Parallel Gaussian Channels 

   



Example of Water Filling 

 Channels with noise levels 2, 1 and 3. 

 Available power = 2 

 

 Capacity= 
1

2
 log (1+

0.5

2
) + 

1

2
 log (1+

1.5

1
) + 

1

2
 log (1+

0

3
)  

 

 Level of noise + signal power = 2.5 

 No power allocated to the third channel. 



Rate Distortion Theory 

 Want to represent a source efficiently. 

Source 

𝑝 𝑥  

Source  

encoder 

index 
X 

Source Space Reproduction Space 

𝑋  Source  

decoder 



Rate Distortion Theory 

 Define a distortion 𝑑(𝑥, 𝑥 ) = 
1

𝑛
 𝑑(𝑥𝑖 , 𝑥 𝑖
𝑛
𝑖=1 ) 

 where 𝑑 . , . :       + 

 Want to find 2𝑛𝑅   𝑥 ’s (points in representation space) 

and a mapping 𝑋 (𝑥) : 𝑛 →   𝑛  such that  

 𝐸𝑑 𝑋, 𝑋 𝑋 ≤ 𝐷.                                        Eq.  

 Theorem: This is possible iff    (Shannon, 1959) 

                𝑅 ≤ 𝑅 𝐷 = min               𝐼(𝑋; 𝑋 ) 
𝑝 𝑥 𝑥  satisfying Eq.   



All depends on 𝑝(𝑥 |𝑥) 

 

 Note: 

 𝐸 𝑑 𝑋, 𝑋 𝑋  as well as  𝐼(𝑋; 𝑋 ) are functions of  

 𝑝 𝑥, 𝑥  = 𝑝 𝑥  𝑝(𝑥 |𝑥), but 𝑝 𝑥  is fixed by the 

source. 

 



Example: Binary Source 

 Binary source with Hamming distortion: 

 𝑅 𝐷 =      ℎ 𝑝 − ℎ 𝐷 ,      0 ≤ 𝐷 ≤ min (𝑝, 1 − 𝑝) 

                    0                                    𝐷 > min 𝑝, 1 − 𝑝  

 

 I(X;X) = H(X) – H(X|X) 

            = h(p) – H(XX|X) 

            ≥ h(p) – H(XX) 

            ≥ h(p) – h(D) 

 

{   

^  ^  

^  ^  

^  

^  



Test channel for binary source 

   

0 

1 

0 1-p 

1 

1-D 

D 

D 

1-D 

X X 

p 

with P(X = 0) =
1−𝑝−𝐷

1−2𝐷
   and  P(X = 1) =

𝑝−𝐷

1−2𝐷
 

 

^  

^  ^  



This satisfies the bound with equality 

 Thus  R(D) = h(p)-h(D), for 0≤D≤min(p,1-p), and   

   R(D)=0,              otherwise. 

h(p) 

R(D) 

D 
0 

– 



Example: Gaussian Source, MSE Distortion 

 Have  R(D) = 
1

2
𝑙𝑜𝑔

2

𝐷
,   for 0≤D≤2, and            

     R(D)=0,              otherwise. 

 

 I(X;X) = h(X) – h(X|X) 

           ≥  
1

2
 log (2e2) − 

1

2
 log (2eD) 

 

            =  
1

2
 log ( 

2

𝐷
) 

 

 

^  ^  



Test channel and R(D) curve 

 This is achievable with the test channel 

+ X ~ N(0, 2-D) X ~ N(0, 2) 

Z ~ N(0, D) 

^  

R(D) 

D 2 
0 

  
1

2
 log ( 

2

𝐷
) 



Useful Rule of thumb: 

 Inverting R(D) we have 

 

 D(R) = 2-2R 2            (Distortion x Rate function) 

 

 Thus Max SNR (dB) = 10 𝑙𝑜𝑔10 (
2

𝐷(𝑅)
) = 20𝑅  𝑙𝑜𝑔102 

                                     

                                6𝑅  (Note: 𝑅 in bits/source sample) 

  For example an audio system with 16 bits/sample  

  can give you ~ 96 dB of SNR ! 



Kolmogorov Complexity 

 The intrinsic descriptive complexity of an object. 

 

 The Kolmogorov complexity of a string x with 

respect to a universal computer U is defined as 

               KU(x) =       min    l (p), 

 

 the minimum length over all programs that print x 

and stop. 

 

p:U(p)=x 



Universality 

 For any computer a there is a constant c(A) such that 

                    

                       KU(x) ≤KA(x) + c(A) 

 

 Note: The constant c(A) depends on A but not on x. 

 



Examples: 

 Ex. 1) Repeating sequence x=01010101010101… 

          K(x| l (x) ) = c    

 Program: Print alternating binary digits of length l (x). 

 

 Ex. 2) Some arbitrary sequence x 

           K(x|l (x) ) ≤ l (x) + c 

 Program: Print this sequence: x. 

 



Examples 

 Ex. 3) Upper bound on K(x) 

 K(x) ≤ K(x| l (x) ) + 2 log l (x) + c 

 

 Describe l (x) by repeating every bit in the binary 

representation and terminating with 01. 

 

 Alternatively use log* n (= log n + log log n + …) 



Examples:  

 Ex. 4) K(n) ≤ log n  + 2 log log n + c 

 

 Ex. 5) K(n1 + n2) ≤ K(n1) +K(n2) + c 

 

 Ex. 6) K() = c 

 

 Ex. 7) K ( n digit representation of  ) = K(n) + c 



Monkeys in the computer 

 What is the probability that a monkey typing on a 
computer will produce: 

 a) 0n followed by an arbitrary string; 

 b) 0n1 followed by an arbitrary string; 

 c) The works of Shakespeare followed by an arbitrary 
string 

 Reasoning: The probability that a computer with 
random input will type x followed by an arbitrary 
sequence is the sum of the probabilities of programs 
that print x y summed over all y. 



Universal probability 

 Thus 𝑝𝑈(𝑥 … ) =   𝑦 𝑝𝑈(𝑥 𝑦)  

 

 where 𝑝𝑈(𝑥) =  2−𝑙(𝑝)𝑝:𝑈 𝑝 =𝑥  

 This sum is approximated by the largest term, 

corresponding to the simplest x y concatenation. 

 Answers:  a) the smallest program for 0n y with y 

arbitrary is “print zeros forever”. 

                       𝑝𝑈( 0
𝑛…)2−𝑐 



Universal probability 

 b)      𝑝𝑈( 0
𝑛1… )2− log∗ 𝑛 −𝑐   

 

 c) )     𝑝𝑈(Shakespear𝑒… )2
−𝑛 𝐻(𝐸𝑛𝑔𝑙𝑖𝑠ℎ)   

 

 Note: We can define a Universal probability 

 

                           PU(x)  2-K(x) 



Lemma 

 For any computer U  

               2−𝑙 𝑝 ≤ 1 
𝑝:𝑈 𝑝 ℎ𝑎𝑙𝑡𝑠  

 

 Proof: If the computer halts on any program it does 

not look ahead. So no halting program is the prefix 

of another, like instantaneous codes. Their lengths 

satisfy Kraft’s inequality. 



Kolmogorov Complexity and Entropy 

 

    Let X be i.i.d. ~ f(x) on a finite alphabet . 

 

                 Then E 
1

𝑛
 K(Xn|n)  H(X)  

 

 Proof outline: Uses Kraft inequality, Jensen´s 

inequality and the concavity of H(.) 



Applications to Biology 

 BCH error correcting codes have been found in DNA sequences 
generated by BCH codes over GF(4) 

 

 L.C.B. Faria, A.S.L. Rocha, J.H. Kleinschmidt, R. Palazzo Jr. and M.C. Silva-Filho 
 

 The question raised by researchers in the field of mathematical 
biology regarding the existence of error-correcting codes in 
the structure of the DNA sequences is answered positively. It is 
shown, for the first time, that DNA sequences such as proteins, 
targeting sequences and internal sequences are identified as 
codewords of BCH codes over Galois fields.  

 

 Electronics Letters, vol 46, No. 3, 4/Feb/2010 



Applications to Economics 

 Stock Market: 

 Portfolio b=(b1 b2  … bm),   bi ≥ 0,     ∑ bi =1  

 Stock vector X= (x1, x2, … xm) 

 Stocks Xi ≥0 , i = 1,2,…, n. 

 xi represent the relative final price w.r.t. initial price 
in day i. For example, xi = 1.03 represent a 3% 
variation that day. 

 The wealth after n days using portfolio b is  

                      Sn=  𝑏𝑇𝑋𝑖
𝑛
𝑖=1  



Optimal portfolio 

 Def.: The growth rate of a stock portfolio b w.r.t. to 

a stock market distribution F(x) is 

                     W(b,F) = E log bTX. 

 Def. The optimal growth rate W*(F) is 

                      W*(F) = max W(b,F) 

 

 Theorem: The optimal wealth after n days behaves 

as 𝑆𝑛* ≈ 2𝑛𝑊∗ with probability 1. 

 

b 



Proof 

 By the strong Law of Large Numbers,  

 



1

𝑛
 log 𝑆𝑛*  = 

1

𝑛
  log 𝑏∗𝑇𝑛
𝑖=1 𝑋𝑖  

 

                   W*       with probability 1. 

 Thus  

                      𝑆𝑛* ≈ 2𝑛𝑊∗ with probability 1. 

 

 



Multiple User Information Theory 

 Building Blocks: 

 

         Multiple Access Channels (MACs) 

         Broadcast Channels (BCs) 

         Interference Channels (IFCs) 

         Relay Channels (RCs) 

 

 Note: These channels have their discrete memoryless 
and Gaussian versions. For simplicity we will look at the 
Gaussian models. 



Multiple Access Channel (MAC) 



Gaussian Broadcast Channel 



  Superposition coding 

N2 

(1-)P 

P 

1 

P 



Superposition coding 

N2 

(1-)P 

P 

1 

P 



Standard Gaussian Interference Channel 

Power P1 

Power P2 

a 

b 

W1 

W2 

W1 

W2 

   ^  

   ^  



Symmetric Gaussian Interference Channel 

Power P 

Power P 



Z-Gaussian Interference Channel 



Interference Channel: Strategies 

 

         Things that we can do with interference: 

 

1.   Ignore (take interference as noise (IAN) 

2.   Avoid (divide the signal space (TDM/FDM)) 

3.   Partially decode both interfering signals 

4.   Partially decode one, fully decode the other 

5.   Fully decode both (only good for strong inter-                                                           
ference, a≥1) 

 

 

 



Interference Channel: Brief  history 

 Carleial (1975): Very strong interference does not 

reduce capacity  (a2  ≥ 1+P) 

 

 Sato (1981), Han and kobayashi (1981): Strong 

interference (a2 ≥ 1) :  IFC behaves like 2 MACs 

 

 Motahari, Khandani (2007), Shang, Kramer and 

Chen (2007), Annapureddy, Veeravalli (2007):  

    Very weak interference  (2a(1+a2P) ≤ 1) : 

    Treat interference as noise – (IAN) 



Interference Ch.: History (continued) 

 Sason (2004): Symmetrical superposition to beat TDM – 
found part of optimal choice for α 

 

 Etkin, Tse, Wang (2008): capacity to within 1 bit,  good 
heuristical choice of αP=1/a2   

 

 C (2011): Noisebergs to compute Gaussian H+K region 
for Z IFCs 
 

 C, Nair (2012,2013): Some progress on achievable 
region of symmetric Gaussian IFCs 
 

 

 

 



Relay Channel 

   

 

 

 

 The relay channel is said to be physically degraded 

if p(y,y1|x,x1)=p(y1|x,x1) p(y|y1,x1). 

 So Y is a degradation of the relay signal Y1 . 

 Theorem: C = sup min { I(X,X1;Y1), I(X;Y1|X1)} 

Y1 : X1     

X     Y   

p(x,x1) 



Wrap Up 

Many new fronts: 

 

Joint source and channel coding 

Coding for channels with side information 

Distributed source coding 

Network strategies 

Merging of Network Coding and Multi User IT 

 

 



 Many thanks! 
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