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t Encoding and Sums of Gaussian measures on Lattis

An example: the partitio

QAM Partition a la Ungerboeck
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Figure : Labeling of subsets A and B
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Coset Encoding and Sums of Gaussian measures on Lattices

An example: the encoding — D,

Binary data 0 ——=00 iy (QAM1,QAM2)

1—=1 (A, A)U (B, B)

Binary data (uncoded) f T

Figure : D4 encoder
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Coset Encoding and Sums of Gaussian measures on Lattices

An example: the encoding — D,

Binary data 0 ——=00 iy (QAM1,QAM2)

1—=1 (A, A)U (B, B)

Binary data (uncoded) f T

Figure : D4 encoder

@ The binary code is the binary (2,1) repetition code (linear)
@ Modulation is QAM, labeling is the Ungerboeck labeling
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Coset Encoding and Sums of Gaussian measures on Lattices

An example: the encoding — D,

Binary data_ 0 ——=00

1——=11

——— Labeling

Binary data (uncoded) f T

Figure : D4 encoder

@ The binary code is the binary (2,1) repetition code (linear)
@ Modulation is QAM, labeling is the Ungerboeck labeling

One of the simplest examples of “Construction A”

Dy =(1+0Z[1? + (2, 1f,

(QAM1,QAM2)
(A, A)U (B, B)
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Coset Encoding and Sums of Gaussian measures on Latt

Definition

Definition
A Euclidean Z-lattice is a discrete additive subgroup with rank p, p < n of the Euclidean
space R”". We restrict to the case p = nin the sequel.
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Coset Encoding and Sums of sian measures on Latt

Definition

Definition
A Euclidean Z-lattice is a discrete additive subgroup with rank p, p < n of the Euclidean
space R”". We restrict to the case p = nin the sequel.

Lattice points
@ Anelement v of A can be written as :

v=ayvy+apvr+...+apvy, ay,ay,...,apn€Z

}

where (vy,v2,...,v,) is a basis of R".

@ The lattice A can be defined as :
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t Encoding and Sums sian measures on Latt

Lattices : Generator matrix

@ The set of vectors vy, v, ..., vy, is a lattice basis.

Definition
Matrix M whose columns are vectors vy, v»,..., Uy, is a generator matrix of the lattice
denoted A .
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t Encoding and Sums sian measures on Latt

Lattices : Generator matrix

@ The set of vectors vy, v, ..., vy, is a lattice basis.

Definition
Matrix M whose columns are vectors vy, v»,..., Uy, is a generator matrix of the lattice
denoted A .

@ Each vector x = (x1,x2,.. .,x,,)T in Apy, can be written as,

where z= (21,2,...,2n) | €Z".

@ Lattice Apy may be seen as the result of a linear transform applied to lattice Z” (cubic lattice).
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Coset Encoding and Sums of Gaussian measures on Lattices

Lattices : Properties

@ The generator matrix M describes the lattice A7, but it is not unique. All matrices M- T where T has
integer entries and detT = +1 are generator matrices of Apy. T'is called a unimodular matrix.

@ G=M" -Mis the Gram matrix of the lattice .

@ The lattice which has generator matrixis M~ is called the dual matrix of A 7, denoted A;IA
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and Sums o ian measures on Lat

Lattices : Properties

@ The generator matrix M describes the lattice A7, but it is not unique. All matrices M- T where T has
integer entries and detT = +1 are generator matrices of Apy. T'is called a unimodular matrix.

@ G=M" -Mis the Gram matrix of the lattice .

@ The lattice which has generator matrix is M~ is called the dual matrix of A, denoted AX,I.

Definitions
@ The fundamental parallelotope of Ay is the region,

P={xeR" i x=ayv) +avy +...+apvy, 0= a;<1, i=1...n}

@ The fundamental volume is the volume of the fundamental parallelotope. It is denoted
Vol(Apy).

@ The fundamental volume of the lattice is vol (A yy) = [det(M)|, which is \/det(G) either.
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Coset Encoding 2 1ssian measures on Lattices

Lattices : Geometric properties (cont.)

Definition
The Voronoi cell of a point © belonging to the lattice A is the region

VA ={xeR"||x—ul < ||x7y||, yeA}

@ All Voronoi cells of a lattice are translated versions of the Voronoi cell of the zero point. This cell is
called Voronoi cell of the lattice.

@ The fundamental volume of a lattice is equal to the volume of its Voronoi cell.

J.-C. Belfiore - Explicit Lattice Constructions ...




Coset Encoding and Sums of Gaussian measures on Lattices

The A, lattice

The A, lattice

° Lattice point
(v, v2) Lattice basis
Fundamental parallelotope
Voronoi region

. Belfiore - Explici
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ssian measures on Lattices

oset Encoding and Sums of Gz

The A, lattice

Properties
@ Generator matrix is
1
1 ES
2
M=
o g

@ Wealso have Z [(3] = {a+ b3, a,be Z} = Ay
2in
(Eisenstein integers) where (3 =¢ 3

. . . . .
The A, lattice
° Lattice point

(1, v2) Lattice basis
Fundamental parallelotope

Voronoi region
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Coset Encoding and Sums of

Outline

Coset Encoding

Concentration results
Understanding the flatness factor behavior of even unimodular lattices
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Coset Encoding and Sums of C ian measures on Lat

Coset Encoding on Z

Lattice Z is used to transmit information symbols.

0110001... 2e7
— >Coset Encoder———
bob1babsby...

Figure : Special attention to bits by and by
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oset Encoding on Z

Lattice Z is used to transmit information symbols.

0110001...

e E—
bob1bab3by...

Coset Encoder

zeZ

| ———
(boby) — 21472

Figure : Special attention to bits by and by
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Coset Encoding and Sums of Gaussian measures on Lattices

oset Encoding on Z

Lattice Z is used to transmit information symbols.

0110001...

e E—
bob1bab3by...

Coset Encoder

zeZ

| ———
(boby) — 21472

bybsby... — 4Z

Figure : Special attention to bits by and by

bo by encoded on {0,1,2,3}
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Coset Encoding and Sums of Gaussian measures on L

Coset Encoding on Z

Lattice Z is used to transmit information symbols.

0110001...

e E—
bob1bab3by...

Coset Encoder

zeZ

| ———
(boby) — 21472

bybsby... — 4Z

Figure : Special attention to bits by and by

bo by encoded on {0,1,2,3}

Decoding (byb1)

(boby) are recovered using the Euclidean divi-

sion, z mod 4.
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Coset Encoding and Sums of Gaussian measures on Lattices

oset Encoding on Z

Lattice Z is used to transmit information symbols.

0110001... zeZ
— >Coset Encoder——
bob1babsby... (boby) — 2147
bob3by... — AZ

Figure : Special attention to bits by and by

bo by encoded on {0,1,2,3}

Decoding (bo b1) And with noise..2
(boby) are recovered using the Euclidean divi- What happens if instead of z, we observe z+
sion, z mod 4. noise ?
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Coset Encoding and Sums of Gaussian measures on Lattices

Noisy observation (with Z)

Suppose y = z+ v where

o

1
pv(x): —e 20°,

\/27'[0'

[N

Receiver only wants by b; . It computes

y=ymod 4 =zmod 4+7.
N——
bo by
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Coset Encoding and Sums of Gaussian measures on Lx

Noisy observation (with Z)

Suppose y = z+ v where v is a folded Gaussian noise with pdf,
_2 _ -ak?
P g pr~{ Tkl 27 xelod
0 x¢[0,4)

Receiver only wants by b; . It computes

7=ymod 4 =zmod4+¥v. . .
D | | |;I' \I"‘I

boby | Al [ |

08 | |

06F | |

04+ | [ [ Il

o2f | [ | .

| A R




Suppose y = z+ v where

2

e 20°,

1
(x) =
prix V2no

Receiver only wants by b; . It computes

y= d4= d4+v.
y=ymo Zmo v

by by

0.8

06

0.4

02

0.0

x€[0,4)
x¢[0,4)




Suppose y = z+ v where

2

e 20°,

1
(x) =
prix V2no

Receiver only wants by b; . It computes

y=ymod 4 =zmod 4 +7.
——
boby

0.8

06

0.4

02

0.0

x€[0,4)
x¢[0,4)




Coset Encoding and Sums of Gaussian measures on Lx

Noisy observation (with Z)

Suppose y = z+ v where v is a folded Gaussian noise with pdf,
1 2 _ -ak?
P g pr~{ Tkl 27 xelod
0 x¢[0,4)

Receiver only wants by b; . It computes

7=ymod 4 =zmod4+¥v. Lope T T - o
by by
0.8+
06F \
ps N
04F
02F
0.0k i i i i i i i




Coset Encoding and Sums of Gaussian measures on Lx

Noisy observation (with Z)

Suppose y = z+ v where v is a folded Gaussian noise with pdf,
_2 _ -ak?
pv(x) = e 20°, Py () ~ ZZ:’ioo e 202  xe€[0,4)

2
2 0 x¢[0,4)

Receiver only wants by b; . It computes

y=ymod 4 =zmod 4+7. ST AT AT T A
boby N /SN /N SN
08 NS o/ \
N N N N
06
04
02k
nof
[ 2 1 [ 8 0 12 14



Coset Encoding and Sums of Gaussian measures on Lx

Noisy observation (with Z)

Suppose y = z+ v where v is a folded Gaussian noise with pdf,

_ 2 _ (x=4k?
Vano® P~ e 0 x€04)
0 x¢[0,4)

py(x) =

Receiver only wants by b; . It computes

y=ymod 4 =zmod 4 +7. e - . - .
boby o
08
06+
04+
0z2F
0.0k




Coset Encoding and Sums of C ian measures on Lattices

Noisy observation (with Z)

Suppose y = z+ v where v is a folded Gaussian noise with pdf,
1 2 _ -ak?
P g pr~{ Tkl 27 xelod
0 x¢[0,4)

Receiver only wants by b; . It computes

7=ymod 4 =zmod4+¥v. 4
boby 12l 1

08¢ ]
06} 4

04 4

02F 4




Coset Encoding and Sums of Gaussian measures on Lx

Noisy observation (with Z)

Suppose y = z+ v where v is a folded Gaussian noise with pdf,
1 2 _ -ak?
P g o0 ~{ Tl 27 xelod
0 x¢[0,4)

Receiver only wants by b; . It computes

y=ymod4=zmod4+V. o . , . : . . .
Y=Y 14 — e R
bo by 12f
1.0F
. . . . 08-
Goes from quasi-Gaussian to quasi-uniform.

0.6F
04 F
02F

0.0k L L L L L L L




Coset Encoding and Sums of Gaussian measures on Lattices

Lattice Coset Encoding

Nested Lattices
Ingredients

@ A “fine” lattice Af
@ A “coarse” lattice A < Af
Then, Ap/Ac is an additive group with

Vol (A¢)
Vol (Af]

‘Af/AC

J.-C. Belfiore - Explicit Lattice Constructions ... Y
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Coset Encoding and Sums of Gaussian measures on Lattices

Lattice Coset Encoding

Nested Lattices points of A ¢
Ingredients

@ A “fine” lattice Af
@ A “coarse” lattice A < Af

. . . <

Then, Ap/Ac is an additive group with e

Vol (A g‘

(¢}

|asin = Wolhg) &

Vol (Ay) g

=

=

bo b1 00 | 11 | 01 10
Cosets * O A o

Table : Encoding bits by by Figure : Example of coset encoding: 7>/27>
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Coset Encoding and Sums of sian measures on Latt;

Noisy observation (any A)

Data are encoded in Af/ A¢. Transmitted vector
(in Af) is

€Ac coset

Belfiore - Explicit Lattice Constructions ...




Coset Encoding and Sums of C ian measures on Lattices

Noisy observation (any A)

Data are encoded in Af/ A¢. Transmitted vector

(in Af) is
z= z; + zg
—~— ——
€Ac coset

Received n—dimensional vector is y = z+ v where

n _ Ix?
) e 202 .

pu(® = (m

Receiver only wants data. It computes

y=ymod A =zmod A¢+7.
N———r

data

elfiore - Explicit Lat




Coset Encoding and Sums of Gaussian measures on Lattices

Noisy observation (any A)

Data are encoded in Af/ A¢. Transmitted vector

(in Af) is -
z= zc + 24 pdfof ¥
—~ -~ v is a folded Gaussian noise with pdf,
€A coset
_ @2
: S : pp@) ~{ Taen.e 20 xXeV (A
Received n—dimensional vector is y = z+ v where 0 xe¥ (A
n_lsly here 7 (A) is the Voronoi region of A
pux) = ( ) e 202 . where 7 (A.) is the Voronoi region of A..
V2no

Receiver only wants data. It computes

y=ymod A =zmod A¢+7.
N———r

data
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Coset Encoding and Sums of Gaussian measures on Lattices

Noisy observation (any A)

Data are encoded in Af/ A¢. Transmitted vector
(in Af) is
z= zc + zg
—~ =~
€Ac coset

Received n—dimensional vector is y = z+ v where

n _ Ix?
) e 202 .

(%) = (7
Pv Vono
Receiver only wants data. It computes

y=ymod A;=zmod Ac+7.
N———’

data

pdfof ¥
v is a folded Gaussian noise with pdf,
_x=A)?
Py~ Laence 207 XEV (Ao
0 x¢V (Ac)

where 7 (A.) is the Voronoi region of A.

@-2)
2 AeA, e 202 isa sum of Gaussian measures
on the lattice A (Lattice cryptologists have stud-
ied this function in the framework of “Learning
with errors”)
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t Encoding and Sums of Gaussian measures on Latti

Likelihood

Likelihood function py,;qaa (¥/z4) behaves in a similar way,

Pyidata (¥12a) ~ ) py(¥lzz=zq+2)

zZc€Ne
_ llx=zg-2112
~ Z e 202
A€,

J.-C. Belfiore - Explicit Lattice Constrt




Coset Encoding and Sums c sian measures on Latt

Likelihood

Likelihood function py,;qaa (¥/z4) behaves in a similar way,

Pyl/data (x/zd) ~ Z Py (x/Z, Z=2z g+ zc)

zZc€Ne
_ llx=zg-2112
~ Z e 202
A€,

Sum of Gaussian measures on translated lattice points.

J.-C. Belfiore - Explicit Lattice Constructions ...
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Encoding and Sums of Gaussian measu

Construction D

Over Z
7127 = [Fy;Partition chain:

Z>52Z>47Z>---22"M7

Belfiore - Explicit Lattice Constructions ...
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Encoding and Sums o fan measures on Lattices

Construction D

Over Z
7127 = [Fy;Partition chain:

Z>52Z>47Z>---22"M7

Nested codes
A family of nested binary linear codes of length 7:

Cg()C(glccgzn-C%m
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oset Encoding and Sums o an measures on Lattices

Construction D

Over Z
7127 = [Fy;Partition chain:

Z>52Z>47Z>---22"M7

Nested codes
A family of nested binary linear codes of length 7:

Cg()C(glccgzn-C%m

Construction D
We get

A=2"7" 42", 1 422 ot 6y

J.-C. Belfiore - Explicit Lattice Constructions ...

17 /71



Coset Encoding and Sums of Gaussian measures on Ls

Construction D

Over Z

727 = [F»;Partition chain: Over a number field
Choose K a number field with ring of integer Oj .
7527>547>---22"7 Let ¢ be an ideal of Gjc. We get

Ox=9"> g'> 9%>...5 g™

Nested codes with O/ ¢ = %, a finite ring (which is a finite
A family of nested binary linear codes of length n: ~ field if ¢ is a prime ideal).

Cg()C(glccgzn-chm

Construction D
We get

A=2M7" 42 g, 1 422G, s+ 6
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Coset Encoding and Sums of ian measures on Lattices

Construction D

Over Z

727 = [F»;Partition chain: Over a number field
Choose K a number field with ring of integer Oj .
7527>547>---22"7 Let ¢ be an ideal of Gjc. We get

Ox=9"> g'> 9%>...5 g™

Nested codes with O/ ¢ = %, a finite ring (which is a finite

A family of nested binary linear codes of length n: ~ field if ¢ is a prime ideal).

G €1 CCo-CCm A family of nested linear codes of length 7 over %2

Construction D
We get

A=2M7" 42 g, 1 422G, s+ 6
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Coset Encoding and Sums of ian measures on Lattices

Construction D

Over Z
727 = [F»;Partition chain: Over a number field
Choose K a number field with ring of integer Oj .
7527>547>---22"7 Let ¢ be an ideal of Gjc. We get

Ox=4">g'> %55 g"

Nested codes with O/ ¢ = %, a finite ring (which is a finite
A family of nested binary linear codes of length n: ~ field if ¢ is a prime ideal).

CoC 6L 6o <Cm A family of nested linear codes of length 7 over %2

(Generalized) Construction D

5 We get
Construction D
We get A=(F") 401 (Em-1)+¢2 (Em2)+ +@m (€0)
A=2"7"+2M NGy ) +2M 2 G g+ + Gy where ¢; is the homomorphism that sends

711 g1 onto Z.
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Coset Encoding and Sums of Gaussian measures on Lattices

Decoding of construction D [Forney et al., 2000]

yis the received signal,

A=2"7" 12" g, | 422G, o+ 426 + 0.

@ Calculate y mod 2, then decode . Subtract the decoded codeword from y — y;.
@ Calculate y; mod 4, then decode 2% . Subtract the decoded codeword from y; — y,.
Q .-

@ Find the closest lattice point (in 2"°Z") of y,,,_; (very easy).
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Coset Encoding and Sums of Gaussian measures on Lattices

Decoding of construction D [Forney et al., 2000]

yis the received signal,

A=2"7" 12" g, | 422G, o+ 426 + 0.

@ Calculate y mod 2, then decode . Subtract the decoded codeword from y — y;.
@ Calculate y; mod 4, then decode 2% . Subtract the decoded codeword from y; — y,.
Q .-

@ Find the closest lattice point (in 2"°Z") of y,,,_; (very easy).

Folded noise
At step i, the noise has pdf (per component),

J.-C. Belfiore - Explicit Lattice Constructions ...
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Coset Encoding and Sums of Gaussian measures on Latt

Outline

From Sums of Gaussian measures to Theta series

Concentration results
Understanding the flatness factor behavior of even unimodular lattices
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Coset Encoding and Sums o

A characterization of how flat the sum of Gaussian mea-
sures is

Sum of Gaussian measures

Figure : Sum of Gaussian Measures on the 277 lattice
with ¢% = 0.3 and 02 = 0.6
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Coset Encoding and Sums o

A characterization of how flat the sum of Gaussian mea-

sures is

Sum of Gaussian measures How far is the folded noise distribution from the
uniform distribution on 7 (A()?

Figure : Sum of Gaussian Measures on the 277 lattice
with ¢% = 0.3 and 02 = 0.6
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Coset Encoding and Sums of Gaussian meas

s on Lattices

A characterization of how flat the sum of Gaussian mea-

sures is

Sum of Gaussian measures

Figure : Sum of Gaussian Measures on the 277 lattice

with 02 =0.3 and 02 = 0.6

How far is the folded noise distribution from the
uniform distribution on 7 (A()?

Flatness factor (L distance) [Ling et al., 2012]

n_Jx=2)2

1 2
_ ZAEAC (27102 @ 2
ep.(0) = max

-1
xeV (A¢) 1/Vol(A¢)
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Coset Encoding and Sums of G ian measures on Lattices

A characterization of how flat the sum of Gaussian mea-

sures is

Sum of Gaussian measures

Figure : Sum of Gaussian Measures on the 277 lattice
with ¢% = 0.3 and 02 = 0.6

How far is the folded noise distribution from the
uniform distribution on 7 (A()?

Flatness factor (Lo distance) [Ling et al., 2012]

n_Jx=2)2

1
(o) ZAEAC (27102 e 2°
€ O)= max
AT eV A 1/Vol (Ag)

The flatness factor can be evaluated,

2\2 2
Vol (A¢) 7 : — 1A= ”2
SAC(U): — e 20° -1
2no AEA,
— —
One(-522)

J.-C. Belfiore - Explicit Lattice Constructions ...
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Coset Encoding and Sums of Gaussian measures on Latt

Theta Series

Definition
The Theta Series of a lattice A is a function of the
complex variable,

2
®A (1) = Z q"x"

XeEA

evaluated at g = e'"".

Belfiore - Explicit Lattice Constructions ...
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Coset Encoding and Sums of Gaussian measures on Lattices

Theta Series

Definition
The Theta Series of a lattice A is a function of the
complex variable,
2
®A (1) = Z q"x"
xeA

evaluated at g = e'"".

Classically, for a point-to-point communication,
only the first non trivial term is used,

P
Op (1) =1+xg min +...

where « is the kissing number and d?nin is the
Euclidean square minimum distance.

It comes from the “union bound” technique to
upperbound the error probability.

J.-C. Belfiore - Explicit Lattice Constructions ...
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Coset Encoding and Sums o an measures on Lattices

Theta Series

Definition
The Theta Series of a lattice A is a function of the
complex variable,
orm=Y ¢ 3 3
A (T q More recent paradigms need the full theta series.
XeEA
ITT @ Coset encoding

evaluated at g = e
@ Modulo A decoding
Classically, for a point-to-point communication, @ Construction D with “per layer” decoding
iy i st ot et el s @ Finite length analysis of compute-and-forward
P2
Op (1) =1+xg min +...

where « is the kissing number and dfnm is the
Euclidean square minimum distance.

It comes from the “union bound” technique to
upperbound the error probability.
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Coset Encoding and Sums o an measures on Lattices

Theta Series

Definition
The Theta Series of a lattice A is a function of the
complex variable,
Or(@) = Y P 3 3
A () Z q More recent paradigms need the full theta series.
XeEA

evaluated at g = """ . Coset encoding

Classically, for a point-to-point communication,
only the first non trivial term is used,

(*]

@ Modulo A decoding

@ Construction D with “per layer” decoding
(]

Finite length analysis of compute-and-forward
2
Opr(T) =1+ qumin +oee @ Physical Layer Security

where « is the kissing number and dfnm is the
Euclidean square minimum distance.

It comes from the “union bound” technique to
upperbound the error probability.
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La he Wiretap Gaussian Channel

Outline

@ Coset Encoding and Sums of Gaussian measures on Lattices

© Lattices for the Wiretap Gaussian Channel
Criteria

Concentration results
Understanding the flatness factor behavior of even unimodular lattices
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Lattices for the Wiretap Gaussian Channel

The Gaussian Wiretap Channel

Figure : The Gaussian Wiretap Channel model

elfiore - Explicit Lattice Constructions ...




Figure : The Gaussian Wiretap Channel model

The secrecy capacity is given by

’ Cs=1[Ca~p—Ca-pgl" ‘

where Cy_.p = log, (1 + N%) and Cy—.g = log, (1 + N%) can be achieved by using lattice
coding.
Of course, Cs > 0if Ny < N;.

J.-C. Belfiore - Explicit Lattice Constructions ...
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L r the Wiretap Gaussian Channel

Uniform Noise

Assume that Alice — Eve channel is corrupted by an additive uniform noise

. Belfiore - Explicit Lattice Constructions ...




La he Wiretap Gaussian Channel

Uniform Noise

Assume that Alice — Eve channel is corrupted by an additive uniform noise

Label points with data + pseudo—random bits

—0—0 0 0 0 0 0 o o o o o o

/4

Transmitted point

Figure : Constellation corrupted by uniform noise
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La he Wiretap Gaussian Channel

Uniform Noise

Assume that Alice — Eve channel is corrupted by an additive uniform noise

Label points with pseudo—random bits

—— 0 ——— 06— & 0 —

/4

Transmitted point

Figure : Points can be decoded error free: label with pseudo-random symbols
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La he Wiretap Gaussian Channel

Uniform Noise

Assume that Alice — Eve channel is corrupted by an additive uniform noise

Label points with data

/4

Transmitted point

Figure : Points are not distinguishable: label with data
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an Channel

Uniform Noise

Assume that Alice — Eve channel is corrupted by an additive uniform noise

Label points with data

Transmitted point
Label points with pseudo—random bits

———& —— & ———— @& & —

/4
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n Channel

Uniform Noise

Assume that Alice — Eve channel is corrupted by an additive uniform noise

Error Probability

Pseudo-random symbols are perfectly decoded by Eve while there is no information leak-
age.

@ unfortunately not valid for Gaussian noise.

Label points with data

Transmitted point
Label points with pseudo—random bits

———& — & ———— @& & —

/4
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Lattices for the Wiretap Gaussian Channel

Coset Coding with Integers

Label points with data + pseudo—random bits

—0—0 0 0 0 0 06 o o o o o o

/4

Transmitted point

elfiore - Explicit Lattice Constructions ...




Lattices for the Wiretap Gaussian Channel

Coset Coding with Integers

Example

@ Suppose that points x are in Z.

@ Euclidean division

x=3q+r

@ ¢ carries the pseudo-random symbols while r carries the data or “pseudo-random symbols
label points in 37 while data label elements of 7/37”.

Label points with data + pseudo—random bits

—0—0 0 0 0 0 0 o o o o o o

/4

Transmitted point
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Lattices for the Wiretap Gaussian Channel

Lattice Coset Coding

Gaussian noise is not bounded: it needs a n—dimensional approach (then let 7 — co for

sphere hardening).

1—dimensional
Transmitted lattice z
Pseudo-random symbols mzZcZ
Data ZlmzZ

Table : From the example to the general scheme
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Lattices for the Wiretap Gaussian Channel

Lattice Coset Coding

Gaussian noise is not bounded: it needs a n—dimensional approach (then let 7 — co for

sphere hardening).

n—dimensional
Transmitted lattice Fine lattice Aj,
Pseudo-random symbols | Coarse lattice A, < Ay,
Data Cosets Ay /A,

Table : From the example to the general scheme
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Lattices for the Wiretap Gaussian Channel

Lattice Coset Coding

Gaussian noise is not bounded: it needs a n—dimensional approach (then let 7 — co for

sphere hardening).
1-dimensional n—dimensional
Transmitted lattice z Fine lattice A,
Pseudo-random symbols mZcZ Coarse lattice Ap < Ay,
Data ZlmzZ Cosets Ap/Ae

Table : From the example to the general scheme

J.-C. Belfiore - Explicit Lattic

Constructions ...




Lattices for the Wire

Eve’s Probability of Correct Decision (data)
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Lattices for the Wire

Eve’s Probability of Correct Decision (data)

Can Eve decode the data?

Figure : Eve correctly decodes when finding
another coset representative
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Lattices for the Wire

Eve’s Probability of Correct Decision (data)

Can Eve decode the data? Eve’s Probability of correct decision
[Oggier et al., 2011a]

Z A2

Vol(Ap) Y e 202
A€,

n
_ Vol (Ae) \ 2 1
2no? Ae| 202

1
e |
2n0?

where

2
or@m =Y M g=e"",reC,30)>0
Figure : Eve correctly decodes when finding AeA
another coset representative

is the theta series of A.
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Lattices for the Wi

Eve’s Probability of Correct Decision (data)

Can Eve decode the data? Eve’s Probability of correct decision
[Oggier et al., 2011a]

" _z
Vol(Ap) Y e 202
A€,

n
_ Vol (Ae) \ 2 1
2no? Ae| 202

1
e |
2n0?

where

2
or@m =Y M g=e"",reC,30)>0

Figure : Eve correctly decodes when finding AeA
another coset representative

is the theta series of A.

Problem
Find A minimizing when 7 varies along the posi-

tive imaginary semiaxis.



ussian Channel

Flatness Factor

Information Leakage [Ling et al., 2012]
Let M be the transmitted secret message and Z" be the vector received by Eve. Then,

I(M;Z") < 2¢5,(0) (nR—loge,,, (0))

where

2\ %
Vol (A
ep,(0) = M) @Ae( 1 )_1

2n0? 202

is the flatness factor of the lattice A,.
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1ssian Channel

Flatness Factor

Information Leakage [Ling et al., 2012]
Let M be the transmitted secret message and Z" be the vector received by Eve. Then,

I(M;Z") < 2¢5,(0) (nR—loge,,, (0))

where

2,3
Vol (A
ep,(0) = M) @Ae( 1 )_1

2n0? 202

is the flatness factor of the lattice A,.

Probability of correct decision
Probability of correct decision can also been expressed as a function of the flatness factor,

Pre<2""R(gp, () +1)

J.-C. Belfiore - Explicit Lattice Constructions ...

28/71



L r the Wiretap Gaussian Channel

Intuition

Figure : Sum of Gaussian Measures on the 27 lattice with 02 = 0.3 and 0 = 0.6

. Belfiore - Explicit Lattice Constructions ...




Latti he Wiretap Gaussian Channel

Intuition

Figure : Sum of Gaussian Measures on the 27 lattice with 02 = 0.3 and 0 = 0.6

Flatness factor
What is the behavior of the flatness factor?

@ Other figure of merit?

Belfiore - Explicit Lattice Constructions ...




Lattices for the Wiretap Gaussian Channel

Secrecy function

Definition [Oggier et al., 2011b]
Let A be a n—dimensional lattice with fundamental volume A" and 1y = 7. Its secrecy
function is defined as,

Oy _ B (V)

EA & =
Op (1)) Op (1)

where 93(q) = X7 o q"z is the theta series of Z and y > 0.
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Lattices for the Wire

Secrecy function

Definition [Oggier et al., 2011b]
Let A be a n—dimensional lattice with fundamental volume A" and 1y = 7. Its secrecy
function is defined as,

Oy _ B (V)

EA & =
Ox (1) Op (1)

where 93(q) = X7 o q"z is the theta series of Z and y > 0.

: N I\
' M\
5! S L, /A
o ¢ J 1\
. . \
R — T 10 / \\

-6 -4 = 0 2 4 3 -6 4 = [ 2 4 [3
) )

Figure : Secrecy functions of Eg and Ayy
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Lattices for the W

Secrecy Gain

Definition
The strong secrecy gain of a lattice A is

oA S sug EAW)
y>
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Lattices for the Wiretap Gaussian Channel

Secrecy Gain

Definition
The strong secrecy gain of a lattice A is

oA S sug EAW)
y>

1
@ Alattice equivalent to its dual has a theta series with a multiplicative symmetry point at det (A)~ 7
(Jacobi’s formula - coming later),

1
det(A)™ 7

1
ZA |det(A)" ):E
A( y A ¥
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Lattices for the Wiretap Gaussian Channel

Secrecy Gain

Definition
The strong secrecy gain of a lattice A is

oA S sug EAW)
y>

1
@ Alattice equivalent to its dual has a theta series with a multiplicative symmetry point at det (A)~ 7
(Jacobi’s formula - coming later),

1
det(A)" 7 )

1
Zp|det(A) R ):E
oo o)z 2

For a lattice A equivalent to its dual and of determinant det (A), we define the weak se-
crecy gain,

J.-C. Belfiore - Explicit Lattice Constructions ... GV
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La he Wiretap Gaussian Channel

Outline

@ Coset Encoding and Sums of Gaussian measures on Lattices

© Lattices for the Wiretap Gaussian Channel

Examples

Concentration results
Understanding the flatness factor behavior of even unimodular lattices
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Figure : Secrecy functions in dimensions 7 = 72,80
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200

150

300

Secrecy Functions in dimensions 72 and 80 of lattices equal to their dual

2w 3
) / \ i

50 J \\ : J k

0 ——— 0

—6 —4 -2 o 4 6 -6 —4 -2 2 4 6
y(dB) y (dB)
Figure : Secrecy functions in dimensions 7 = 72,80
Dimension | 8 24 32 48 72 80

Secrecy gain % % %4 75129%378 713%2,1 77128 ~195.7 7‘5‘;’2?12%2 =380

J.-C. Belfiore - Explicit Lattice Ct

Table : Secrecy gains of integral lattices equal to their duals




1ssian Channel

Full theta series or some terms?

Lattice I'7»
Discovered in [Nebe, 2012]. It is integral and equivalent to its dual. Its theta series is,

Or,, (1) = 1+62181756004° + 152817883545604'" + 90268674822144004"% + -

Flatness Factor

”

05

I
-30 25 -20 -15 -10 05 00
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Dual lattice and the

Outline

@ Coset Encoding and Sums of Gaussian measures on Lattices

© Dual lattice and the Jacobi’s formula
Poisson

Concentration results
Understanding the flatness factor behavior of even unimodular lattices
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Dual lattice and the Jacobi's formula

Poisson summation formula (Z"-lattice)

Let f: R” — R be a well-behaved function,

{fwf(x)dx<oo

Y uezn | f(x+ u)| converges uniformly

and define F (x) d:efzugznf(x+ u).
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Dual lattice and the Jacs wla

Poisson summation formula (Z"-lattice)

Let f: R” — R be a well-behaved function,

{fRnf(x)dx<oo

Y uczn | f(x+ u)| converges uniformly
def
and define F(x) = Y cznf(x+u).

Fis periodic and has Fourier series,

F@= Y ayd™o®

vezZn
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Dual lattice and the Jacs wla

Poisson summation formula (Z"-lattice)

Let f: R” — R be a well-behaved function,

{fRnf(x)dx<oo

Y uczn | f(x+ u)| converges uniformly

and define F (x) d:efzueznf(x+ u).

Fis periodic and has Fourier series,

F@= Y ayd™o®

vezZn

= N / e 2O £ (v y) dy
veznJ (0,117
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Dual lattice and the Jacs wla

Poisson summation formula (Z"-lattice)

Let f: R” — R be a well-behaved function,

{fRnf(x)dx<oo

Y uczn | f(x+ u)| converges uniformly

and define F (x) d:efzueznf(x+ u).

Fis periodic and has Fourier series,

F@= Y ayd™o®

veZl
= N / e 2O £ (v y) dy
veznJ (0,117

al,:/ e’zm<"’2>f(z)dz
Rn

—_
Fourier transform f(v)
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Dua ce and the Jacobi’s formula

Poisson summation formula (Z"-lattice)

Let f: R” — R be a well-behaved function,

{jknf(x)dx<oo

Y uczn |f (x+ u)| converges uniformly

and define F (x) d:efzueznf(x+ u).

Fis periodic and has Fourier series,

By equating,
Fx) = @y 2T V%) .
UEZZ,, v Y farw= Y Faren
uezZ" vezZn
_ —217(V,
ay = Zn /[ 0,117 e J,>f (v+y)dy and setting x = 0, we get the Poisson Summation
D2t Formula,

_ —217{v,z)
= () d: -
@ /mene e > fa= ) fw

. ueZ" veZ
Fourier transform f(v)
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Dual lattice and the Jacobi's formula

Poisson summation formula (general case)

Let A be an n—dimensional lattice with generator matrix A, then consider

p——

Y=Y faw= Y (foA)w)

xeA uez" veZ"
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Dual lattice and the Jacobi's formula

Poisson summation formula (general case)

Let A be an n—dimensional lattice with generator matrix A, then consider

Y=Y faw= Y (foA)w)

xeA uez" veZ"

We get,

(foA) (v) :/ f(Ax) e—21n(v,x)dx
R7
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Dual lattice and the Jacobi's formula

oisson summation formula (general case)

p——

Y=Y faw= Y (foA)w)

xeA uez" veZ"

We get,

(foA) (v) :/ f(Ax) e—21n(v,x)dx
R7

N =7
:|detA|_1/ fye 2’”<A "‘y>dy
Rn

Let A be an n—dimensional lattice with generator matrix A, then consider
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Dual lattice and the Jacobi's formula

oisson summation formula (general case)

p——

Y=Y faw= Y (foA)w)

xeA uez" veZ"

We get,

(foA) (v) :/ f(Ax) e—21n(v,x)dx
R7

N =7
:|detA|_1/ fye 2’”<A "‘y>dy
Rn

= Idetal ™ (4~ To)

Let A be an n—dimensional lattice with generator matrix A, then consider
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Dual lattice and the Jacobi's formula

oisson summation formula (general case)

Let A be an n—dimensional lattice with generator matrix A, then consider

p——

Y=Y faw= Y (foA)w)

xeA uez" veZ"

We get,
Poisson Summation formula
m W) = / flan e 2w 4o Hence,
[Rn
1 &
_ —21m(A T, f®= fly
= |detAl 1/Wf(l') g2m{am) dy x;,\ Vol (A) yEZA* W)

= |detA| ™! 7 (A’T y) where A* is the dual lattice of A (with generator

matrixA’T).
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Dual lattice and the

Outline

@ Coset Encoding and Sums of Gaussian measures on Lattices

© Dual lattice and the Jacobi’s formula

Jacobi

Concentration results
Understanding the flatness factor behavior of even unimodular lattices
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Dual lattice and the Jacobi's formula

Jacobi’s formula

We apply the Poisson summation formula to the theta series of a lattice.
2
Let fy (1) = e VIul” for some ¥>0 (t = 13). Then,

1 ~
e i) = = — .
V)= T fw= g = A

vEA®
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Dual lattice and the Jacs wla

Jacobi’s formula

We apply the Poisson summation formula to the theta series of a lattice.
2
Let fy (1) = e VIul” for some ¥>0 (t = 13). Then,

1 ~
e i) = = — o
A (ly) ';Afy (w) Vol (A) Z fj/(l))

vEA®

where

B (i) = —217(v,x)—yl| %]
v) = e dx
e /[R"
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Dual lattice and the Jacs wla

Jacobi’s formula

We apply the Poisson summation formula to the theta series of a lattice.
2
Let fy (1) = e VIul” for some ¥>0 (t = 13). Then,

1 ~
e i) = = — o
A (ly) ';Afy (w) Vol (A) Z fj/(l))

vEA®

where

B (i) = —217(v,x)—yl| %]
v) = e dx
e /[R"

n
_ H / e—Zlnvkxk—nyxidxk
R
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Dual lattice and the Jacs wla

Jacobi’s formula

We apply the Poisson summation formula to the theta series of a lattice.
2
Let fy (1) = e VIul” for some ¥>0 (t = 13). Then,

1 ~
e i) = = — o
A (ly) ';Afy (w) Vol (A) Z fj/(l))

vEA®

where

B (i) = —217(v,x)—yl| %]
v) = e dx
e /[R"

n
_ H / e—Zlnvkxk—nyxidxk
R
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Dual lattice and the Jacs

wla

Jacobi’s formula

We apply the Poisson summation formula to the theta series of a lattice.
2
Let fy (1) = e VIul” for some ¥>0 (t = 13). Then,

1 ~
e i) = = — .
A= T fw= g ¥ fe

vEA®

where Jacobi’s formula [Conway & Sloane, 1998]

The theta series of an n—dimensional lattice A is
ﬁ’ ) = / 2w —mylxl? g, related to the theta series of its dual A* as,
[RVL

T

1% 1
_ ﬁ / e—Zlnvkxk—nyxidxk ®A* (r) = Vol (A) (;) 2 @A( )
R

by setting 1y = 1.
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Dual lattice and the Jacobi’s formula

Jacobi’s formula

We apply the Poisson summation formula to the theta series of a lattice.
2
Let fy (1) = e VIul” for some ¥>0 (t = 13). Then,

1 e
e iv) = = — .
A () ué\fy(u) TN Y HWw

vEA®

where

Jacobi’s formula [Conway & Sloane, 1998]

The theta series of an n—dimensional lattice A is
ﬁ’ ) = / 2w —mylxl? g, related to the theta series of its dual A* as,
[RVL
5 1
n - — —
_ H / e—Zlnvkxk—nyxidxk Opx (1) = Vol (A) (‘L') O ( T)
k=1/R
" _nw by setting 1y = 1.
=y 2e Yy

Use Jacobi’s formula to get the theta series of A
— needs a relationship between A and A*.
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The case of unimodular lattices

Outline

@ Coset Encoding and Sums of Gaussian measures on Lattices

© The case of unimodular lattices
Theta Series

Concentration results
Understanding the flatness factor behavior of even unimodular lattices
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The of unimod ices

Unimodular lattices

Definition
Alattice A of rank 7 is unimodular if

@ Aisintegral, i.e. its Gram matrix B= AT -Ae GLy (2).
Q@ A=A*




The of unimodular 5

Unimodular lattices

Definition
Alattice A of rank 7 is unimodular if

@ Alis integral, i.e. its Gram matrix B= A" - A€ GLy ().
Q@ A=A*

Examples
7" is unimodular, Eg and A4 are unimodular.

Definition
Moreover, if the square length of any point of A is an even integer, then A is an even
unimodular lattice. Eg and Ay, are even unimodular.
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The c funimodular lattices

Theta series as modular forms

Since A = A* (and Vol (A) = 1), we get from Jacobfi’s identity,

Op (—%) = (;)%QA (7).

From the periodicity of the theta series, and since A is even,

OA(T+1) =0, (7).

J.-C. Belfiore - Explicit Lattice Constructions ...
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The case of unimodular lattices

Theta series as modular forms

Since A = A* (and Vol (A) = 1), we get from Jacobfi’s identity,
1 T\%
or[Y- (e
T 1
From the periodicity of the theta series, and since A is even,

OpA(T+1) =04 (7).

Action of PSL, (2)
The group generated by 7 — 7+ 1 and 7 — —% acts on the theta series of an even unimod-

ular lattice. This group is PSL, (Z). So, for any Z ,ad—bc=11in SLy (7), if A is an

even unimodular lattice, we have,

(ar+b)_( +d)%® -
Meara) ™ i

which means that ©  (7) is a modular form of weight g’ for the “full" group SL2 (2).



The c funimodular lattices

Theta series of Eg: A Modular form approach

Structure

The set of modular forms of weight k, M. (SL, (Z))
is a vector space of dimension 0 if k < 4 and of
dimension 1 when k = 4.

Eisenstein
Modular forms of weight 4 are proportional to the
Eisenstein series

o0
Ey(@) =1+240 Y o3(mg™
m=1
where o3(m) is the sum of the cubes of the divi-
sors of m.
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The case of unimodular lattices

Theta series of Eg: A Modular form approach

Structure

The set of modular forms of weight k, M. (SL, (Z))
is a vector space of dimension 0 if k < 4 and of
dimension 1 when k= 4.

Eisenstein
Modular forms of weight 4 are proportional to the
Eisenstein series

o0
Ey(@) =1+240 Y o3(mg™
m=1
where o3(m) is the sum of the cubes of the divi-
sors of m.

The first even unimodular lattice is of dimension
8 and its theta series is

Ex(q) = 1+24047 + 21604 +67204° + - --

The Ej lattice
There is one even unimodular lattice of dimen-
sion 8, Eg with theta series,

o0
O, (q) = Ealg) =1+240 ) a3(m ™
m=1

J.-C. Belfiore - Explicit Lattice Constructions ...
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The case of unimodular lattices

Theta series g: A Coding approach

+00

5@ = Y ¢ =020
k=-00
+00 (k+ l)z
g = Y 4% =0,,1@
k=—00 2
and consider construction 4,
A = 2Z%+%@69F,
= U (ez®+4]

XEC

We get

OND = ) Oy78,4(a)
XEE
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The case of unimodular lattices

Theta series of E3: A Coding approach

Define We have 8l 4
= e ©528(a) =83 (q )
93(q) = kZ q =6z(@ and more generally,
=—00
+00 (k+l)2 B 2\~ W) 4\ W(x)
@ = Y 4% =0, Oyz8.4x(@) =03 (q ) 92 (q )
k=—00
where w(x) is the Hamming weight enumerator
and consider construction A, @i
A = 2Z%+6@8 9,
= U [22°+4)
XEC
We get

OND = ) Oy78,4(a)
XEE
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The case of unimodular lattices

Theta series of E3: A Coding approach

Define We have o( 4
= e ©528(a) =83 (q )
930 = . ; q- =0z(@ and more generally,
+oo () B 2\ W) 2\ W)
9(q = Z q( 2 ) =02,1@ 0,78.,5(@ =13 (q ) L) (q )

where w(x) is the Hamming weight enumerator
and consider construction 4,

of x.
_ 8
A = 2Z%+6@8 9, Fs again
= U (228 +x) Let we (x,y) = 18 + 14x*y* + 18 be the Hamming
xX€€ weight enumerator of €, A has theta series,
on@ = we(03(dq")02(d"))

We get

4 12
OA@= Y. 0,58, (@ 1+2404" +21604° + 672042 + - --
X€€
In fact, A = V2Eg.
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The case of unimodular lattices

Extremal Lattices

Theorem

The theta series of an even unimodular lattice,
O, (q) is an isobaric polynomial in Ey and Ay
where

)24

(1-g™
1

q—24q% +252¢° —---

is the Ramanujan form (of weight 12) and even
unimodular lattices exist iff their dimension
n=0(8).

A24(q) q

318

More precisely, let n=24m+ 8k, with k€ {0,1,2};

m .
Op = E2m+k+ Y ajEZ(m_]HkA]M
J=1
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The case of unimodular lattices

Extremal Lattices

Theorem

The theta series of an even unimodular lattice,
O, (q) is an isobaric polynomial in Ey and Ay
where

)24

(1-g™
1

q—24q% +252¢° —---

is the Ramanujan form (of weight 12) and even
unimodular lattices exist iff their dimension
n=0(8).

A24(q) q

318

More precisely, let n=24m+ 8k, with k€ {0,1,2};

m .
@ :E2m+k+ y ajEZ(m_ﬁ+kA]24
J=1

Leech lattice Aoy
We get

Opy = E; +a Aps

1+ (a +720)+ -+

In order to maximize the minimum distance, we
choose a; = —720, which gives

Op,, = E5-7204p

= 1+1965604" +167731204° + - --
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The case of unimodular lattices

Extremal Lattices

Theorem

The theta series of an even unimodular lattice,
O, (q) is an isobaric polynomial in Ey and Ay
where

)24

(1-g™
1

q—24q% +252¢° —---

A24(q) q

318

is the Ramanujan form (of weight 12) and even
unimodular lattices exist iff their dimension
n=0(8).

More precisely, let n=24m+ 8k, with k€ {0,1,2};

m .
@ :E2m+k+ y ajEZ(m_ﬁ+kA]24
J=1

Leech lattice Aoy
We get

Opy = E; +a Aps

1+ (a +720)+ -+

In order to maximize the minimum distance, we
choose a; = —720, which gives

Onyy = Eg —720A24
= 1+1965604" +167731204° + ---

The minimum distance of an even unimodular
lattice is upperbounded,

d. <2m+2.

Extremal lattices achieve this bound.

J.-C. Belfiore - Explicit Lattice Constructions ...

45/ 71



The case of unimodular lattices

Outline

@ Coset Encoding and Sums of Gaussian measures on Lattices

© The case of unimodular lattices

Constructions of even unimodular lattices

Concentration results
Understanding the flatness factor behavior of even unimodular lattices

Belfiore - Explicit Lattice Constructions ...
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The of unimodular lattices

onstructions based o

The Binary case
7127 = [Fy. 1€ Z is the coset representative of
smallest Euclidean weight of 1 € F». Construction
Ais

V2A=27"+% (n, k), .

@ A is unimodular iff € is self dual (so k= % and
¢t =%.

@ Moreover, A is even when % is doubly even (all
Hamming weights are multiple of 4).

o &

min

(A)=2.

J.-C. Belfiore - Explicit Lattice Constructions ...
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The case of unimodular lattices

onstructions based o

The Binary case
7127 = [Fy. 1€ Z is the coset representative of
smallest Euclidean weight of 1 € F». Construction
Ais

V2A=27"+% (n, k), .

@ A is unimodular iff € is self dual (so k= 7" and
¢t =%.

@ Moreover, A is even when % is doubly even (all
Hamming weights are multiple of 4).

o &

min

(A)=2.

Lattice Eg
The most famous construction of Eg is

V2Ey =278 + 6 8,4,

where % is the extended Hamming code.
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The case of unimodu

Constructions based on Z

The Binary case
7127 = [Fy. 1€ Z is the coset representative of
smallest Euclidean weight of 1 € F». Construction
Ais

V2A=27"+% (n, k), .

@ A is unimodular iff € is self dual (so k= % and
¢t =%.

@ Moreover, A is even when ¢ is doubly even (all
Hamming weights are multiple of 4).

o &

min

(A)=2.

Lattice Eg
The most famous construction of Eg is

V2Ey =278 + 6 8,4,

where % is the extended Hamming code.

The quaternary case
7147 = 7,. Construction A is

2A=47"+€ (n)z,

where % is a type II self dual code over Z, (Eu-
clidean weights multiple of 8).

2
* dmms4.

Leech lattice Aoy
Construction A:

2No4 = 47" + (QR24)Z4

QRy4 is a quaternary quadratic residue code.

J.-C. Belfiore - Explicit Lattice Constructions ... i
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The case of unimodular lattices

onstructions based on Z[1]

The Binary case
Z[1]/2Z[1] = Fs + uF2, u? = 0. Construction A is

V2A =2Z[11" +€ (W, ur, -
@ Ais unimodular iff € is self dual (so k= % and
¢+ =6).

@ A is even when ¢ has Euclidean weights multiple
of4and d>. =<2.
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Constructions based on Z[1]

The Binary case
Z[1]/2Z[1] = Fs + uF2, u? = 0. Construction A is
V2A=2Z[10" +€ (WFy+ur, -

@ Ais unimodular iff € is self dual (so k= % and
¢+ =6).

@ A is even when ¢ has Euclidean weights multiple
of4and d>. =<2.

Complex construction of Eg
Equivalent to binary construction D:

V2Ey =2Z[1)* + €@y +ur,

%€ : “chaining” of the binary repetition code (4, 1)
and the binary parity check code (4, 3),

€ =4,1)+u-453).

J.-C. Belfiore - Explicit Lattice Constructions ...

48 /71



The case of unimodu

Constructions based on Z[1]

The Binary case
Z[1]/2Z[1] = Fs + uF2, u? = 0. Construction A is
General case
V2A =2Z[11" +€ (W, ur, - Z[1)/2™MZ 1] = F»[ul/u?™. Construction A is
@ Ais unimodular iff € is self dual (so k= % and m
¢l =) 22 A:Z'”Z[l]"+<€(n)[F2[u]/u2m
° (/)\fl: :Kfin dVZVl?eZZg has Fuclidean weights multiple where ¢ is a self dual code with Euclidean
min weights multiple of 8.

Complex construction of Eg

Barnes-Wall BI/3»
Equivalent to binary construction D:

Construction A:

_ 4
V2B =221 + € Wiy ur, 2BWp = 4Z[1'0 + 6 (16)p, 1y
%€ : “chaining” of the binary repetition code (4, 1)

equivalent to a binary construction D with 4
and the binary parity check code (4, 3), e .

chained Reed-Miiller codes of length 16.
€ =4,1)+u-43). () drznin = 4: BWsp is extremal.
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48 /71



The case of unimodular lattices

More on BW3,

Construction D
BWs» as a Z [1] —lattice:

2BWao =1+ 0% Z [0+ 1+ ° RM 4,3) + (1 + )?RM (4,2) + (1 + ) RM (4, 1) + RM (4,0)

Square minimum distance is d?nin =4.
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The case of unimodular lattices

More on BW3,

Construction D
BWs» as a Z [1] —lattice:

2BWao =1+ 0% Z [0+ 1+ ° RM 4,3) + (1 + )?RM (4,2) + (1 + ) RM (4, 1) + RM (4,0)

Square minimum distance is d?nin =4.

Reed-Miiller codes
RM (4, ) is a Reed-Miiller code of length 16.

@ 1 =0: repetition code
@ r=1: extended 3—error correcting BCH code
@ r=2: extended Hamming code

@ r=3: parity check code
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The case of unimodular lattices

More on BW3,

Construction D
BWs» as a Z [1] —lattice:

2BWao =1+ 0% Z [0+ 1+ ° RM 4,3) + (1 + )?RM (4,2) + (1 + ) RM (4, 1) + RM (4,0)

Square minimum distance is d?nin =4.

Theta series
_ 1 e 2 _
32=24+8:m=1,k=1 sothatdInin <2m+2=4
Reed-Miiller codes
RM (4, ) is a Reed-Miiller code of length 16.
@ 7= 0: repetition code = 1+(a;+960) ¢+

@ r=1: extended 3—error correcting BCH code

Opwy, = Eﬁ+a1A24E4

Set a; = —960,
@ r=2: extended Hamming code
Opwy, = Ez —960A24Ey

= 1+1468804" + 6475776045 + -

@ r=3: parity check code

J.-C. Belfiore - Explicit Lattice Constructions ...



Modular latt

Outline

@ Coset Encoding and Sums of Gaussian measures on Lattices

© Modular lattices
Theta Series

Concentration results
Understanding the flatness factor behavior of even unimodular lattices
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fular lattices

/—modular lattices

Definition
Alattice A of rank n is /—modular if

@ Aisintegral, i.e. its Gram matrix B= AT -Ae GLy (2).
@ There exists a similarity ¢ (isometry + scaling) of similarity factor equal to ¢ such that

@ (A*)=Aand (p),p@) = £{x,y), Vx,yeR".

@ Moreover, if the square length of any point of A is an even integer, then A is an even
/—modular lattice.
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Modular lattices

/—modular lattices

Definition
Alattice A of rank n is /—modular if

@ Aisintegral, i.e. its Gram matrix B= AT -Ae GLy (2).
@ There exists a similarity ¢ (isometry + scaling) of similarity factor equal to ¢ such that

@ (A*)=Aand (p),p@) = £{x,y), Vx,yeR".

@ Moreover, if the square length of any point of A is an even integer, then A is an even
/—modular lattice.

Examples
D4 and A1 are 2—modular, A» and Kj» are 3—modular, the MaaR lattice (n = 8) is
5—modular, the Barnes lattice (n = 6) is 7—modular. All are even.

Property
n
The determinant of a /—modular lattice is /2 .

J.-C. Belfiore - Explicit Lattice Constructions ...
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Extremal Lattices

Theorem [Quebbemann, 1995, Quebbemann, 1997]
When o (¢) divides 24, the theta series of a (strongly) even /—modular lattice, © 4 (q) is
an isobaric polynomial in © i () and A, (g) where

Al = [In(d" ”1“})
m|l

1 g
n(q) = q24 ]'[]9‘:)1 (1 -q ) is the Dedekind eta function and Oy i, (¢) is the theta series of
the smallest (strongly) even /—modular lattice.
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Modular lattices

Extremal Lattices

Theorem [Quebbemann, 1995, Quebbemann, 1997]
When o (¢) divides 24, the theta series of a (strongly) even /—modular lattice, © 4 (q) is
an isobaric polynomial in © i () and A, (g) where

Al = [In(d" ”l(‘;)
m|l

1 g
n(q) = q24 ]'[]9‘:)1 (1 -q ) is the Dedekind eta function and Oy i, (¢) is the theta series of
the smallest (strongly) even /—modular lattice.

Examples
Here are the smallest even (strongly) /—modular lattices when o (/) divides 24:

l 1 2 8 5 7 11 28
n 8 4 2 4 2 2 2

(oo [ o [ 1] % | con |2 | [0 [ o]

Table : Smallest even modular lattices (¢ prime)
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Modular lattices

Extremal Lattices

Theorem [Quebbemann, 1995, Quebbemann, 1997]
When o (¢) divides 24, the theta series of a (strongly) even /—modular lattice, © 4 (q) is
an isobaric polynomial in © i () and A, (g) where

Al = [In(d" ”l(‘;)
m|l

1 g
n(q) = q24 ]'[]9‘:)1 (1 -q ) is the Dedekind eta function and Oy i, (¢) is the theta series of
the smallest (strongly) even /—modular lattice.

Examples
Here are the smallest even (strongly) /—modular lattices when o (/) divides 24:

l 6 14 15
4 4 4

‘ A¢ min ‘ Ay +V24 ‘ Z[“gﬁ]‘F\@Z[HTﬁ] ‘ E(15) ‘

Table : Smallest even strongly modular lattices (¢ composite)
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Modular lattices

¢—Modular Lattices (¢ = 3)

Smallest Lattice
Hexagonal lattice Ay with theta series,

02001=5 ()5 ) 02} 2()

and

850 =[n(@n (7))

Example: £ =3
More precisely, let n = 12m + 2k, with k €
{0,1,2,3,4,5};

m .
Op = @g;er aF Z ajG)g;m_]HkA]S
j=1

J.-C. Belfiore - Explicit Lattice Constructions ...
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Modular lattices

¢—Modular Lattices (¢ = 3)

Smallest Lattice
Hexagonal lattice Ay with theta series,

02001=5 ()5 ) 02} 2()

and

a5 =[n(@)n(#))"

Example: £ =3
More precisely, let n = 12m + 2k, with k €
{0,1,2,3,4,5}

m 5
O =05 F+ Y 40" I K]
=

Coxeter Todd K2
We get

622 +a A3

Ok =
= 1+ (@ +36)+ -

In order to maximize the minimum distance, we
choose a; = —36, which gives

_ 6
@KIZ = GAZ —36A43

1+756¢" +40324° +204124% + - --

J.-C. Belfiore - Explicit Lattice Constructions ...




Modular lattices

¢—Modular Lattices (¢ = 3)

Coxeter Todd K2

Smallest Lattice We get
Hexagonal lattice Ay with theta series,

_ 6
Og, = G)Az +a A3
6 6
©1(0) = 03 (") 03 ) + 02 ) 02 (<) L@ 36+
and 5 In order to maximize the minimum distance, we
A3(q) = [TI (q)n (q*”)] choose a; = —36, which gives
0K, = ©5,-364;
Example: £ =3 = 1+756q" +4032¢° +204124% + -
More precisely, let n = 12m + 2k, with k €
{0,1,2,3,4,5};
o ) The minimum distance of an even 3—modular
0) = @%’”k + Z a]»@g(zm_fHk AJS lattice is upperbounded,
j=
a2 S2m+2.
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Modular lattices

/—modular lattices (¢ = 7)

Smallest Lattice
Lattice Ap 7 =27 [Hzﬁl with theta series,

O 0= ()3 )+ 2] 2 )

and
a7t =[n(a)n(d")]”

Example: £ =7
More precisely, let n=6m+ 2k, with k€ {0,1,2};

O = @3mrk f @3k
A=®Ay7 = T= N7 7
j=
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Modular lattices

/—modular lattices (¢ = 7)

Smallest Lattice
Lattice Ap 7 =27 [Hzﬁ] with theta series,

O 0= ()3 )+ 2] 2 )

and
a7t =[n(a)n(d")]”

Example: £ =7
More precisely, let n=6m+ 2k, with k€ {0,1,2};

0, = @3mtk f 203Dk 4]
A= Ao 7 = J A2'7 7
j=

Barnes lattice Pg
We get

3
G)1\2,7

Op

s + a1 A7

= 1+¢ (@ +6)+--

In order to maximize the minimum distance, we
choose a; = —6, which gives

_ 6  _
@p6 = ®A2_7

1+424" +564° +84¢% +168¢'0 + -

6A7
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Modular lattices

/—modular lattices (¢ = 7)

Barnes lattice Pg

Smallest Lattice We get
- 1+vV=-7] ..+ -
_ _ 3
Lattice Ap 7 =27 [ 5 ] with theta series, Op, = 61\2,7 +a1 Ay
Oy @ = 03 () 03 (44) + 02 () 02 () = 1+q@ @ +6)+-
In order to maximize the minimum distance, we
and . X
113 choose a; = —6, which gives
47(@) = [n(a)n(d)] )
Op, = © Az~ 647

1+42¢* +56¢° +84¢°% + 1680 +---
Example: £ =7 q q q q

More precisely, let n=6m+ 2k, with k€ {0,1,2};

The minimum distance of an even 7—modular

m
_ @3m+k o3m=j+k j
Op= ®A2,7 v 21 aJ@A2_7 47 lattice is upperbounded,
j=
d2. <2m+2.
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Modular lattices

/—modular lattices (¢ = 5)

Smallest Lattice
4—dimensional lattice QQF,with theta series,

©00ra(q) = 1+64° +184" +24¢° +424° +64"°

and

5@ =[n(@n (7))’

Example: ¢ =7
More precisely, let n=4m+ 2k, with k€ {0, 1};

o _ @2m+k Z g2(m= J)+Ic

5,min 5,min
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Modular lattices

/—modular lattices (¢ = 5)

MaalR lattice Mg

We get
Smallest Lattice
4—dimensional lattice QQF,with theta series, Oprg = eé,min + a1 As
©00ra(q) = 1+64° +184* +24¢° +426° +64'" +- - = 1+ (@+12)+--
and In order to maximize the minimum distance, we
As(q) = [n(q)n(qs)]“ choose a; = —6, which gives
_ 6
Ong = @5 min — 1245
P = 1+1204" +2404° +6004° + - --

More precisely, let n=4m+ 2k, with k€ {0, 1};

o —@2mtk Z g2(m= ﬁ+k

5,min 5,min
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Modular lattices

/—modular lattices (¢ = 5)

MaalR lattice Mg

We get
Smallest Lattice
4—dimensional lattice QQF,with theta series, Oprg = G)é min T @45
©00ra(q) = 1+64° +184* +24¢° +426° +64'" +- - = 1+ (@+12)+--
and In order to maximize the minimum distance, we
4 _ o
25(q) = [77 (@)n (qs)] choose a; = —6, which gives
Omg = @g min ~ 1245
_ 6 8. ...
Example: £ =7 = 1+1204" +2404° +6004° +
More precisely, let n=4m+ 2k, with k€ {0, 1};
on _@2mik Z o2m= ﬁ+k The minimum distance of an even 5—modular
~ “5min 5,min lattice is upperbounded,

2
din =2m+2.

J.-C. Belfiore - Explicit Lattice Constructions ...




Modular latt

Outline

@ Coset Encoding and Sums of Gaussian measures on Lattices

© Modular lattices

Constructions

Concentration results
Understanding the flatness factor behavior of even unimodular lattices
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Modular lattices

Modular lattices ¢ = 3

Construction A
Let{ = 1*27’3 Then, construction

V2A=2Z[()"+€ (n, b,

gives an Hermitian Z [{] —lattice. Its trace lattice
is a Z—lattice which is 3—modular when ¥ is self
dual (with k = g) for the Hermitian product over
Fy (d2. (N <4).

Mapping

We have Z [(]/2Z [{] = F4 since 2 is inert in Z [(].

F4 01 o] o

zigiezign o1 e¢| ¢
0f(2]2] 2

wh

Table : Coset representatives
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ar lattices

Modular lattices ¢ = 3

Construction A
Let{ = 1*27’3 Then, construction

Construction of K-
V2A=2Z ()" +€ (n, K, Let ¢ be the (6,3) hexacode over F4. Then, the

trace lattice of

gives an Hermitian Z [{] —lattice. Its trace lattice

is a Z—-lattice which is 3—modular when % is self 2Z(01°+€ (6, 3)Fy

dual (with k = g) for the Hermitian product over . .

Fa ( drzn () <4). is equivalent to Kjo.

Mapping

We have Z [(]/2Z [{] = F4 since 2 is inert in Z [(].

F4 01 o] o

zigrezig o1 ] ¢ ] ¢
0 2 2 2

wh

Table : Coset representatives
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ar lattices

Modular lattices ¢ = 3

Construction A
Let{ = 1*27’3 Then, construction

V2A=2Z[()"+€ (n, b,

gives an Hermitian Z [{] —lattice. Its trace lattice
is a Z—lattice which is 3—modular when ¥ is self
dual (with k = g) for the Hermitian product over
Fy (d2. (N <4).

Mapping

We have Z [(]/2Z [{] = F4 since 2 is inert in Z [(].

F4 01 o] o

zigrezig o1 ] ¢ ] ¢
0 2 2 2

wh

Table : Coset representatives

Construction of K-

Let ¢ be the (6,3) hexacode over 4. Then, the
trace lattice of

2Z(01°+€ (6,3,
is equivalent to Kjo.

Hexacode
Self dual MDS code of length 6 over 4 with gen-
erator matrix,

1 0 0 1 o o
G=(0 1 0 w 1 w
0 0 1 w o 1

J.-C. Belfiore - Explicit Lattice Constructions ...
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Modular lattices

Kj2: From weight enumeration to theta series

Embedding
Fq 0 1 w w?
ziezig) o1 [ ¢ [ &
we 0f2]2]2

Table : Coset representatives
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Modular lattices

Kj2: From weight enumeration to theta series

Embedding
Fq 0 1 w w?
ziezig) o1 [ ¢ [ &
we 0f2]2]2

Table : Coset representatives

Cosets theta series
@ Coset 0 has theta series

0=0(q) =93 (q“) 93 (0712) +102 (44) 9 (qlz)

@ Other cosets have theta series

070(0)=02(d") 93 (') 03 (4") 0 (4]

J.-C. Belfiore - Explicit Lattice Constructions ...




Modular lattices

Kj2: From weight enumeration to theta series

Embedding
z
F4 B w2 Hexacode
ZK1/2Z ] 0]1)¢ ¢ Hamming weight enumeration is
we 0f2]2]2

6 4 6
wiy (x,y) = % +452* + 18
Table : Coset representatives t ( y) Y Y

Cosets theta series
@ Coset 0 has theta series

0=0(q) =93 (q“) 93 (0712) +102 (44) 9 (qlz)

@ Other cosets have theta series

070(0)=02(d") 93 (') 03 (4") 0 (4]
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Modular lattices

Kj2: From weight enumeration to theta series

Embedding

Fq 0 1 w | w?
Zi2zig o 1] ¢ &
E

Table : Coset representatives

Cosets theta series
@ Coset 0 has theta series

0=0(q) =93 (q4) 93 (0712) +102 (44) 9 (qlz)

@ Other cosets have theta series

070(0)=02(d") 93 (') 03 (4") 0 (4]

Hexacode
Hamming weight enumeration is

wir (%,y) = 28 +45:2y* +18)°

Theta series
We get

O, (@ = wh(0=0(9),0x0(q)
1+756¢" +4032¢° + - --
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Modular lattices ¢ =7

Construction A
Leta = HT =i Then, construction

V2A =2Z[a]" + € (N, xF,

gives an Hermitian Z [a] -lattice. Its trace lat-
tice is a Z-lattice which is 7-modular when &
is self dual for the Hermitian product over Fy x [
(2, (D) <4).

min

We have Z [a] /2Z [a] = F» x [ since 2 is splitin Z [a].

Fo xFp 0=00 | 1=0,1 | 4,0 o1
Z[a]/2Za] 0 1 a [ l-a=a
ws, 0 2 4 4

Table : Coset representatives
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Modular lattices

Modular lattices ¢ = 7

Construction of Pg
There exists a self dual code € over [, x [F» such
that the trace lattice of

Construction A

Leta = “'27_7 Then, construction

2z} +€ 3)

VZA =27 (@)™ +6 (W, xF, ! Fa)
. - . is equivalent to Pg.

gives an Hermitian Z [a] -lattice. Its trace lat-

tice is a Z-lattice which is 7-modular when & € (3)rnr

is self dual for the Hermitian product over Fy x [
@ (A) <4). Self dual code of length 3 over [F; x [, defined by

min using the binary parity-check codes for the first
bit and the repetition code for the second one.

We have Z [a] /27 [a] = F» x [ since 2 is splitin Z [a].

Fo xFp 0=0©,0 | 1=(1,1) | 1,0) o1
Z[a]/2Za] 0 1 a [ l-a=a
ws, 0 2 4 4

Table : Coset representatives
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Modular lattices

Ps: From weight enumeration to theta series

Cosets theta series
@ Coset 0 has theta series

00(@) =93 (4*) 05 () 22 o) 22 ()

@ Coset 1 has theta series

01(@ = 02 ") 23 () 23 ) 02 ()

@ Other cosets have theta series

6a(@ = 592 ()92 ()

F2 xFp 0=0,0 | 1=(1,1) | 1,0) o1
Z[a]/2Za] 0 1 a [ l-a=a
ws, 0 2 4 4

Table : Coset representatives
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Modular lattices

Ps: From weight enumeration to theta series

Cosets theta series Code over F» x F»
@ Coset 0 has theta series Aerertt

Symmetrized weight enumerator is
0o (q) =3 (44]33 (1128] +12 (q4)192 (qzs)

swe(x,,2) = x> +3y%z+3x2% + 25

@ Coset 1 has theta series

01(@ = 02 ") 23 () 23 ) 02 ()

@ Other cosets have theta series

6a(@ = 592 ()92 ()

Fo xFp 0=00,0 | 1=(1,1) | 1,0 o1
Z[a]/2Z[a] 0 1 a [ l-a=a
we, 0 2 4 4

Table : Coset representatives
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Modular lattices

s: From weight enumeration to theta series

Cosets theta series Code over F» x F»
@ Coset 0 has theta series Aerertt

Symmetrized weight enumerator is
0o (q) =3 (44]193 (1728] +12 (114)192 (qzs)

swe(x,,2) = x> +3y%z+3x2% + 25

@ Coset 1 has theta series

01(@ = 02 ") 23 () 23 ) 02 ()

We get
@ Other cosets have theta series Ops(q) = swe (60(9),01(@),0a(9)
6a(@ = 592 ()92 () = 1+42¢" +560° +844° +---
Fp x Fy 0=(0,0) | 1=(1,1) | (1,0 (0,1)
Zla] 127 [a] 0 1 a l-a=a
we, 0 2 4 4

Table : Coset representatives
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Modular lattices ¢ =5

Golden ring
KK = Q(v/5) has ring of integers Oy = Z [¢] where

b= ”T‘/g is the Golden ratio. Its Galois group has
one non trivial element

0'2\/5’—’_\/5

O is a Principal Ideal Domain.
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Modular lattices ¢ =5

Embedding
Golden ring Embedding in the ambient space through the
K = Q(v/5) has ring of integers Ok = Z [¢] where  canonical embedding v: z€ Oy — ( “ )

q . . o(2)
¢= ”T‘/g is the Golden ratio. Its Galois group has
one non trivial element

0'2\/5’—'_\/5

O is a Principal Ideal Domain. =

Figure : Lattice G
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Modular lattices ¢ =5

Golden ring
KK = Q(v/5) has ring of integers Oy = Z [¢] where

= ”T‘/g is the Golden ratio. Its Galois group has
one non trivial element

0:V5—-V5
O is a Principal Ideal Domain.

Golden Lattices

Integer (in O} ) linear combination of a set of lin-
early independent vectors. A Golden lattice A
gives rise to a Z—lattice through the trace form

x,y€A—Trg g ((x,¥))

Embedding

Embedding in the ambient space through the

canonical embedding v : z€ O — ( Ufz) )

Figure : Lattice G
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Modular lattices

Modular lattices ¢ =5

Construction A
Construction

V2A=2Z[¢]|" +€ (n, k),

gives a Z|[¢p]-lattice. Its trace lattice is a

Z—-lattice which is 5-modular when %€ is self

dual (with k = %) for the scalar product over F4
2

(@, (M) <4).

Mapping

We have Z[¢p]/2Z[¢]| = F4 since 2 is inert in

Z[].

Fq 0 1 o | w?
Z[p]12Z[¢] 01| ¢?
wo)=Tr(x*) [o]2]3] 3

Table : Coset representatives

Construction of Mg [Hou et al., 2014]
Let € be a self dual(4,2) over 4. Then, the trace
lattice of

27 [¢)* +6 4,2)f,

is 5—~modular.

Choose the MDS code of length 4 over F4 with
generator matrix,

1 0 w w+1

C=10o 1 0w+l o
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Modular lattices

Ms: From weight enumeration to theta series

Embedding
F4 0]1] 0]
z[pli2z[g] JJo 1] ¢ | ¢
w@=Tr(x*) [o]2]3] 3

Table : Coset representatives
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Modular lattices

Ms: From weight enumeration to theta series

Cosets theta series
@ Coset 0 has theta series
Embedding 00(@) =95 (4") 03 (¢7°) + 02 (4*) 02 (¢*°)
2
7 [ ]D/:4Z[ ] 0 1 @ wz @ Coset 1 has theta series
|22 |$ 0|1 ]| ¢
W= [0 ]2]3] 3 01(0) = 02 q") 95 () + 03 (4" 02 (#°)

Table : Coset representatives .
P @ Other cosets have theta series

05(@ =592 ()2 ()
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Modular lattices

Ms: From weight enumeration to theta series

Embedding
Fyq 0]1] o] o
z[plr2z[gp] JJo |1 ] ¢ | ¢
w@=Tr(x*) [o]2]3] 3

Table : Coset representatives

Code over [F4
Symmetrized weight enumerator is

swe(x,y,2) = x* + 12xy2% + y* + 224

Cosets theta series
@ Coset 0 has theta series

00(@) =5 (4*) 0 () + 22 ) 22 ()

@ Coset 1 has theta series

01(0)= 82 d") 93 () + 03 (4*) 02 ()

@ Other cosets have theta series

05(@ =592 (4) 2 ()
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Modular lattices

Ms: From weight enumeration to theta series

Cosets theta series
@ Coset 0 has theta series

00(@) = 23 (4*) 23 () + 02 (4*) 02 ()

Embedding
2
Z[ ]D/:4Z[ ] © 1 w wz @ Coset 1 has theta series
|22 |$ 0|1 ]| ¢ A @ A @
W= [[0[2[3] 3 01(0) =92 (4") 03 (7°) + 03 (a*) 02 ()
Table: Coset representatives @ Other cosets have theta series
1
0p(@) = 5 02(0)02 ()
Code over [F4

Symmetrized weight enumerator is
We get

swe(x,y,2) = x* + 12xy2% + y* + 224

Org (@) = swe(Bo(),01(q),04p(q)
1+1204" +2404° +6004° + - --
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Outline

@ Coset Encoding and Sums of Gaussian measures on Lattices

Q Large dimensions

Understanding the flatness factor behavior of even unimodular lattices
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Large dimensions

Large values of n (even unimodular)

Expression of the theta series
For a 2k—dimensional even unimodular lattice, the
Fourier decomposition gives

o5} .
(@) = B (1) + Sk (T, A) = Y. r(m,A) 77

m=0

where Sy (7, A) is a cusp form and Ej. an Eisenstein series.
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Large dimensions

Large values of n (even unimodular)

Expression of the theta series
For a 2k—dimensional even unimodular lattice, the
Fourier decomposition gives

o5} .
(@) = B (1) + Sk (T, A) = Y. r(m,A) 77

m=0

where Sy (7, A) is a cusp form and Ej. an Eisenstein series.

Fourier coefficients
If Sy (,A) = X5°_ a(m, A) 777, then,

r(m, A)—ﬂa (m)+a(m, )
T Ty T T
Sk
Eg
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Large dimensions

Large values of n (even unimodular)

Expression of the theta series Asymptotics
For a 2k-dimensional even unimodular lattice, the Asymptotic analysis gives
Fourier decomposition gives

- Op_1(m) = O(mk_l
(@) = B (1) + Sk (T, A) = Y. r(m,A) 77 amA) = o(m'é“)

m=0

where Sy (7, A) is a cusp form and Ej. an Eisenstein series.

Fourier coefficients
If Sy (,A) = X5°_ a(m, A) 777, then,

r(m, A)—ﬂa (m)+a(m, )
T Ty T T
Sk
Eg
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Large dimensions

Large values of n (even unimodular)

Expression of the theta series
For a 2k—dimensional even unimodular lattice, the
Fourier decomposition gives

o5} .
(@) = B (1) + Sk (T, A) = Y. r(m,A) 77

m=0

where Sy (7, A) is a cusp form and Ej. an Eisenstein series.

Fourier coefficients
If Sy (,A) = X5°_ a(m, A) 777, then,

r(m, A)—ﬂa (m)+a(m, )
T Ty T T
Sk
Eg

Asymptotics
Asymptotic analysis gives

Op_1(m) = O(mk_l

k
a(m,\) = O(m?)

Conclusion
All even unimodular lattices except a set
of measure — 0 have theta series

@A(q):Ek(qz)

when k — oco.

J.-C. Belfiore - Explicit Lattice Constructions ...

65 /71



Outline

@ Coset Encoding and Sums of Gaussian measures on Lattices

Q Large dimensions
Concentration results
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mensions

The inefficiency of binary construction A

[Lin et al., 2014]

Construction

Binary construction A of even unimodular lat-
tices "
A=22"+%(n 2 )r,

where % is doubly-even self dual.
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mensions

The inefficiency of binary

construction A
[Lin et al., 2014]

Construction

Binary construction A of even unimodular lat-
tices

A S — A:22"+<g(n,g)ﬁ
§“ 1

Binary

where % is doubly-even self dual.

Nonbinary
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mensions

The inefficiency of binary construction A

[Lin et al., 2014]

Flatness factor (dimension 192) Construction
” Binary construction A of even unimodular lat-
2 tices "
T —— A:ZZ"+<€(n,E)ﬂ:2

—  Binayy

where % is doubly-even self dual.

Nonbinary

Concentration result not valid?

"All codes are good, except those we can think
of.” (G. Battail)
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dimensions

The inefficiency of binary construction A

[Lin et al., 2014]
Flatness factor (dimension 192) Construction
” i Binary construction A of even unimodular lat-
: tices "
i — n _
e : A=22"+%(n 2 )r,
§

—  Binayy

where % is doubly-even self dual.

Nonbinary

Concentration result not valid?

e e e . ”All codes are good, except those we can think
T of.” (G. Battail)
] ] Binary lattices are very scarce
o The measure of the set of binary lattices — 0
when 71 — oo.
—4000
::EZ ~6000

[ Binary
=€ — Ratio ——
All
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Large dimensions

Asymptotics of the flatness factor

Flatness factor of an even unimodular lattice

For nlarge enough, randomly choose an even unimodular lattice A ;. Then, set y = %

(and k= %), o
ep,l0) = % Op, ) -1
= yE -1
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Large dimensions

Asymptotics of the flatness factor

Flatness factor of an even unimodular lattice

For nlarge enough, randomly choose an even unimodular lattice A ;. Then, set y = %

(and k= %), o
ep,l0) = }’%@An(iy)_l
= yE -1

Asymptotics for even unimodular lattices

We thus get
0 o°> ﬁ — strong secrecy
Ep,(0) o 1 Jzzﬁ

2 o
OOO'<E
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on

Perspectives

Large dimensions

Compute (at least approximately) theta series of lattices already proposed in large di-
mensions

@ Low Density Lattice Codes [Sommer et al., 2008]
@ Construction Awith LDPC codes over [, [di Pietro et al., 2013]
@ Intersection of A" and of 7 (A”) where 7 is a permutation of components [Boutros et al., 2014]

@ Construction D with polar codes [Yan & Ling, 2012]
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Conclusion

Perspectives

Large dimensions

Compute (at least approximately) theta series of lattices already proposed in large di-
mensions

@ Low Density Lattice Codes [Sommer et al., 2008]
@ Construction Awith LDPC codes over [, [di Pietro et al., 2013]
@ Intersection of A" and of 7 (A") where 7 is a permutation of components [Boutros et al., 2014]

@ Construction D with polar codes [Yan & Ling, 2012]

Medium dimensions
From the knowledge we have of theta series, construct medium dimension lattices.
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Expression of the flatness factor

lx=A12

n
n_
e ()= Pacne ()’ ¢ -1
A= e 1/Vol (Ag) :

1 \2 _l=a?
foa®)= ), (7) e 20° .

2
Aehe 2no

Mol fpa@—1] = | ¥ 2701V cosan(a*,x) -1

A*eN*
2
= Z 8—271202”A*“ 1
A*eA*
= Vol(A)fyp (0)—1
_la?
| ol o U
(V2mo)” Aen




References

References

Conway, J. & Sloane, N. (1998).

Sphere packings, Lattices and Groups.

Springer-Verlag, 3rd edition.

di Pietro, N., Boutros, J. J., Zemor, G., & Brunei, L. (2013).

New results on low-density integer lattices.

In 2013 Information Theory and Applications Workshop (ITA) (pp. 1-6
Forney, D., Trott, M. D., & Chung, S. Y. (2000).
Sphere-bound-achieving coset codes and multilevel coset codes.
IEEE Transactions on Information Theory, 46, 820-850

Hou, X, Lin, E, & Oggier, E (2014).

Construction and Secrecy Gain of a Family of 5-modular Lattices.

In ITW 2014.
Lin, E, Ling, C., & Belfiore, J.-C. (2014).

Secrecy gain, flatness factor, and y of even unimodular lattices.

In Proceedings of the 2014 IEEE International Symposium on Information Theory (ISIT).
Ling, C., Luzzi, L., Belfiore, J.-C., & Stehlé, D. (2012).
Semantically Secure Lattice Codes for the Gaussian Wiretap Channel.

Nebe, G. (2012).

An even unii 72-di i lattice of mini 8.

Journal fur die Reine und Angewandte Mathematik, (pp. 237-247).

Oggier, E, Solé, P, & Belfiore, J.-C. (2011a).

Lattice Codes for the Wiretap Gaussian Channel: Construction and Analysis.




	Coset Encoding and Sums of Gaussian measures on Lattices
	From bits to signal space: Lattices
	Coset Encoding
	From Sums of Gaussian measures to Theta series

	Lattices for the Wiretap Gaussian Channel
	Criteria
	Examples

	Dual lattice and the Jacobi's formula
	Poisson
	Jacobi

	The case of unimodular lattices
	Theta Series
	Constructions of even unimodular lattices

	Modular lattices
	Theta Series
	Constructions

	Large dimensions
	Concentration results
	Understanding the flatness factor behavior of even unimodular lattices


