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THE LAST TALK OF THE SCHOOL...

Last time...

Showed that for a point-to-point channel with additive Gaussian noise,
the optimal input distribution subject to a power constraint is Gaussian

Used a characterization of Gaussian
Used the single-letterization arguments

This time:
General broadcast channels

Vector Gaussian (MIMO) broadcast channels with private messages
Vector Gaussian (MIMO) broadcast channels with private and common
messages

Other applications of the technique
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THE CHARACTERIZATION OF GAUSSIAN RANDOM

VARIABLES

Theorem (Bernstein ’40, Darmois ’51, Skitovic ’54)
If X and Y are independent random variables such that X + Y and X − Y are
independent, then X and Y must be Gaussian with the same covariance
matrix.
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BROADCAST CHANNELS [COVER ’72]

(M0,M1,M2) Encoder
Xn

q(y, z|x)

Yn

Zn

Decoder 1

Decoder 2

(M̂0, M̂1)

( ˆ̂M0, M̂2)

Figure: Discrete memoryless broadcast channel

Goal: Compute Capacity Region or set of achievable rates (R0,R1,R2)?

Open for discrete memoryless channels

Solved for vector Gaussian (MIMO) channels
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MARTON’S ACHIEVABLE REGION

The set of rates (R0,R1,R2) satisfying

R0 ≤ min{I(W; Y), I(W; Z)}
R0 + R1 ≤ I(U,W; Y)

R0 + R2 ≤ I(V,W; Z)

R0 + R1 + R2 ≤ min{I(W; Y), I(W; Z)}+ I(U; Y|W) + I(V; Z|W)− I(U; V|W)

for any (U,V,W)→ X
q→ (Y,Z) is achievable

REMARKS:

An interesting (and natural generalization) of a strategy for deterministic
broadcast channels [Marton ’79]

No reason to believe that it may be optimal or its optimality was worth
investigating

Do not know whether this is optimal or not optimal
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(U,V,W)-OUTER BOUND

The set of rates (R0,R1,R2) satisfying

R0 ≤ min{I(W; Y), I(W; Z)}
R0 + R1 ≤ min{I(W; Y), I(W; Z)}+ I(U; Y|W)

R0 + R2 ≤ min{I(W; Y), I(W; Z)}+ I(V; Z|W)

R0 + R1 + R2 ≤ min{I(W; Y), I(W; Z)}+ min{I(U; Y|W)

+ I(X; Z|U,W), I(V; Z|W) + I(X; Y|V,W)}

for any (U,V,W)→ X
q→ (Y,Z) is achievable

Chandra Nair SP Coding 2014 Jan 28/30, 2015 6 / 23



A SIMPLE CHANNEL WITH UNKNOWN CAPACITY REGION

Simple hard problem (unknown capacity region)
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Figure: Binary skew-symmetric broadcast channel

The inner and outer bounds presented earlier differ for this channel
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VECTOR GAUSSIAN (MIMO) BROADCAST CHANNELS

Establish the capacity region

Idea: Show that the inner and outer bound evaluate to the same region

In words, it seems to be simple: show that the regions coincide
Difficulty: Evaluation of the regions (union over auxiliaries)

I have spent a good part of last 7 years trying to evaluate various regions
and understand extremal auxiliaries

Showed that the bounds in general are different
Showed that the outer bound is strictly sub-optimal
Found new capacity regions
Discovered new information inequalities

Use the single-letterization in outer bound to argue that Gaussian is
maximal
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CASE 1: PRIVATE MESSAGES ONLY: SINGLE

LETTERIZATION (OUTER BOUND)

Claim: For λ ≥ 1 we have

R1 + λR2 ≤ max
p(v,x):E(XXT)�K

I(X; Y|V) + λI(V; Z).

Proof: From Fano’s inequality

R1 + λR2 ≤
1
n

(
I(M1; Yn|M2) + λI(M2; Zn)

)
≤ 1

n

(
I(Xn; Yn|M2) + λI(M2; Zn)

)
D− P ineq

≤ 1
n

max
p(v,xn): 1

n

∑
i E(XiXT

i )�K

(
I(Xn; Yn|V) + λI(V; Zn)

)
set V = M2
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SINGLE LETTERIZATION

Goal: Show that for λ > 1

1
2

max
p(v,x1,x2)

I(X1,X2; Y1,Y2|V) + λI(V; Z1,Z2)

≤ max
p(v,x)

I(X; Y|V) + λI(V; Z)

Observe that (exercise)

I(X1,X2; Y1,Y2|V) + λI(V; Z1,Z2)

= I(X1; Y1|V,Z2) + λI(V,Z2; Z1)

+ I(X2; Y2|V,Y1) + λI(V,Y1; Z2)

−λI(Z1; Z2)− (λ− 1)I(Y1; Z2|V)
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OPTIMALITY OF GAUSSIAN VARIABLES

Y = AX + G1

Z = BX + G2

here G1,G2 are i.i.d. Gaussian noise vectors.
Let (V∗,X∗) be a maximizer of

D = max
p(v,x)

E(XXT)�K

I(X; Y|V) + λI(V; Z)

Let (V1,X1), (V2,X2) be i.i.d. distributed according to (V∗,X∗).

2D = I(X1,X2; Y1,Y2|V1,V2) + λI(V1,V2; Z1,Z2)

As before, let

X± =
X1 ± X2√

2
Y± =

Y1 ± Y2√
2

Z± =
Z1 ± Z2√

2
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SINGLE LETTERIZATION - REVISITED

Note that

2D = I(X1,X2; Y1,Y2|V1,V2) + λI(V1,V2; Z1,Z2)

= I(X+,X−; Y+,Y−|V1,V2) + λI(V1,V2; Z+,Z−)

= I(X+; Y+|V1,V2,Z−) + λI(V1,V2,Z−; Z+)

+ I(X−; Y−|V1,V2,Y+) + λI(V1,V2, ,Y+; Z−)

−λI(Z+; Z−)− (λ− 1)I(Y+; Z−|V1,V2)

Hence, we obtain that,

I(Z+; Z−) = 0, I(Y+; Z−|V1,V2) = 0.

The latter equality implies that (recall)

I(X+; X|V1,V2) = 0.

Implies X|V = v ∼ N (µv,K∗), for some K∗ � K.

Thus maximizer is

X = U + V, U ∼ N (0,K∗), V ∼ N (0,K − K∗).
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IMPLICATION

For some K′ � K and X = U + V, U ∼ N (0,K∗), V ∼ N (0,K − K∗)

R2 = I(V; Z),R1 = I(X; Y1|V)

lies on or outside the boundary of the outer bound to the capacity region.

Question: Can one always achieve this rate pair

Can one construct a U′ (jointly distributed with V such that

I(U′; Y)− I(U′; V) = I(X; Y|V),

when (V,X) satisfy the relationship above.

Reason: If such a U′ exists, then one can substitute in Marton’s achievable
region and show that the rate pair is achievable.

Answer: Yes (thanks to Max Costa (‘81)) because this is exactly the Dirty
Paper Coding choice.
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DIRTY PAPER CODING CHOICE

The channel was
Y = AX + G1

Let U ∼ N (0,K∗), V ∼ N (0,K − K∗), X = U + V.

Set U′ = U + AV∗ where A = K∗AT(AK∗AT + I)−1.

Verify:
I(U′; Y)− I(U′; V) = I(X; Y|V).

Thus outer and inner bounds match.
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RECAP

We established the capacity region for MIMO Gaussian broadcast channel
with private messages

We did this by showing that inner and outer bound coincided

Used single-letterization to show optimality of Gaussian random
variables in the outer bound

Showed that the outer bound is achievable, using a
Dirty-Paper-Coding-inspired auxiliary variable construction

The old method:

Tour de force in optimization

Channel enhancement idea (to be able to use EPI)

MAC-BC duality

A long paper by Weingarten-Steingberg-Shamai (‘2006) (Best IT paper
award)
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HISTORICAL REMARKS

The technique by Weingarten-Steinberg-Shamai could not be extended to the
case with private and common messages

Despite concerted collaborative efforts by a good group of researchers

What we did

Looked for a more direct proof of this (open problem in NIT)

Once we obtained this technique, we could extend it to private and
common messages

We need one other insights (which we had at that time)

a min-max theorem that we had earlier established for discrete channels
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OUTLINE

Consider the U,V,W outer bound

R0 ≤ min{I(W; Y), I(W; Z)}
R0 + R1 ≤ min{I(W; Y), I(W; Z)}+ I(U; Y|W)

R0 + R2 ≤ min{I(W; Y), I(W; Z)}+ I(V; Z|W)

R0 + R1 + R2 ≤ min{I(W; Y), I(W; Z)}+ min{I(U; Y|W)

+ I(X; Z|U,W), I(V; Z|W) + I(X; Y|V,W)}

Goal: Evaluate the outer bound along some directions

Let λ0 > (λ1 + λ2) and λ1, λ2 > 0.

max
(R0,R1,R2)

λ0R0 + λ1R1 + (λ1 + λ2)R2
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A MIN-MAX CLAIM

max
p(u,v,w,x)

λ0 min{I(W; Y), I(W; Z)}+ (λ1 + λ2)I(V; Z|W) + λ1I(X; Y|V,W)

= min
α∈[0,1]

max
p(u,v,w,x)

λ0

(
αI(W; Y) + (1− α)I(W; Z)

)
+ (λ1 + λ2)I(V; Z|W)

+ λ1I(X; Y|V,W)
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A MAX-MIN THEOREM

Theorem (Terkelsen ‘72)
Let X be a compact connected space, let Y be a set, and let f : X × Y 7→ R be
a function satisfying:

(i) For any y1, y2 ∈ Y there exists y0 ∈ Y such that

f (x, y0) ≥ 1
2

(f (x, y1) + f (x, y2)) , ∀x ∈ X.

(ii) Every finite intersection of sets of the form {x ∈ X : f (x, y) ≤ α)} with
(y, α) ∈ Y × R is closed and connected.
Then

sup
y∈Y

min
x∈X

f (x, y) = min
x∈X

sup
y∈Y

f (x, y).
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A COROLLARY

Corollary (Geng-Gohari-Nair-Yu ‘14)

Let Λd be the d-dimensional simplex, i.e. λi ≥ 0 and
∑d

i=1 λi = 1. Let P be a
set of probability distributions p(u). Let Ti(p(u)), i = 1, .., d be a set of
functions such that the set A, defined by

A = {(a1, a2, ..., ad) ∈ Rd : ai ≤ Ti(p(u)) for some p(u) ∈ P},

is a convex set.
Then

sup
p(u)∈P

min
λ∈Λd

d∑
i=1

λiTi(p(u)) = min
λ∈Λd

sup
p(u)∈P

d∑
i=1

λiTi(p(u)).

Remarks:

The convexity of A in network information theory comes from a
time-sharing argument.
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OPTIMALITY OF GAUSSIAN

Let λ0 > (λ1 + λ2), λi ≥ 0 and α ∈ [0, 1]

Proposition
The value of the optimization problem

sup
X:E(XXT)�K

λ0

(
αI(W; Y) + (1− α)I(W; Z)

)
+ (λ1 + λ2)I(V; Z|W)

+ λ1I(X; Y|V,W)

is attained by a Gaussian distribution (and Gaussian auxiliaries).

Proof: Mimic the single letterization of U,V,W outer bound
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COMPLETION OF CAPACITY PROOF

To show that the outer bound is achievable: use the dirty paper coding choice
for Marton’s region.

Thus, we solved the capacity region of the
Vector Gaussian broadcast channel with private and common messages

This (optimality of Gaussian via single-letterization) technique was used

to give an information theoretic proof of the celebrated Gaussian
hypercontractivity region [Nair ’14]

to establish an inequality on long Markov chains [Courtade]

A variety of network information theory settings [Chong et. al.]

A simpler proof of the secrecy capacity
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THANKS

Many Thanks

Muito Obrigado
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