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Coset Encoding and Sums of Gaussian measures on Lattices

An example: the partition

QAM Partition à la Ungerboeck
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Figure : Labeling of subsets A and B
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Coset Encoding and Sums of Gaussian measures on Lattices

An example: the encoding → D4

Encoder

0 00

1 11
Labeling

Binary data (QAM1,QAM2)

(A,A) ∪ (B,B)

Binary data (uncoded)

Figure : D4 encoder

The binary code is the binary (2,1) repetition code (linear)

Modulation is QAM, labeling is the Ungerboeck labeling

One of the simplest examples of “Construction A”

D4 = (1+ ı)Z[ı]2 + (2,1)F2
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Coset Encoding and Sums of Gaussian measures on Lattices

Definition

Definition
A EuclideanZ−lattice is a discrete additive subgroup with rank p, p ≤ n of the Euclidean
space Rn. We restrict to the case p = n in the sequel.

Lattice points
An element v ofΛ can be written as :

v = a1v1 +a2v2 + . . .+anvn , a1 ,a2 , . . . ,an ∈Z
where (v1 ,v2 , . . . ,vn) is a basis of Rn.

The lattice Λ can be defined as :

Λ=
{

n∑
i=1

aivi | ai ∈Z
}
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Coset Encoding and Sums of Gaussian measures on Lattices

Lattices : Generator matrix

The set of vectors v1 ,v2 , . . . ,vn is a lattice basis.

Definition
Matrix M whose columns are vectors v1,v2, . . . ,vn is a generator matrix of the lattice
denoted ΛM .

Each vector x = (x1 ,x2 , . . . ,xn)> in ΛM , can be written as,

x = M ·z

where z = (z1 ,z2 , . . . ,zn)> ∈Zn.

Lattice ΛM may be seen as the result of a linear transform applied to lattice Zn (cubic lattice).
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Coset Encoding and Sums of Gaussian measures on Lattices

Lattices : Properties

The generator matrix M describes the lattice ΛM , but it is not unique. All matrices M ·T where T has
integer entries and detT =±1 are generator matrices of ΛM . T is called a unimodular matrix.

G = M> ·M is the Gram matrix of the lattice .

The lattice which has generator matrix is M−> is called the dual matrix of ΛM , denoted Λ?M .

Definitions
The fundamental parallelotope of ΛM is the region,

P = {
x ∈Rn p x = a1v1 +a2v2 + . . .+anvn , 0 ≤ ai < 1, i = 1. . .n

}

The fundamental volume is the volume of the fundamental parallelotope. It is denoted
Vol

(
ΛM

)
.

The fundamental volume of the lattice is vol
(
ΛM

)= |det(M)|, which is
p

det(G) either.
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Coset Encoding and Sums of Gaussian measures on Lattices

Lattices : Geometric properties (cont.)

Definition
The Voronoï cell of a point u belonging to the lattice Λ is the region

VΛ(u) = {
x ∈Rn | ‖x−u‖ ≤

∥∥x−y
∥∥ , y ∈Λ}

All Voronoï cells of a lattice are translated versions of the Voronoï cell of the zero point. This cell is
called Voronoï cell of the lattice.

The fundamental volume of a lattice is equal to the volume of its Voronoï cell.
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Coset Encoding and Sums of Gaussian measures on Lattices

The A2 lattice

Lattice basis

v1

v2

(v1, v2)

Lattice point

Voronoi region

The A2 lattice

Fundamental parallelotope

Properties
Generator matrix is

M =
[

1 1
2

0
p

3
2

]

We also have Z
[
ζ3

]= {
a+bζ3 , a,b ∈Z}' A2

(Eisenstein integers) where ζ3 = e
2ıπ

3 .
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Coset Encoding and Sums of Gaussian measures on Lattices
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Coset Encoding and Sums of Gaussian measures on Lattices

Coset Encoding onZ

Lattice Z is used to transmit information symbols.

b0b1b2b3b4...

z ∈Z0110001...
Coset Encoder

b2b3b4... → 4Z

(b0b1) →Z/4Z

Figure : Special attention to bits b0 and b1

b0b1 encoded on {0,1,2,3}

Decoding (b0b1)
(b0b1) are recovered using the Euclidean divi-
sion, z mod 4.

And with noise..?
What happens if instead of z, we observe z +
noise ?
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Coset Encoding and Sums of Gaussian measures on Lattices

Noisy observation (with Z)

Suppose y = z+ν where

pν(x) = 1p
2πσ

e
− x2

2σ2 .

Receiver only wants b0b1. It computes

ỹ = y mod 4 = z mod 4︸ ︷︷ ︸
b0b1

+ν̃.

Goes from quasi-Gaussian to quasi-uniform.

ν̃ is a folded Gaussian noise with pdf,

pν̃(x) ∼
∑+∞

k=−∞ e
− (x−4k)2

2σ2 x ∈ [0,4)

0 x ∉ [0,4)
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Noisy observation (with Z)
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ỹ = y mod 4 = z mod 4︸ ︷︷ ︸
b0b1

+ν̃.

Goes from quasi-Gaussian to quasi-uniform.

ν̃ is a folded Gaussian noise with pdf,

pν̃(x) ∼
∑+∞

k=−∞ e
− (x−4k)2

2σ2 x ∈ [0,4)

0 x ∉ [0,4)

Figure : Sum of Gaussian measures, σ= 1.2

13 / 71
J.-C. Belfiore - Explicit Lattice Constructions ...

N



Coset Encoding and Sums of Gaussian measures on Lattices

Noisy observation (with Z)

Suppose y = z+ν where

pν(x) = 1p
2πσ

e
− x2

2σ2 .

Receiver only wants b0b1. It computes
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ỹ = y mod 4 = z mod 4︸ ︷︷ ︸
b0b1

+ν̃.

Goes from quasi-Gaussian to quasi-uniform.

ν̃ is a folded Gaussian noise with pdf,

pν̃(x) ∼
∑+∞

k=−∞ e
− (x−4k)2

2σ2 x ∈ [0,4)

0 x ∉ [0,4)

Figure : Sum of Gaussian measures, σ= 1.7

13 / 71
J.-C. Belfiore - Explicit Lattice Constructions ...

N
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ỹ = y mod 4 = z mod 4︸ ︷︷ ︸
b0b1

+ν̃.

Goes from quasi-Gaussian to quasi-uniform.

ν̃ is a folded Gaussian noise with pdf,

pν̃(x) ∼
∑+∞

k=−∞ e
− (x−4k)2

2σ2 x ∈ [0,4)

0 x ∉ [0,4)

Figure : Sum of Gaussian measures, σ= 2.2

13 / 71
J.-C. Belfiore - Explicit Lattice Constructions ...

N



Coset Encoding and Sums of Gaussian measures on Lattices

Lattice Coset Encoding

Nested Lattices
Ingredients

A “fine” lattice Λf

A “coarse” lattice Λc ⊂Λf

Then, Λf /Λc is an additive group with

∣∣∣Λf /Λc

∣∣∣= Vol(Λc)

Vol
(
Λf

)

b0b1 00 11 01 10
Cosets ? ä 4 ◦

Table : Encoding bits b0b1

points ofΛ f

Vo
ro

n
o

iregio
n

o
f
Λ

c

Figure : Example of coset encoding: Z2/2Z2
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Coset Encoding and Sums of Gaussian measures on Lattices

Noisy observation (any Λ)

Data are encoded in Λf /Λc . Transmitted vector
(in Λf ) is

z = zc︸︷︷︸
∈Λc

+ zd︸︷︷︸
coset

Received n−dimensional vector is y = z+v where

pv(x) =
(

1p
2πσ

)n
e
− ‖x‖2

2σ2 .

Receiver only wants data. It computes

ỹ = y mod Λc = z mod Λc︸ ︷︷ ︸
data

+ṽ.

pdf of ṽ
ṽ is a folded Gaussian noise with pdf,

pṽ(x) ∼
∑

λ∈Λc e
− (x−λ)2

2σ2 x ∈ V (Λc)

0 x ∉ V (Λc)

where V (Λc) is the Voronoi region of Λc .

∑
λ∈Λc e

− (x−λ)2

2σ2 is a sum of Gaussian measures
on the lattice Λc (Lattice cryptologists have stud-
ied this function in the framework of “Learning
with errors”)
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∑
λ∈Λc e

− (x−λ)2

2σ2 is a sum of Gaussian measures
on the lattice Λc (Lattice cryptologists have stud-
ied this function in the framework of “Learning
with errors”)
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Coset Encoding and Sums of Gaussian measures on Lattices

Likelihood

Likelihood function py/data
(
x/zd

)
behaves in a similar way,

py/data
(
x/zd

) ∼
∑

zc∈Λc

py
(
x/z,z = zd +zc

)

∼
∑
λ∈Λc

e
− ‖x−zd−λ‖2

2σ2 .

Sum of Gaussian measures on translated lattice points.
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Coset Encoding and Sums of Gaussian measures on Lattices

Construction D

Over Z
Z/2Z' F2;Partition chain:

Z⊃ 2Z⊃ 4Z⊃ ·· · ⊃ 2mZ

Nested codes
A family of nested binary linear codes of length n:

C0 ⊂C1 ⊂C2 · · · ⊂Cm

Construction D
We get

Λ= 2mZn +2m−1Cm−1 +2m−2Cm−2 +·· ·+C0

Over a number field
ChooseK a number field with ring of integer OK.
Let J be an ideal of OK. We get

OK =J 0 ⊃J 1 ⊃J 2 ⊃ ·· · ⊃J m

with OK/J ' R, a finite ring (which is a finite
field if J is a prime ideal).

A family of nested linear codes of length n over R

(Generalized) Construction D
We get

Λ= (
J m)n+ϕ1 (Cm−1)+ϕ2 (Cm−2)+·· ·+ϕm (C0)

where ϕi is the homomorphism that sends
J i/J i+1 onto R.
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Coset Encoding and Sums of Gaussian measures on Lattices

Decoding of construction D [Forney et al., 2000]

y is the received signal,

Λ= 2mZn +2m−1Cm−1 +2m−2Cm−2 +·· ·+2C1 +C0.

Calculate y mod 2, then decode C0. Subtract the decoded codeword from y ,→ y1.

Calculate y1 mod 4, then decode 2C1. Subtract the decoded codeword from y1 ,→ y2.

· · ·
Find the closest lattice point (in 2mZn) of ym−1 (very easy).

Folded noise
At step i, the noise has pdf (per component),

∼
+∞∑

k=−∞
e
−

(
x−2ik

)2

2σ2
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Coset Encoding and Sums of Gaussian measures on Lattices

Outline

1 Coset Encoding and Sums of Gaussian measures on Lattices
From bits to signal space: Lattices
Coset Encoding
From Sums of Gaussian measures to Theta series

2 Lattices for the Wiretap Gaussian Channel
Criteria
Examples

3 Dual lattice and the Jacobi’s formula
Poisson
Jacobi

4 The case of unimodular lattices
Theta Series
Constructions of even unimodular lattices

5 Modular lattices
Theta Series
Constructions

6 Large dimensions
Concentration results
Understanding the flatness factor behavior of even unimodular lattices
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Coset Encoding and Sums of Gaussian measures on Lattices

A characterization of how flat the sum of Gaussian mea-
sures is

Sum of Gaussian measures

Figure : Sum of Gaussian Measures on the 2Z2 lattice
with σ2 = 0.3 and σ2 = 0.6

How far is the folded noise distribution from the
uniform distribution on V (Λc)?

Flatness factor (L∞distance) [Ling et al., 2012]

εΛc (σ) = max
x∈V (Λc)

∣∣∣∣∣∣∣∣
∑
λ∈Λc

(
1

2πσ2

) n
2 e

− ‖x−λ‖2

2σ2

1/Vol(Λc)
−1

∣∣∣∣∣∣∣∣
The flatness factor can be evaluated,

εΛc (σ) =
(

Vol(Λc)
2
n

2πσ2

) n
2 ∑
λ∈Λc

e
− ‖λ‖2

2σ2

︸ ︷︷ ︸
ΘΛc

(
− ı

2σ2

)
−1
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Coset Encoding and Sums of Gaussian measures on Lattices

Theta Series

Definition
The Theta Series of a lattice Λ is a function of the
complex variable,

ΘΛ (τ) =
∑

x∈Λ
q‖x‖2

evaluated at q = eıπτ.

Classically, for a point-to-point communication,
only the first non trivial term is used,

ΘΛ (τ) = 1+κqd2
min +·· ·

where κ is the kissing number and d2
min is the

Euclidean square minimum distance.
It comes from the “union bound” technique to
upperbound the error probability.

More recent paradigms need the full theta series.

Coset encoding

Modulo Λ decoding

Construction D with “per layer” decoding

Finite length analysis of compute-and-forward

Physical Layer Security
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Lattices for the Wiretap Gaussian Channel

Outline
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Lattices for the Wiretap Gaussian Channel

The Gaussian Wiretap Channel

A B

E

N1

N0

Figure : The Gaussian Wiretap Channel model

The secrecy capacity is given by

Cs = [CA→B −CA→E ]+

where CA→B = log2

(
1+ P

N0

)
and CA→E = log2

(
1+ P

N1

)
can be achieved by using lattice

coding.
Of course, Cs > 0 if N0 < N1.
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Lattices for the Wiretap Gaussian Channel

Uniform Noise

Assume that Alice → Eve channel is corrupted by an additive uniform noise

Error Probability
Pseudo-random symbols are perfectly decoded by Eve while there is no information leak-
age.

unfortunately not valid for Gaussian noise.
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Lattices for the Wiretap Gaussian Channel

Uniform Noise

Assume that Alice → Eve channel is corrupted by an additive uniform noise

Transmitted point

Label points with pseudo−random bits

Figure : Points can be decoded error free: label with pseudo-random symbols

Error Probability
Pseudo-random symbols are perfectly decoded by Eve while there is no information leak-
age.
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Lattices for the Wiretap Gaussian Channel

Uniform Noise

Assume that Alice → Eve channel is corrupted by an additive uniform noise

Transmitted point

Label points with data

Figure : Points are not distinguishable: label with data

Error Probability
Pseudo-random symbols are perfectly decoded by Eve while there is no information leak-
age.

unfortunately not valid for Gaussian noise.
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Lattices for the Wiretap Gaussian Channel

Coset Coding with Integers

Example

Suppose that points x are in Z.

Euclidean division
x = 3q+ r

q carries the pseudo-random symbols while r carries the data or “pseudo-random symbols
label points in 3Zwhile data label elements of Z/3Z”.

Transmitted point

Label points with data + pseudo−random bits

Figure : Constellation corrupted by uniform noise
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Lattices for the Wiretap Gaussian Channel

Lattice Coset Coding

Gaussian noise is not bounded: it needs a n−dimensional approach (then let n →∞ for
sphere hardening).

1−dimensional
Transmitted lattice Z

Pseudo-random symbols mZ⊂Z
Data Z/mZ

Table : From the example to the general scheme
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Lattice Coset Coding

Gaussian noise is not bounded: it needs a n−dimensional approach (then let n →∞ for
sphere hardening).

n−dimensional
Transmitted lattice Fine lattice Λb

Pseudo-random symbols Coarse lattice Λe ⊂Λb
Data Cosets Λb/Λe

Table : From the example to the general scheme
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Lattices for the Wiretap Gaussian Channel

Eve’s Probability of Correct Decision (data)

Can Eve decode the data?

Figure : Eve correctly decodes when finding
another coset representative

Eve’s Probability of correct decision
[Oggier et al., 2011a]

Pc,e ≤
(

1√
2πσ2

)n

Vol
(
Λb

) ∑
λ∈Λe

e
− ‖λ‖2

2σ2

= 2−nR
(

Vol(Λe)

2πσ2

) n
2
ΘΛe

(
ı

2πσ2

)
where

ΘΛ(τ) =
∑
λ∈Λ

q‖λ‖
2

,q = eıπτ, τ ∈C, ℑ (τ) > 0

is the theta series of Λ.

Problem
Find Λ minimizing ΘΛ(τ) when τ varies along the posi-

tive imaginary semiaxis.
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Lattices for the Wiretap Gaussian Channel

Flatness Factor

Information Leakage [Ling et al., 2012]
LetM be the transmitted secret message and Zn be the vector received by Eve. Then,

I
(
M;Zn)≤ 2εΛe (σ)

(
nR− logεΛe (σ)

)
where

εΛe (σ) =
(

Vol(Λe)
2
n

2πσ2

) n
2

ΘΛe

(
ı

2πσ2

)
−1

is the flatness factor of the lattice Λe .

Probability of correct decision
Probability of correct decision can also been expressed as a function of the flatness factor,

Pc,e ≤ 2−nR (
εΛe (σ)+1

)
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Lattices for the Wiretap Gaussian Channel

Intuition

Figure : Sum of Gaussian Measures on the 2Z2 lattice with σ2 = 0.3 and σ2 = 0.6

Flatness factor
What is the behavior of the flatness factor?

Other figure of merit?
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Lattices for the Wiretap Gaussian Channel

Secrecy function

Definition [Oggier et al., 2011b]
Let Λ be a n−dimensional lattice with fundamental volume λn and ıy = τ. Its secrecy
function is defined as,

ΞΛ(y),
ΘλZn (ıy)

ΘΛ(ıy)
=
ϑn

3

(
ı
p
λy

)
ΘΛ(ıy)

where ϑ3(q) =∑+∞
n=−∞ qn2

is the theta series of Z and y > 0.
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Figure : Secrecy functions of E8 and Λ24
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Lattices for the Wiretap Gaussian Channel

Secrecy Gain

Definition
The strong secrecy gain of a lattice Λ is

χs
Λ , sup

y>0
ΞΛ(y)

A lattice equivalent to its dual has a theta series with a multiplicative symmetry point at det(Λ)−
1
n

(Jacobi’s formula - coming later),

ΞΛ

(
det(Λ)−

1
n y

)
=ΞΛ

 det(Λ)−
1
n

y



For a lattice Λ equivalent to its dual and of determinant det(Λ), we define the weak se-
crecy gain,

χΛ ,ΞΛ

(
det(Λ)−

1
n

)
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Lattices for the Wiretap Gaussian Channel

Outline

1 Coset Encoding and Sums of Gaussian measures on Lattices
From bits to signal space: Lattices
Coset Encoding
From Sums of Gaussian measures to Theta series

2 Lattices for the Wiretap Gaussian Channel
Criteria
Examples

3 Dual lattice and the Jacobi’s formula
Poisson
Jacobi

4 The case of unimodular lattices
Theta Series
Constructions of even unimodular lattices

5 Modular lattices
Theta Series
Constructions

6 Large dimensions
Concentration results
Understanding the flatness factor behavior of even unimodular lattices
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Lattices for the Wiretap Gaussian Channel

Secrecy Gain of some lattices

Secrecy Functions in dimensions 72 and 80 of lattices equal to their dual
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Figure : Secrecy functions in dimensions n = 72,80

Dimension 8 24 32 48 72 80
Secrecy gain 4

3
256
63

64
9

524288
19467

134217728
685881 ' 195.7 536870912

1414413 ' 380

Table : Secrecy gains of integral lattices equal to their duals
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Lattices for the Wiretap Gaussian Channel

Full theta series or some terms?

Lattice Γ72

Discovered in [Nebe, 2012]. It is integral and equivalent to its dual. Its theta series is,

ΘΓ72 (τ) = 1+6218175600q8 +15281788354560q10 +9026867482214400q12 +·· ·
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Figure : Approximation of the theta series up to order 20
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Dual lattice and the Jacobi’s formula

Outline
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Dual lattice and the Jacobi’s formula

Poisson summation formula (Zn−lattice)

Let f :Rn →R be a well-behaved function,{´
Rn f (x)dx <∞∑
u∈Zn

∣∣f (x+u)
∣∣ converges uniformly

and define F (x)
def= ∑

u∈Zn f (x+u).

F is periodic and has Fourier series,

F (x) =
∑

v∈Zn
ave2ıπ〈v,x〉

av =
∑

v∈Zn

ˆ
[0,1]n

e−2ıπ〈v,y〉f
(
v+y

)
dy

av =
ˆ
Rn

e−2ıπ〈v,z〉f (z)dz︸ ︷︷ ︸
Fourier transform f̂ (v)

By equating,∑
u∈Zn

f (x+u) =
∑

v∈Zn
f̂ (v)e2ıπ〈v,x〉

and setting x = 0, we get the Poisson Summation
Formula,

∑
u∈Zn

f (u) =
∑

v∈Zn
f̂ (v)
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Dual lattice and the Jacobi’s formula

Poisson summation formula (general case)

Let Λ be an n−dimensional lattice with generator matrix A, then consider∑
x∈Λ

f (x) =
∑

u∈Zn
f (Au) =

∑
v∈Zn

�(f ◦A
)

(v)

We get,

�(f ◦A
)

(v) =
ˆ
Rn

f (Ax)e−2ıπ〈v,x〉dx

= |detA|−1
ˆ
Rn

f
(
y
)

e
−2ıπ

〈
A−>v,y

〉
dy

= |detA|−1 f̂
(
A−>v

)

Poisson Summation formula
Hence,

∑
x∈Λ

f (x) = 1

Vol(Λ)

∑
y∈Λ?

f̂
(
y
)

where Λ? is the dual lattice of Λ (with generator
matrix A−>).
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Dual lattice and the Jacobi’s formula

Jacobi’s formula

We apply the Poisson summation formula to the theta series of a lattice.

Let fy (u) = e−πy‖u‖2
for some y > 0 (τ= ıy). Then,

ΘΛ
(
iy

)= ∑
u∈Λ

fy (u) = 1

Vol(Λ)

∑
v∈Λ?

f̂y (v) .

where

f̂y (v) =
ˆ
Rn

e−2ıπ〈v,x〉−πy‖x‖2
dx

=
n∏

k=1

ˆ
R

e−2ıπvkxk−πyx2
k dxk

= y−
n
2 e

−π ‖v‖2
y

Jacobi’s formula [Conway & Sloane, 1998]
The theta series of an n−dimensional lattice Λ is
related to the theta series of its dual Λ? as,

ΘΛ? (τ) = Vol(Λ)
( ı

τ

) n
2
ΘΛ

(
− 1

τ

)

by setting ıy = τ.

Use Jacobi’s formula to get the theta series of Λ
−→ needs a relationship between Λ and Λ?.
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The case of unimodular lattices

Outline

1 Coset Encoding and Sums of Gaussian measures on Lattices
From bits to signal space: Lattices
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The case of unimodular lattices

Unimodular lattices

Definition
A lattice Λ of rank n is unimodular if

Λ is integral, i.e. its Gram matrix B = A> ·A ∈ GLn (Z).

Λ=Λ?

Examples
Zn is unimodular, E8 and Λ24 are unimodular.

Definition
Moreover, if the square length of any point of Λ is an even integer, then Λ is an even
unimodular lattice. E8 and Λ24 are even unimodular.
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The case of unimodular lattices

Theta series as modular forms

Since Λ=Λ? (and Vol(Λ) = 1), we get from Jacobi’s identity,

ΘΛ

(
− 1

τ

)
=

(τ
ı

) n
2
ΘΛ (τ) .

From the periodicity of the theta series, and since Λ is even,

ΘΛ (τ+1) =ΘΛ (τ) .

Action of PSL2 (Z)
The group generated by τ 7→ τ+1 and τ 7→ − 1

τ acts on the theta series of an even unimod-

ular lattice. This group is PSL2 (Z). So, for any

[
a b
c d

]
, ad−bc = 1 in SL2 (Z), if Λ is an

even unimodular lattice, we have,

ΘΛ

(
aτ+b

cτ+d

)
= (cτ+d)

n
2 ΘΛ (τ)

which means that ΘΛ (τ) is a modular form of weight n
2 for the “full” group SL2 (Z).
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The case of unimodular lattices

Theta series of E8: A Modular form approach

Structure
The set of modular forms of weight k, Mk (SL2 (Z))
is a vector space of dimension 0 if k < 4 and of
dimension 1 when k = 4.

Eisenstein
Modular forms of weight 4 are proportional to the
Eisenstein series

E4(q) = 1+240
∞∑

m=1
σ3(m)q2m

where σ3(m) is the sum of the cubes of the divi-
sors of m.

The first even unimodular lattice is of dimension
8 and its theta series is

E4(q) = 1+240q2 +2160q4 +6720q6 +·· ·

The E8 lattice
There is one even unimodular lattice of dimen-
sion 8, E8 with theta series,

ΘE8

(
q
)= E4(q) = 1+240

∞∑
m=1

σ3(m)q2m
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The case of unimodular lattices

Theta series of E8: A Coding approach

Define

ϑ3(q) =
+∞∑

k=−∞
qk2 =ΘZ(q)

ϑ2(q) =
+∞∑

k=−∞
q

(
k+ 1

2

)2

=Θ
Z+ 1

2
(q)

and consider construction A,

Λ = 2Z8 +C (8,4)F2

=
⋃

x∈C

(
2Z8 +x

)

We get
ΘΛ(q) =

∑
x∈C

Θ2Z8+x(q)

We have
Θ2Z8 (q) =ϑ8

3

(
q4

)
and more generally,

Θ2Z8+x(q) =ϑ3

(
q4

)n−w(x)
ϑ2

(
q4

)w(x)

where w (x) is the Hamming weight enumerator
of x.

E8 again
Let wC (x,y) = x8 + 14x4y4 + y8 be the Hamming
weight enumerator of C , Λ has theta series,

ΘΛ(q) = wC

(
ϑ3

(
q4

)
,ϑ2

(
q4

))
= 1+240q4 +2160q8 +6720q12 +·· ·

In fact, Λ=
p

2E8.
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The case of unimodular lattices

Extremal Lattices

Theorem
The theta series of an even unimodular lattice,
ΘΛ(q) is an isobaric polynomial in E4 and ∆24
where

∆24(q) = q
∞∏

m=1

(
1−qm)24

= q−24q2 +252q3 −·· ·

is the Ramanujan form (of weight 12) and even
unimodular lattices exist iff their dimension
n ≡ 0 (8).

More precisely, let n = 24m+8k, with k ∈ {0,1,2};

ΘΛ = E3m+k
4 +

m∑
j=1

ajE
3(m−j)+k
4 ∆

j
24

Leech lattice Λ24

We get

ΘΛ24 = E3
4 +a1∆24

= 1+q2 (a1 +720)+·· ·

In order to maximize the minimum distance, we
choose a1 =−720, which gives

ΘΛ24 = E3
4 −720∆24

= 1+196560q4 +16773120q6 +·· ·

The minimum distance of an even unimodular
lattice is upperbounded,

d2
min ≤ 2m+2.

Extremal lattices achieve this bound.

45 / 71
J.-C. Belfiore - Explicit Lattice Constructions ...

N



The case of unimodular lattices

Extremal Lattices

Theorem
The theta series of an even unimodular lattice,
ΘΛ(q) is an isobaric polynomial in E4 and ∆24
where

∆24(q) = q
∞∏

m=1

(
1−qm)24

= q−24q2 +252q3 −·· ·

is the Ramanujan form (of weight 12) and even
unimodular lattices exist iff their dimension
n ≡ 0 (8).

More precisely, let n = 24m+8k, with k ∈ {0,1,2};

ΘΛ = E3m+k
4 +

m∑
j=1

ajE
3(m−j)+k
4 ∆

j
24

Leech lattice Λ24

We get

ΘΛ24 = E3
4 +a1∆24

= 1+q2 (a1 +720)+·· ·

In order to maximize the minimum distance, we
choose a1 =−720, which gives

ΘΛ24 = E3
4 −720∆24

= 1+196560q4 +16773120q6 +·· ·

The minimum distance of an even unimodular
lattice is upperbounded,

d2
min ≤ 2m+2.

Extremal lattices achieve this bound.

45 / 71
J.-C. Belfiore - Explicit Lattice Constructions ...

N



The case of unimodular lattices

Extremal Lattices

Theorem
The theta series of an even unimodular lattice,
ΘΛ(q) is an isobaric polynomial in E4 and ∆24
where

∆24(q) = q
∞∏

m=1

(
1−qm)24

= q−24q2 +252q3 −·· ·

is the Ramanujan form (of weight 12) and even
unimodular lattices exist iff their dimension
n ≡ 0 (8).

More precisely, let n = 24m+8k, with k ∈ {0,1,2};

ΘΛ = E3m+k
4 +

m∑
j=1

ajE
3(m−j)+k
4 ∆

j
24

Leech lattice Λ24

We get

ΘΛ24 = E3
4 +a1∆24

= 1+q2 (a1 +720)+·· ·

In order to maximize the minimum distance, we
choose a1 =−720, which gives

ΘΛ24 = E3
4 −720∆24

= 1+196560q4 +16773120q6 +·· ·

The minimum distance of an even unimodular
lattice is upperbounded,

d2
min ≤ 2m+2.

Extremal lattices achieve this bound.

45 / 71
J.-C. Belfiore - Explicit Lattice Constructions ...

N



The case of unimodular lattices

Outline

1 Coset Encoding and Sums of Gaussian measures on Lattices
From bits to signal space: Lattices
Coset Encoding
From Sums of Gaussian measures to Theta series

2 Lattices for the Wiretap Gaussian Channel
Criteria
Examples

3 Dual lattice and the Jacobi’s formula
Poisson
Jacobi

4 The case of unimodular lattices
Theta Series
Constructions of even unimodular lattices

5 Modular lattices
Theta Series
Constructions

6 Large dimensions
Concentration results
Understanding the flatness factor behavior of even unimodular lattices

46 / 71
J.-C. Belfiore - Explicit Lattice Constructions ...

N



The case of unimodular lattices

Constructions based onZ

The Binary case
Z/2Z ' F2. 1 ∈ Z is the coset representative of
smallest Euclidean weight of 1 ∈ F2. Construction
A is p

2Λ= 2Zn +C (n,k)F2 .

Λ is unimodular iff C is self dual (so k = n
2 and

C ⊥ =C ).

Moreover, Λ is even when C is doubly even (all
Hamming weights are multiple of 4).

d2
min (Λ) ≤ 2.

Lattice E8

The most famous construction of E8 is

p
2E8 = 2Z8 +C (8,4)F2

where C is the extended Hamming code.

The quaternary case
Z/4Z'Z4. Construction A is

2Λ= 4Zn +C (n)Z4

where C is a type II self dual code over Z4 (Eu-
clidean weights multiple of 8).

d2
min ≤ 4.

Leech lattice Λ24

Construction A:

2Λ24 = 4Zn + (
QR24

)
Z4

QR24 is a quaternary quadratic residue code.
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The case of unimodular lattices

Constructions based onZ[ı]

The Binary case
Z[ı]/2Z[ı] ' F2 +uF2, u2 = 0. Construction A is

p
2Λ= 2Z[ı]n +C (n)F2+uF2 .

Λ is unimodular iff C is self dual (so k = n
2 and

C ⊥ =C ).

Λ is even when C has Euclidean weights multiple
of 4 and d2

min ≤ 2.

Complex construction of E8

Equivalent to binary construction D:

p
2E8 = 2Z[ı]4 +C (4)F2+uF2

C : “chaining” of the binary repetition code (4,1)
and the binary parity check code (4,3),

C = (4,1)+u · (4,3).

General case
Z[ı]/2mZ[ı] ' F2[u]/u2m. Construction A is

2
m
2 Λ= 2mZ[ı]n +C (n)F2[u]/u2m

where C is a self dual code with Euclidean
weights multiple of 8.

Barnes-Wall BW32

Construction A:

2BW32 = 4Z[ı]16 +C (16)F2[u]/u4

equivalent to a binary construction D with 4
chained Reed-Müller codes of length 16.

d2
min = 4: BW32 is extremal.

48 / 71
J.-C. Belfiore - Explicit Lattice Constructions ...

N



The case of unimodular lattices

Constructions based onZ[ı]

The Binary case
Z[ı]/2Z[ı] ' F2 +uF2, u2 = 0. Construction A is

p
2Λ= 2Z[ı]n +C (n)F2+uF2 .

Λ is unimodular iff C is self dual (so k = n
2 and

C ⊥ =C ).

Λ is even when C has Euclidean weights multiple
of 4 and d2

min ≤ 2.

Complex construction of E8

Equivalent to binary construction D:

p
2E8 = 2Z[ı]4 +C (4)F2+uF2

C : “chaining” of the binary repetition code (4,1)
and the binary parity check code (4,3),

C = (4,1)+u · (4,3).

General case
Z[ı]/2mZ[ı] ' F2[u]/u2m. Construction A is

2
m
2 Λ= 2mZ[ı]n +C (n)F2[u]/u2m

where C is a self dual code with Euclidean
weights multiple of 8.

Barnes-Wall BW32

Construction A:

2BW32 = 4Z[ı]16 +C (16)F2[u]/u4

equivalent to a binary construction D with 4
chained Reed-Müller codes of length 16.

d2
min = 4: BW32 is extremal.

48 / 71
J.-C. Belfiore - Explicit Lattice Constructions ...

N



The case of unimodular lattices

Constructions based onZ[ı]

The Binary case
Z[ı]/2Z[ı] ' F2 +uF2, u2 = 0. Construction A is

p
2Λ= 2Z[ı]n +C (n)F2+uF2 .

Λ is unimodular iff C is self dual (so k = n
2 and

C ⊥ =C ).

Λ is even when C has Euclidean weights multiple
of 4 and d2

min ≤ 2.

Complex construction of E8

Equivalent to binary construction D:

p
2E8 = 2Z[ı]4 +C (4)F2+uF2

C : “chaining” of the binary repetition code (4,1)
and the binary parity check code (4,3),

C = (4,1)+u · (4,3).

General case
Z[ı]/2mZ[ı] ' F2[u]/u2m. Construction A is

2
m
2 Λ= 2mZ[ı]n +C (n)F2[u]/u2m

where C is a self dual code with Euclidean
weights multiple of 8.

Barnes-Wall BW32

Construction A:

2BW32 = 4Z[ı]16 +C (16)F2[u]/u4

equivalent to a binary construction D with 4
chained Reed-Müller codes of length 16.

d2
min = 4: BW32 is extremal.

48 / 71
J.-C. Belfiore - Explicit Lattice Constructions ...

N



The case of unimodular lattices

More on BW32

Construction D
BW32 as a Z [ı]−lattice:

2BW32 = (1+ ı)4Z [ı]16 + (1+ ı)3
RM (4,3)+ (1+ ı)2

RM (4,2)+ (1+ ı)RM (4,1)+RM (4,0)

Square minimum distance is d2
min = 4.

Reed-Müller codes
RM (4,r) is a Reed-Müller code of length 16.

r = 0: repetition code

r = 1: extended 3−error correcting BCH code

r = 2: extended Hamming code

r = 3: parity check code

Theta series
32 = 24+8: m = 1,k = 1 so that d2

min ≤ 2m+2 = 4

ΘBW32 = E4
4 +a1∆24E4

= 1+ (a1 +960)q2 +·· ·

Set a1 =−960,

ΘBW32 = E4
4 −960∆24E4

= 1+146880q4 +64757760q6 +·· ·
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Modular lattices

Outline

1 Coset Encoding and Sums of Gaussian measures on Lattices
From bits to signal space: Lattices
Coset Encoding
From Sums of Gaussian measures to Theta series

2 Lattices for the Wiretap Gaussian Channel
Criteria
Examples

3 Dual lattice and the Jacobi’s formula
Poisson
Jacobi

4 The case of unimodular lattices
Theta Series
Constructions of even unimodular lattices

5 Modular lattices
Theta Series
Constructions

6 Large dimensions
Concentration results
Understanding the flatness factor behavior of even unimodular lattices
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Modular lattices

`−modular lattices

Definition
A lattice Λ of rank n is `−modular if

Λ is integral, i.e. its Gram matrix B = A> ·A ∈ GLn (Z).

There exists a similarity ϕ (isometry + scaling) of similarity factor equal to ` such that

ϕ
(
Λ?

)=Λ and
〈
ϕ(x),ϕ(x)

〉= `〈
x,y

〉
, ∀x,y ∈Rn .

Moreover, if the square length of any point of Λ is an even integer, then Λ is an even
`−modular lattice.

Examples
D4 and Λ16 are 2−modular, A2 and K12 are 3−modular, the Maaß lattice (n = 8) is
5−modular, the Barnes lattice (n = 6) is 7−modular. All are even.

Property
The determinant of a `−modular lattice is `

n
2 .
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Modular lattices

Extremal Lattices

Theorem [Quebbemann, 1995, Quebbemann, 1997]
When σ1 (`) divides 24, the theta series of a (strongly) even `−modular lattice, ΘΛ(q) is
an isobaric polynomial in Θ`,min(q) and ∆`(q) where

∆`(q) =
∏
m|`

η
(
qm) 24

σ1(`)

η(q) = q
1

24
∏∞

j=1

(
1−qj

)
is the Dedekind eta function and Θ`,min(q) is the theta series of

the smallest (strongly) even `−modular lattice.

Examples
Here are the smallest even (strongly) `−modular lattices when σ1 (`) divides 24:

` 1 2 3 5 7 11 23
n 8 4 2 4 2 2 2

Λ`,min E8 D4 A2 QQF4 Z
[

1+
p
−7

2

]
Z

[
1+

p
−11

2

]
Z

[
1+

p
−23

2

]
Table : Smallest even modular lattices (` prime)
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Modular lattices

Extremal Lattices
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Examples
Here are the smallest even (strongly) `−modular lattices when σ1 (`) divides 24:

` 6 14 15
n 4 4 4

Λ`,min A2 +
p

2A2 Z
[

1+
p
−7

2

]
+
p

2Z
[

1+
p
−7

2

]
E(15)

Table : Smallest even strongly modular lattices (` composite)
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Modular lattices

`−Modular Lattices (`= 3)

Smallest Lattice
Hexagonal lattice A2 with theta series,

ΘA2 (q) =ϑ3

(
q2

)
ϑ3

(
q6

)
+ϑ2

(
q2

)
ϑ2

(
q6

)
and

∆3(q) =
[
η

(
q
)
η

(
q3

)]6

Example: `= 3
More precisely, let n = 12m + 2k, with k ∈
{0,1,2,3,4,5};

ΘΛ =Θ6m+k
A2

+
m∑

j=1
ajΘ

6(m−j)+k
A2

∆
j
3

Coxeter Todd K12

We get

ΘK12 = Θ6
A2

+a1∆3

= 1+q2 (a1 +36)+·· ·

In order to maximize the minimum distance, we
choose a1 =−36, which gives

ΘK12 = Θ6
A2

−36∆3

= 1+756q4 +4032q6 +20412q8 +·· ·

The minimum distance of an even 3−modular
lattice is upperbounded,

d2
min ≤ 2m+2.
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Modular lattices

`−modular lattices (`= 7)

Smallest Lattice
Lattice Λ2,7 =Z

[
1+

p
−7

2

]
with theta series,

ΘΛ2,7 (q) =ϑ3

(
q2

)
ϑ3

(
q14

)
+ϑ2

(
q2

)
ϑ2

(
q14

)
and

∆7(q) =
[
η

(
q
)
η

(
q7

)]3

Example: `= 7
More precisely, let n = 6m+2k, with k ∈ {0,1,2};

ΘΛ =Θ3m+k
Λ2,7

+
m∑

j=1
ajΘ

3(m−j)+k
Λ2,7

∆
j
7

Barnes lattice P6

We get

ΘP6 = Θ3
Λ2,7

+a1∆7

= 1+q2 (a1 +6)+·· ·

In order to maximize the minimum distance, we
choose a1 =−6, which gives

ΘP6 = Θ6
Λ2,7

−6∆7

= 1+42q4 +56q6 +84q8 +168q10 +·· ·

The minimum distance of an even 7−modular
lattice is upperbounded,

d2
min ≤ 2m+2.
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Modular lattices

`−modular lattices (`= 5)

Smallest Lattice
4−dimensional lattice QQF4with theta series,

ΘQQF4(q) = 1+6q2+18q4+24q6+42q8+6q10+·· ·

and

∆5(q) =
[
η

(
q
)
η

(
q5

)]4

Example: `= 7
More precisely, let n = 4m+2k, with k ∈ {0,1};

ΘΛ =Θ2m+k
5,min +

m∑
j=1

ajΘ
2(m−j)+k
5,min ∆

j
5

Maaß lattice M8

We get

ΘM8 = Θ2
5,min +a1∆5

= 1+q2 (a1 +12)+·· ·

In order to maximize the minimum distance, we
choose a1 =−6, which gives

ΘM8 = Θ6
5,min −12∆5

= 1+120q4 +240q6 +600q8 +·· ·

The minimum distance of an even 5−modular
lattice is upperbounded,

d2
min ≤ 2m+2.
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Modular lattices
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Modular lattices

Modular lattices `= 3

Construction A
Let ζ= 1+

p
−3

2 . Then, construction

p
2Λ= 2Z [ζ]n +C (n,k)F4

gives an Hermitian Z [ζ]−lattice. Its trace lattice
is a Z−lattice which is 3−modular when C is self
dual (with k = n

2 ) for the Hermitian product over

F4 (d2
min (Λ) ≤ 4).

Mapping
We have Z [ζ]/2Z [ζ] ' F4 since 2 is inert in Z [ζ].

F4 0 1 ω ω2

Z [ζ]/2Z [ζ] 0 1 ζ ζ2

w2
E 0 2 2 2

Table : Coset representatives

Construction of K12

Let C be the (6,3) hexacode over F4. Then, the
trace lattice of

2Z [ζ]6 +C (6,3)F4

is equivalent to K12.

Hexacode
Self dual MDS code of length 6 over F4 with gen-
erator matrix,

G =
 1 0 0 1 ω ω

0 1 0 ω 1 ω

0 0 1 ω ω 1


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Modular lattices

K12: From weight enumeration to theta series

Embedding

F4 0 1 ω ω2

Z [ζ]/2Z [ζ] 0 1 ζ ζ2

w2
E 0 2 2 2

Table : Coset representatives

Cosets theta series
Coset 0 has theta series

θ=0(q) =ϑ3

(
q4

)
ϑ3

(
q12

)
+ϑ2

(
q4

)
ϑ2

(
q12

)

Other cosets have theta series

θ 6=0(q) =ϑ2

(
q4

)
ϑ3

(
q12

)
+ϑ3

(
q4

)
ϑ2

(
q12

)

Hexacode
Hamming weight enumeration is

wH
(
x,y

)= x6 +45x2y4 +18y6

Theta series
We get

ΘK12 (q) = wH
(
θ=0(q),θ 6=0(q)

)
= 1+756q4 +4032q6 +·· ·
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Modular lattices

Modular lattices `= 7

Construction A
Let α= 1+

p
−7

2 . Then, construction

p
2Λ= 2Z [α]n +C (n)F2×F2

gives an Hermitian Z [α]−lattice. Its trace lat-
tice is a Z−lattice which is 7−modular when C

is self dual for the Hermitian product over F2 ×F2
(d2

min (Λ) ≤ 4).

Construction of P6

There exists a self dual code C over F2 ×F2 such
that the trace lattice of

2Z [α]3 +C (3)F2×F2

is equivalent to P6.

C (3)F2×F2
Self dual code of length 3 over F2 ×F2 defined by
using the binary parity-check codes for the first
bit and the repetition code for the second one.

We have Z [α]/2Z [α] ' F2 ×F2 since 2 is split in Z [α].

F2 ×F2 0 = (0,0) 1 = (1,1) (1,0) (0,1)
Z [α]/2Z [α] 0 1 α 1−α= ᾱ

w2
E 0 2 4 4

Table : Coset representatives
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Modular lattices

P6: From weight enumeration to theta series

Cosets theta series
Coset 0 has theta series

θ0(q) =ϑ3

(
q4

)
ϑ3

(
q28

)
+ϑ2

(
q4

)
ϑ2

(
q28

)

Coset 1 has theta series

θ1(q) =ϑ2

(
q4

)
ϑ3

(
q28

)
+ϑ3

(
q4

)
ϑ2

(
q28

)

Other cosets have theta series

θα(q) = 1

2
ϑ2

(
q
)
ϑ2

(
q7

)

Code over F2 ×F2

Symmetrized weight enumerator is

swe
(
x,y,z

)= x3 +3y2z+3xz2 +z3

We get

ΘP6 (q) = swe
(
θ0(q),θ1(q),θα(q)

)
= 1+42q4 +56q6 +84q8 +·· ·

F2 ×F2 0 = (0,0) 1 = (1,1) (1,0) (0,1)
Z [α]/2Z [α] 0 1 α 1−α= ᾱ

w2
E 0 2 4 4

Table : Coset representatives
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Modular lattices

Modular lattices `= 5

Golden ring
K=Q(p

5
)

has ring of integers OK =Z[
φ

]
where

φ= 1+
p

5
2 is the Golden ratio. Its Galois group has

one non trivial element

σ :
p

5 7→ −
p

5

OK is a Principal Ideal Domain.

Golden Lattices
Integer (in OK) linear combination of a set of lin-
early independent vectors. A Golden lattice Λ

gives rise to a Z−lattice through the trace form

x,y ∈Λ 7→ TrK/Q
(〈

x,y
〉)

Embedding
Embedding in the ambient space through the

canonical embedding υ : z ∈OK 7→
(

z
σ(z)

)

-4

-2

 0

 2

 4

-4 -2  0  2  4

Figure : Lattice OK
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Modular lattices

Modular lattices `= 5

Construction A
Construction

p
2Λ= 2Z

[
φ

]n +C (n,k)F4

gives a Z
[
φ

]−lattice. Its trace lattice is a
Z−lattice which is 5−modular when C is self
dual (with k = n

2 ) for the scalar product over F4

(d2
min (Λ) ≤ 4).

Mapping
We have Z

[
φ

]
/2Z

[
φ

] ' F4 since 2 is inert in
Z

[
φ

]
.

F4 0 1 ω ω2

Z
[
φ

]
/2Z

[
φ

]
0 1 φ φ2

w2
E (x) = Tr

(
x2)

0 2 3 3

Table : Coset representatives

Construction of M8 [Hou et al., 2014]
Let C be a self dual(4,2) over F4. Then, the trace
lattice of

2Z
[
φ

]4 +C (4,2)F4

is 5−modular.

Choose the MDS code of length 4 over F4 with
generator matrix,

G =
[

1 0 ω ω+1
0 1 ω+1 ω

]
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Modular lattices

M8: From weight enumeration to theta series

Embedding

F4 0 1 ω ω2

Z
[
φ

]
/2Z

[
φ

]
0 1 φ φ2

w2
E (x) = Tr

(
x2)

0 2 3 3

Table : Coset representatives

Code over F4

Symmetrized weight enumerator is

swe
(
x,y,z

)= x4 +12xyz2 +y4 +2z4

Cosets theta series
Coset 0 has theta series

θ0(q) =ϑ3

(
q4

)
ϑ3

(
q20

)
+ϑ2

(
q4

)
ϑ2

(
q20

)

Coset 1 has theta series

θ1(q) =ϑ2

(
q4

)
ϑ3

(
q20

)
+ϑ3

(
q4

)
ϑ2

(
q20

)

Other cosets have theta series

θφ(q) = 1

2
ϑ2

(
q
)
ϑ2

(
q5

)

We get

ΘM8 (q) = swe
(
θ0(q),θ1(q),θφ(q)

)
= 1+120q4 +240q6 +600q8 +·· ·
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Large dimensions

Outline

1 Coset Encoding and Sums of Gaussian measures on Lattices
From bits to signal space: Lattices
Coset Encoding
From Sums of Gaussian measures to Theta series

2 Lattices for the Wiretap Gaussian Channel
Criteria
Examples

3 Dual lattice and the Jacobi’s formula
Poisson
Jacobi

4 The case of unimodular lattices
Theta Series
Constructions of even unimodular lattices

5 Modular lattices
Theta Series
Constructions

6 Large dimensions
Concentration results
Understanding the flatness factor behavior of even unimodular lattices
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Large dimensions

Large values of n (even unimodular)

Expression of the theta series
For a 2k−dimensional even unimodular lattice, the
Fourier decomposition gives

ΘΛ(τ) = Ek(τ)+Sk (τ,Λ) =
∞∑

m=0
r (m,Λ)e2iπmτ

where Sk (τ,Λ) is a cusp form and Ek an Eisenstein series.

Fourier coefficients
If Sk (τ,Λ) =∑∞

m=0 a (m,Λ)e2iπmτ, then,

r (m,Λ) = (2π)k

ζ(k)Γ(k)
σk−1(m)︸ ︷︷ ︸

Ek

+a (m,Λ)︸ ︷︷ ︸
Sk

Asymptotics
Asymptotic analysis givesσk−1(m) = O

(
mk−1

)
a (m,Λ) = O

(
m

k
2

)

Conclusion
All even unimodular lattices except a set
of measure → 0 have theta series

ΘΛ(q) = Ek

(
q2

)
when k →∞.
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Large dimensions

The inefficiency of binary construction A
[Lin et al., 2014]

Flatness factor (dimension 192)
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n
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Ratio
Binary

All

Construction
Binary construction A of even unimodular lat-
tices

Λ= 2Zn +C
(
n,

n

2

)
F2

where C is doubly-even self dual.

Concentration result not valid?
”All codes are good, except those we can think
of.” (G. Battail)

Binary lattices are very scarce
The measure of the set of binary lattices → 0
when n →∞.
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Large dimensions

The inefficiency of binary construction A
[Lin et al., 2014]
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Large dimensions

Asymptotics of the flatness factor

Flatness factor of an even unimodular lattice
For n large enough, randomly choose an even unimodular lattice Λn. Then, set y = 1

2πσ2

(and k = n
2 ),

εΛn (σ) = y
n
2 ΘΛn (iy)−1

' ykEk(iy)−1

' yk

Asymptotics for even unimodular lattices
We thus get

εΛn (σ) →
n→∞


0 σ2 > 1

2π → strong secrecy

1 σ2 = 1
2π

∞ σ2 < 1
2π
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Conclusion

Perspectives

Large dimensions
Compute (at least approximately) theta series of lattices already proposed in large di-
mensions

Low Density Lattice Codes [Sommer et al., 2008]

Construction A with LDPC codes over Fp [di Pietro et al., 2013]

Intersection of Λn and of π
(
Λn)

where π is a permutation of components [Boutros et al., 2014]

Construction D with polar codes [Yan & Ling, 2012]

Medium dimensions
From the knowledge we have of theta series, construct medium dimension lattices.
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Conclusion

Expression of the flatness factor

εΛc (σ) = max
x∈V (Λc)

∣∣∣∣∣∣∣∣
∑
λ∈Λc

(
1

2πσ2

) n
2 e

− ‖x−λ‖2

2σ2

1/Vol(Λc)
−1

∣∣∣∣∣∣∣∣ .

fσ,Λ (x) =
∑
λ∈Λc

(
1

2πσ2

) n
2

e
− ‖x−λ‖2

2σ2 .

∣∣Vol(Λ) fσ,Λ (x)−1
∣∣ =

∣∣∣∣∣ ∑
λ?∈Λ?

e−2π2σ2∥∥λ?∥∥2
cos

(
2π

〈
λ?,x

〉)−1

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
λ?∈Λ?

e−2π2σ2∥∥λ?∥∥2
−1

∣∣∣∣∣
= Vol(Λ) fσ,Λ (0)−1

= Vol(Λ)(p
2πσ

)n

∑
λ∈Λ

e
− ‖λ‖2

2σ2 −1

= Vol(Λ)(p
2πσ

)n ΘΛ

(
ı

2πσ2

)
−1
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