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POINT-TO-POINT COMMUNICATION

The mathematics of digital communication [Shannon ’48]

A sender X communicates to receiver Y over a noisy channel q(y|x).

M Encoder
Xn

q(y|x) Yn
Decoder 1 M̂

Figure: Discrete memoryless channel

The maximum rate that can be reliably transmitted (using blocks)

C = max
p(x)

I(X; Y) = max
p(x)

X

x,y

p(x)q(y|x) log
q(y|x)
p(y)

.
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PROOF OF CHANNEL CAPACITY - I

A codebook of rate R, with block length n, is said to achieve a probability of
error at most ✏ if: for M ⇠ U[0 : 2nR � 1], we have P(M̂ 6= M)  ✏.

The proof of capacity uses two mathematical tools:
1 Fano’s inequality

2 Data-processing inequality
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FANO’S INEQUALITY

Fano’s inequality

If M, M̂ 2 {0, 1, . . . , 2nR � 1} and P(M̂ 6= M)  ✏ then

H(M|M̂)  1 + ✏nR.

Proof: Let

E =

(
0 M = M̂
1 M 6= M̂

.

Then

H(M|M̂)  H(M,E|M̂) = H(E|M̂) + H(M|E, M̂)

 1 + ✏ log2 2nR = 1 + ✏nR.
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DATA PROCESSING INEQUALITY

Data-processing inequality
If X ! Y ! Z forms a Markov chain then

I(X; Z)  I(X; Y).

Proof: Since X � Y � Z is Markov, we have I(X; Z|Y) = 0. Observe that

I(X; Y) = I(X; Y) + I(X; Z|Y) = I(X; Y, Z)
= I(X; Z) + I(X; Y|Z) � I(X; Z).
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PROOF OF CHANNEL CAPACITY - II

Given: A sequence (increasing block length) of codebooks with rate R with
probability of error at most ✏.
Goal: Bound the value of R.
Observe that

R =
1
n

H(M) M ⇠ U[0 : 2nR � 1]

=
1
n
�
I(M; M̂) + H(M|M̂)

�

 1
n
�
I(M; M̂) + 1 + nR✏

�
Fano’s inequality

 1
n

I(Xn; Yn) +
1
n
+ R✏ Markov : (M � Xn � Yn � M̂)

 1
1 � ✏

lim sup
n!1

1
n

I(Xn; Yn) Letting n ! 1

 lim sup
n!1

1
n

I(Xn; Yn) Letting ✏ ! 0.
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SINGLE LETTERIZATION

We established via Fano’s inequality and data-processing that

R  lim sup
n!1

1
n

I(Xn; Yn).

Unfortunately, this value is not computable (infinite dimensional optimization
problem).

Goal: Show that
1
n

I(Xn; Yn)  max
p(x)

I(X; Y).
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1-LETTER TO 2-LETTER

1-letter to 2-letter
Claim: It suffices to show that for every pair of channels q(y|x), and for every
p(x1, x2)

1
2

Iq⌦q(X1,X2; Y1, Y2)  max
p(x)

I(X; Y).

Proof: If true by induction, we would have

1
4

Iq⌦q⌦q⌦q(X1,X2,X3,X4; Y1, Y2, Y3, Y4)  max
p(x1,x2)

1
2

Iq⌦q(X1,X2; Y1, Y2)

 max
p(x)

I(X; Y)

and so on for higher powers of 2.

Exercise: Why does powers of 2 suffice (and not every n)?
Hint: Try a sandwiching argument... (superadditivity).
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1-LETTER TO 2-LETTER - II

To Show:
1
2

Iq⌦q(X1,X2; Y1, Y2)  max
p(x)

I(X; Y).

Proof: Note

I(X1,X2; Y1, Y2) = I(X1,X2; Y1) + I(X1,X2; Y2|Y1)

= I(X1; Y1) + I(Y1,X1,X2; Y2)� I(Y1; Y2) (X2 � X1 � Y1)

= I(X1; Y1) + I(X2; Y2)� I(Y1; Y2) ((X1, Y1)� X2 � Y2)

 2 max
p(x)

I(X; Y).

Call this a single-letterization argument.

My talks: Optimality of Gaussian distributions in additive Gaussian noise
channels as a consequence of single-letterization arguments.
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OUTLINE - FOR THE NEXT PART

A characterization of Gaussian random variables

Application to point-to-point channel capacity (warm up)

Some mathematical preliminaries

Proof of the characterization

Later: Move on to multiuser settings.
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A CHARACTERIZATION OF GAUSSIAN RANDOM
VARIABLES

Theorem (Bernstein ’40, Darmois ’51, Skitovic ’54)
If X and Y are independent random variables such that X + Y and X � Y are
independent, then X and Y must be Gaussian with the same covariance
matrix.
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APPLICATION TO POINT-TO-POINT CHANNELS

Additive white Gaussian Channel [Shannon ’48]

A sender X communicates to receiver Y over a noisy channel Y = X + Z.

X + Y

Z ⇠ N (0, 1)

Figure: Additive white Gaussian noise channel

Given a power constraint P on the codebook
The maximum rate that can be reliably transmitted (using blocks)

C = sup
X:E(X2)P

I(X; Y) =
1
2

log(1 + P).

Note: X ⇠ N (0,P) is the maximizing distribution.
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OUTLINE

Setting:
Y = X + Z, Z ⇠ N (0, 1).

Goal: Determine extremal distribution: supX:E(X2)P I(X; Y).

Let X⇤ be a maximizing distribution (existence: later)

Let C = I(X; Y)
��
X⇠X⇤

.

X1,X2 be two i.i.d. copies of X⇤

Take two independent realizations (2-letter) of the channel

2C = I(X1,X2; Y1, Y2).
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OBSERVATION

Two channel realizations

Y1 = X1 + Z1

Y2 = X2 + Z2

Define
X+ =

X1 + X2p
2

Y+ =
Y1 + Y2p

2
Z+ =

Z1 + Z2p
2

X� =
X1 � X2p

2
Y� =

Y1 � Y2p
2

Z� =
Z1 � Z2p

2
Note: Z+, Z� are i.i.d. N (0, 1).

When X+,X� are inputs to the same two-letter channel we get

Y+ = X+ + Z+

Y� = X� + Z�
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RECALL: SINGLE LETTERIZATION

2C = I(X1,X2; Y1, Y2)

= I(X+,X�; Y+, Y�) (bijection)
= I(X+,X�; Y+) + I(X+,X�; Y�|Y+)

= I(X+; Y+) + I(X�; Y�)� I(Y+; Y�)

 C + C = 2C

Since end-to-end equality holds, we must have

I(X+; Y+) = I(X�; Y�) = C
I(Y+; Y�) = 0

Thus Y1, Y2 are independent and Y1 + Y2, Y1 � Y2 are independent.
Hence Y1, Y2 are Gaussians, implying X1,X2 are Gaussians.
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WHY IS THE GAUSSIAN CHARACTERIZATION VALID?

Mathematical Preliminaries: Characteristic functions

Give a random variable X we have the characteristic function

�X(t) := E(eitX).

Properties of the characteristic function:
|�X(t)|  1 8t
�X(t) is a continuous function of t (in fact uniformly continuous)
�X(t) uniquely characterizes the distribution of a random variable
(inversion)
�X(�t) = �⇤

X(t) (conjugate symmetry)
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A FUNCTIONAL EQUATION

Given: X and Y are independent and X + Y and X � Y are also independent.

Let �X(t) = E(eitX) and �Y(t) = E(eitY)

�X(t1 + t2)�Y(t1 � t2) = E(ei(t1+t2)X)E(ei(t1�t2)Y)

= E(ei(t1+t2)X+i(t1�t2)Y))

= E(eit1(X+Y)+it2(X�Y))

= E(eit1(X+Y))E(eit2(X�Y))

= E(eit1X)E(eit1Y)E(eit2X)E(e�it2Y)

= �X(t1)�X(t2)�Y(t1)�Y(�t2)
= �X(t1)�X(t2)�Y(t1)�⇤

Y(t2)
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SOLUTION OF THE FUNCTIONAL EQUATION

�X(t1 + t2)�Y(t1 � t2) = �X(t1)�X(t2)�Y(t1)�⇤
Y(t2)

�X(t) = �2
X(

t
2)|�Y(

t
2)|

2 : set t1 = t2 = t
2

�Y(t) = |�X(
t
2)|

2�2
Y(

t
2) : set t1 = �t2 = t

2

Implies |�X(t)| = |�Y(t)|, say f (t) 8t

Thus the absolute values satisfy the equation

f (t1 + t2)f (t1 � t2) = f 2(t1)f 2(t2)

f (2t) = f 4(t) : set t1 = t2 = t

Induction: f (kt) = f (t)k2
, k 2 N (exercise)

f (qt) = f (t)q2
, q 2 Q

f (t) = f (1)t2 = e�ct2 , t 2 R (by continuity of �X(t)in t)
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SOLUTION OF THE FUNCTIONAL EQUATION

Let �X(t) = e�ct2ei✓1(t),�Y(t) = e�ct2ei✓2(t)

Phases (recall: odd functions) satisfies the recursion

✓1(t1 + t2) + ✓2(t1 � t2) = ✓1(t1) + ✓1(t2) + ✓2(t1)� ✓2(t2)

Exercise: Show that ✓1(t) = t✓1(1) and ✓2(t) = t✓2(1)

Thus
�X(t) = e�ct2+iat,�Y(t) = e�ct2+ibt

In other words, X and Y are Gaussians with same variance. Q.E.D.
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EXISTENCE OF MAXIMIZER (STANDARD ANALYSIS)

Line of reasoning:

A sequence of variables {Xn} whose value I(Xn; Y) converges to the
supremum
Implies (since their second moment is bounded) a subsequence {Xni}
that converges weakly. (Prokhorov)
The densities of induced {Yni} converge pointwise (use the additive
Gaussian noise and other standard results)
Entropies h(Yni) converge

densities are uniformly bounded (Gaussian noise)

lim inf
i

h(Yni) � h(Y⇤)

uniformly bounded -moment ( > 1)

lim sup
i

h(Yni)  h(Y⇤)
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A SIMPLE EXERCISE

Exercise
Let Y1 = X1 + Z1 and Y2 = X2 + Z2, where Z1 ⇠ N (0,N1), Z2 ⇠ N (0,N2)
are independent Gaussians and independent of (X1,X2).

1 If Y1 and Y2 are independent, then show that X1 and X2 are also
independent.

2 If Y1 and Y2 are independent Gaussians, then show that X1 and X2 are
also independent Gaussians.

Hint: Use characteristic functions.
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RECAP: POINT-TO-POINT CHANNEL

What we did
Showed that for the channel with additive Gaussian noise, the optimal
input distribution subject to a power constraint is Gaussian

Used a characterization of Gaussian
Used the single-letterization arguments

Seems more complicated than traditional technique.

In network information theory, the presented technique (program) does not
get any more complicated

Traditional Techniques: Become very involved and sometimes does not work
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EXTENSION TO NETWORKS

What if there are more than one sender/receiver?

Can we obtain a similar capacity region?

The answer is mostly NO, i.e. we do not know the capacity regions.
NOTABLE EXCEPTION: Multiple access channel
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OPEN SETTING 1: BROADCAST CHANNELS [COVER ’72]

(M1,M2) Encoder
Xn

q(y, z|x)

Yn

Zn

Decoder 1

Decoder 2

M̂1

M̂2

Figure: Discrete memoryless broadcast channel

Goal: Compute Capacity Region or set of achievable rates (R1,R2)?
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OPEN SETTING 2: INTERFERENCE CHANNELS

M1

M2

Encoder 1

Encoder 2

Xn
1

Xn
2

q(y1, y2|x1, x2)

Yn
1

Yn
2

Decoder 1

Decoder 2

M̂1

M̂2

Figure: Discrete memoryless interference channel

Goal: compute Capacity Region or set of achievable rates (R1,R2)?

Chandra Nair SP Coding 2014 Jan 28/30, 2015 25 / 57



AN OBSERVATION

For these two problems
there are achievable regions (one for each) whose optimality or
sub-optimality has not been established for over 30 years !
for both these regions, there is a way to test the optimality or
sub-optimality

the testing procedure: infinite computational resources
if suboptimal, the procedure terminates in finite time

Testing strategy: Suppose some one gives you an achievable strategy
for any channel q, it yields a computable region A(q)
as n ! 1, the normalized region 1

nA(q⌦ · · ·⌦ q| {z }
n

) ! C

then it is enough to test whether

A(q) =
1
2
A(q⌦ q) 8q (optimal)

A(q) ( 1
2
A(q⌦ q) for some q (sub-optimal)
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ASIDE: A NEW RESULT

Han-Kobayashi(HK) achievable region for the interference channel is strictly
sub-optimal (‘2015)

Idea: Showing 1-letter 6= 2-letter for a class of channels

Ingenuity: coming up with the class of channels for which HK-region is
computable and sub-optimal.

Illustration of the power of computation and development of theoretical
results that made such computation feasible.
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BROADCAST CHANNELS: RESULTS

The capacity region of the broadcast channel is unknown

However, for special classes of channel it is known
Degraded (Gallager ‘74, Bergmans ‘73)
Less noisy (Korner-Marton ‘75)
More capable (El Gamal ‘78)
Essentially less noisy and essentially more capable (Nair ‘10)
Product of reversely degraded broadcast channel (El Gamal ‘81)
Several classes of product broadcast channels (Geng-Gohari-Nair-Yu
‘14)
Vector Gaussian broadcast channel with private messages
(Weingarten-Steinberg-Shamai ‘06)
Vector Gaussian broadcast channel with private and common messages
(Geng-Nair ‘14)
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DEGRADED BROADCAST CHANNEL

Channel setting: X ! Y ! Z is Markov

Capacity Region (Gallager ‘74)
The union of rate pairs (R1,R2) satisfying

R2  I(U; Z)
R1  I(X; Y|U)

over U ! X ! Y ! Z forms the capacity region. Further it suffices to
consider |U|  |X|+ 1.

Note: The freedom is in the choice of p(u, x)
Remarks

Achievability: superposition coding (not focus of this talk)
The capacity region is convex
Can be characterized by intersection of supporting hyperplanes
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ALTERNATE CHARACTERIZATION

Obvious boundaries of capacity region

0  R1  C1, 0  R2  C2.

Interested in characterizing supporting hyperplanes of the form

R1 + �R2, � � 0.

Alternate expression of capacity region
For any � � 0

max
(R1,R2)2C

R1 + �R2 = max
p(v,x)

I(X; Y|V) + �I(V; Z).

Suffices to consider |V|  |X|.
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CONVERSE:

From Fano’s inequality (ignoring ✏ terms)

R2  1
n

I(M2; Zn)

R1  1
n

I(M1; Yn|M2) 
1
n

I(Xn; Yn|M2)

The second inequality follows from: (M1,M2) ! Xn ! Yn being Markov
(data-processing)

Hence

max
(R1,R2)2C

R1 + �R2 =
1
n

✓
max

p(v,xn)
I(Xn; Yn|V) + �I(V; Zn)

◆
.

Set V = M2.

Next: Gallager’s single-letterization argument
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SINGLE LETTERIZATION (GALLAGER ‘74)

Goal: Show that

1
2

✓
max

p(v,x1,x2)
I(X1,X2; Y1, Y2|V) + �I(V; Z1, Z2)

◆
 max

p(v,x)
I(X; Y|V) + �I(V; Z)

Proof: Observe that

I(X1,X2; Y1, Y2|V) + �I(V; Z1, Z2)

= I(X1; Y1|V) + I(X2; Y2|V, Y1)

+ �I(V; Z1) + �I(V; Z2|Z1)

=I(X1; Y1|V) + I(X2; Y2|V, Y1, Z1)

+ �I(V; Z1) + �I(V, Z1; Z2)� �I(Z1; Z2)

=I(X1; Y1|V) + I(X2; Y2|V, Z1)� I(Y1; Y2|V, Z1)

+ �I(V; Z1) + �I(V, Z1; Z2)� �I(Z1; Z2)
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GAUSSIAN DEGRADED BROADCAST CHANNEL

X + Y +

G1 ⇠ N (0,N1)

+ Z

G0
2 ⇠ N (0,N0

2)

Figure: Degraded Gaussian broadcast channel

The capacity region is the union of rate pairs satisfying:

R2  I(V; Z), R1  I(X; Y|V)

for some V ! X ! (Y, Z) such that E(X2)  P.

[Bergmans ’73]: Suffices to consider X = U + V ,
U ⇠ N (0,↵P),V ⇠ N (0, ↵̄P),U ? V
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PROOF OF BERGMAN’S RESULT VIA GALLAGER’S
SINGLE-LETTERIZATION

D = sup
X:E(X2)P

I(X; Y|V) + �I(V; Z)

and let (V⇤,X⇤) be a maximizer.

Let (V1,X1), (V2,X2) be i.i.d. distributed according to (V⇤,X⇤).

2D = I(X1,X2; Y1, Y2|V1,V2) + �I(V1,V2; Z1, Z2)

As before, let

X± =
X1 ± X2p

2
Y± =

Y1 ± Y2p
2

Z± =
Z1 ± Z2p

2
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FROM SINGLE-LETTERIZATION

2D = I(X+,X�; Y+, Y�|V1,V2) + �I(V1,V2; Z+, Z�)

= I(X+; Y+|) + I(X�; Y�|V1,V2, Z+)� I(Y+; Y�|V1,V2, Z+)

+ �I(V1,V2; Z+) + �I(V1,V2, Z+; Z�)� �I(Z+; Z�)

Implies
I(Z+; Z�) = 0, I(Y+; Y�|V1,V2, Z+) = 0

Thus Z1, Z2 are Gaussians and hence Y1, Y2 and X1,X2 are Gaussians. Since
(check)

(V1,V2, Y�) ! Y+ ! Z+

we have (by data-processing inequality)

I(Y+; Y�|V1,V2) = I(Z+; Y�|V1,V2)

= 0.

If Y� � Y+ � Z+ and Y� � Z+ � Y+ is Markov (have positive joint density
function) then Y� is independent of (Y+, Z+) (conditioned on (V1,V2))
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GAUSSIAN OPTIMALITY

Since I(Z+; Y�|V1,V2) = 0, from the simple exercise we showed earlier

I(X+;X�|V1,V2) = 0

Let Xv ⇠ X|{V = v} denote the conditional distribution.

Hence for every pair v1, v2, we have Xv1
1 ,Xv2

2 is independent and Xv1
1 + Xv2

2 and
Xv1

1 � Xv2
2 are independent.

Hence Xv ⇠ N (µv,P0) with P0  Q; thus the conditional distribution of the
maximizer is Gaussian.

Exercise: Reason why the above statement establishes Bergman’s result.
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REMARKS

Traditional Argument

Uses (weak) Entropy Power Inequality (**)

Works in n-letter forms (need not use single-letterization)
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QUESTIONS

Questions about content so far

Next:
General broadcast channels

Vector Gaussian (MIMO) broadcast channels with private messages
Vector Gaussian (MIMO) broadcast channels with private and common
messages

Other applications of the technique
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