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Abstract

In the framework of censored regression models, the distribution of the error terms departs

significantly from normality, for instance, in the presence of heavy tails, skewness and/or atyp-

ical observations. In this paper we extend the censored linear regression model with normal er-

rors to the case where the random errors follow a finite mixture of Student-t distributions. This

approach allows us to model data with great flexibility, accommodating multimodality, heavy

tails and also skewness depending on the structure of the mixture components. We develop

an analytically simple and efficient EM-type algorithm for iteratively computing maximum

likelihood estimates of the parameters, with standard errors as a by-product. The algorithm

has closed-form expressions at the E-step, that rely on formulas for the mean and variance of

the truncated Student-t distributions. The efficacy of the method is verified through the anal-

ysis of simulated datasets and modeling a censored real dataset first analyzed under normal

and Student-t errors. The proposed algorithm and methods are implemented in the R package

CensMixReg().

Keywords: Censored regression model, EM-type algorithms, Finite mixture models, Heavy-

tails, Tobit model.

1 Introduction

The problem of estimation of regression models where the dependent variable is censored has

been studied in different fields, such as econometric analysis and clinical testing, among many

others. For example, in econometrics, the study of the labor force participation of married women
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is usually conducted under the censored Tobit model (see, for instance, Chib, 1992). In this case,

the observed response is the wage rate, which is typically considered as censored below zero, i.e.,

for working women, positive values for the wage rates are registered, whereas for non-working

women, the observed wage rate is zero (Mroz, 1987). In AIDS research, the viral load measures

may be subject to some upper and lower detection limits, below or above which they are not

quantifiable. As a result, the viral load responses are either left or right censored depending on the

diagnostic assays used (Wu, 2010).

In general, for mathematical tractability reasons, it is assumed that the random errors have

a normal distribution (Wei & Tanner, 1990). However, it is well-known that several phenomena

are not always in agreement with this assumption, yielding data with a distribution with heavier

tails, skewness or multimodality. These characteristics can be circumvented by data transforma-

tions (namely, Box-Cox, etc.), which can render approximate normality with reasonable empirical

results. However, some possible drawbacks of these methods are: (i) transformations provide re-

duced information on the underlying data generation scheme; (ii) component wise transformations

may not guarantee joint normality; (iii) parameters may lose interpretability in a transformed scale

and (iv) transformations may not be universal and usually vary with the dataset. Hence, from

a practical perspective, there is a need to seek an appropriate theoretical model that avoids data

transformations, yet presents a robust Gaussian framework.

Many extensions of this classic Gaussian censored regression (N-CR) model have been pro-

posed to broaden the applicability of linear regression analysis to situations where the Gaussian

error term assumption may be inadequate. For instance, Arellano-Valle et al. (2012) advocated

the use of the Student-t distribution in the context of truncated regression models. Massuia et al.

(2015) developed diagnostic measures for censored regression models using the Student-t dis-

tribution (tCR), including the implementation of an interesting (and simple) EM (expectation-

maximization) algorithm for maximum likelihood (ML) estimation. They demonstrated its ro-

bustness aspects against outliers through extensive simulations. A CR model based on the scale

mixture of normal distributions (Andrews & Mallows, 1974) has been recently proposed by Garay

et al. (2015) to estimate the regression parameters robustly, where a simple and efficient EM-type

algorithm for iteratively computing ML estimates of the parameters is also presented. Moreover,

the proposed algorithm was implemented in the R package SMNCensReg(). A drawback of these

recent proposals is that they are not appropriate when the data present, for instance, multimodality,

heavy tails and skewness, simultaneously.

In the context of finite mixture of censored regression (CR) models, Karlsson & Laitila (2014)

(see also, Caudill, 2012) illustrated the use of mixtures of normal distributions with a finite number

of components (FM-CR model), which can represent a wide variety of density shapes (Marron &

Wand, 1992), including skewness and multimodality. This proposition is doubtlessly very flexible,

but there can still be problems related to the simultaneous occurrence of skewness, discrepant

observations and multimodality. Even when modeling using normal mixtures, overestimation can

occur of the number of components (that is, the number of densities in the mixture of the random
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error) necessary to capture the asymmetric and/or heavy-tailed nature of each subpopulation. Thus

in this article we propose a robust mixture model for the random errors based on the Student-t

distribution (FM-tCR model) by extending the mixture of normal mixtures proposed by Caudill

(2012) and Karlsson & Laitila (2014). More specifically, our objectives are: (i) to propose a

mixture censored regression model (and associated likelihood inference) based on the mixtures of

Student-t distribution, extending the recent works of Arellano-Valle et al. (2012), Caudill (2012),

Karlsson & Laitila (2014), Massuia et al. (2015) and Garay et al. (2015); (ii) to implement and

evaluate the proposed method computationally; and (iii) to apply these results to the analysis of a

real life dataset.

The remainder of the paper is organized as follows. In Section 2, we briefly discuss the trun-

cated Student-t distribution and some of its properties. In addition, we present the tCR model

proposed by Massuia et al. (2015) and the related ML estimation. In Section 3, we present the

robust FM-tCR model, including the EM algorithm for ML estimation, and derive the empirical

information matrix analytically to obtain the standard errors. In Sections 4 and 5, numerical ex-

amples using both simulated and real data are given to illustrate the performance of the proposed

method. Finally, some concluding remarks are presented in Section 6.

2 The Student-t censored regression model

2.1 Preliminaries

Before talking about the censored regression model, for the sake of completeness, we give a

brief introduction of the truncated Student-t distribution. In the following definitions, N(µ,σ 2)

denotes the normal distribution with mean µ and variance σ 2, Gamma(c,d) denotes the gamma

distribution with mean c/d and variance c/d2 and Z⊥U denotes independent random variables Z

and U . Also,
d
= means “has the same distribution as”. First, we give the classic definition of the

Student-t distribution as a scale mixture of the normal distribution.

We say that a random variable X has a Student-t distribution with location parameter µ ∈ R,

scale parameter σ 2 ∈ (0,∞) and ν ∈ (0,∞) degrees of freedom, denoted by X ∼ tν(µ,σ
2), if it

has the following representation:

X
d
= µ +U−1/2Z, (2.1)

where Z ∼ N(0,σ 2), U ∼ Gamma(ν/2,ν/2) and Z⊥U .

Let X ∼ tν(µ,σ
2). A random variable Y has a truncated Student-t distribution in the interval

(a,b) if Y
d
= X |(X ∈ (a,b)). In this case we write Y ∼ Ttν(µ,σ

2;(a,b)). It is straightforward to

prove that the density of Y is given by

Ttν(y|µ,σ 2;(a,b)) = tν(y|µ,σ 2)

[
Tν

(
b−µ

σ

)
−Tν

(
a−µ

σ

)]−1

, y ∈ (a,b),

where tν(·|µ,σ 2) denotes the density of the Student-t distribution and Tν(·) denotes the distribu-

tion function of the standard Student-t distribution with ν degrees of freedom (that is, with µ = 0
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and σ 2 = 1).

The following result is very important for our subsequent exposition. It was provided by Genç

(2013) (see also Kim, 2008) and presents the first two moments of the truncated Student-t distri-

bution. Γ(·) denotes the gamma function.

Lemma 1. If Y ∼ Ttν(µ,σ
2;(a,b)), then

E[Y ] = µ +G(ν)
{
(ν +α2)−(ν−1)/2 − (ν +β 2)−(ν−1)/2

}
σ , ν > 1,

E[Y 2] = µ2 +σ 2
{

A(ν)+G(ν)
[
α(ν +α2)−(ν−1)/2 −β (ν +β 2)−(ν−1)/2

]}

+2µσG(ν)
{
(ν +α2)−(ν−1)/2 − (ν +β 2)−(ν−1)/2

}
,ν > 2,

where A(ν) =

(
ν

ν −2

)
Tν(β

∗)−Tν(α
∗)

Tν(β )−Tν(α)
, G(ν) =

Γ((ν −1)/2)νν/2

2(Tν(β )−Tν(α))Γ(ν/2)Γ(1/2)
, α = a−µ

σ ,

β = b−µ
σ , α∗ = α√

(ν−2)/ν
, β ∗ = β√

(ν−2)/ν
.

The following result will be useful for the implementation of the EM algorithm (see Section

2.2). The proof can be found in Massuia et al. (2015).

Lemma 2. Let Y ∼ Ttν(µ,σ
2;(a,b)), d2(µ,σ 2,Y ) = (Y −µ)2/σ 2. Then, for k = 0,1,2 and for

r = 1,2,

E

[(
ν +1

ν +d2(µ,σ 2,Y )

)r

Y k

]
= c(ν,r)E[X k]

[
Tν+2r

(
b−µ

σ∗

)
−Tν+2r

(
a−µ

σ∗

)]

×
[
Tν

(
b−µ

σ

)
−Tν

(
a−µ

σ

)]−1

,

where

X ∼ Ttν+2r(µ,σ
∗2;(a,b)), with σ∗2 =

ν

(ν +2r)
σ 2,

and

c(ν,r) =

(
ν +1

ν

)r Γ((ν +1)/2)Γ((ν +2r)/2)

Γ(ν/2)Γ((ν +2r+1)/2)
.

Thus, we consider first a linear regression model where the responses are observed with errors

which are independent and identically distributed according to a Student-t distribution. To be more

precise, let us write

Yi = x⊤icβββ c + εi, i = 1, . . . ,n, (2.2)

where εi ∼ tν(0,σ
2), Yi is the response for subject i, βββ c = (β0,β1, . . . ,βp)

⊤ = (β0,βββ
⊤)⊤ is a vector

of regression parameters and x⊤ic = (1,xi1, . . . ,xip) is a vector of explanatory variable values. By

Equation (2.1), we have a that Yi ∼ tν(x
⊤
icβββ c,σ

2), for i = 1, . . . ,n. We call (2.2) the tR model.

We are interested in the case where right-censored observations can occur. That is, the obser-

vations are of the form

Yobsi
=

{
κi if Yi ≥ κi;

Yi if Yi < κi,
(2.3)
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i = 1, . . . ,n, for some threshold point κi. We have chosen to work with the right censored case,

which is the most common in applications, but the results are easily extendable to other censoring

types. Note that when κi = 0, i= 1, . . . ,n, the proposed Student-t censored regression (tCR) model,

defined in (2.2)-(2.3), is reduced to the Tobit model considered by Arellano-Valle et al. (2012) in

which an interesting EM algorithm is developed to obtain maximum likelihood estimates.

2.2 Parameter estimation via an EM-type algorithm

In what follows in general we use the traditional convention denoting a random variable by an

upper case letter and its realization by the corresponding lower case letter. Supposing there are m

censored values of the characteristic of interest, then we can partition the observed sample yobs into

two subsamples of m censored and n−m uncensored values, such that yobs = {κ1, . . . ,κm,ym+1, . . . ,yn}.

Then, the log-likelihood function of the parameter vector θθθ = (βββ⊤
c ,σ

2,ν)⊤ is given by

ℓ(θθθ |yobs) = log

(
n

∏
i=1

[
Tν

(
x⊤icβββ c −κi

σ

)]I{yi≥κi} [
tν(yi|x⊤icβββ c,σ

2)
]I{yi<κi}

)

=
m

∑
i=1

log

[
Tν

(
x⊤icβββ c −κi

σ

)]
+

n

∑
i=m+1

log
[
tν(yi|x⊤icβββ c,σ

2)
]
. (2.4)

To estimate the parameters of the tCR model, an alternative is to maximize this log-likelihood

function directly, a procedure that can be quite cumbersome. Alternatively, our choice is to use

the EM algorithm, a classic, reliable, widely used and general framework developed by Dempster

et al. (1977) to obtain maximum likelihood estimates.

To apply the EM method, we need a representation of the model in terms of missing data. First,

observe that, by Equation (2.1), if Yi ∼ tν(x
⊤
icβββ c,σ

2) then

Yi|Ui = ui ∼ N(x⊤icβββ c,u
−1
i σ 2), Ui ∼ Gamma(ν/2,ν/2). (2.5)

This relation is a convenient stochastic representation of the tR model, and will be useful in path E

of the algorithm.

In the case of censoring, we can consider the unobserved yi as a realization of the latent un-

observable variable Yi ∼ tν(x
⊤
icβββ c,σ

2), i = 1, . . . ,m. The key to the development of our EM-type

algorithm is to consider the augmented data {κ1, . . . ,κm,ym+1, . . . ,yn,u1, . . . ,un}, that is, we treat

the problem as if yL = (y1, . . . ,ym)
⊤ were in fact observed. As a consequence, we can use the

representation (2.5) to obtain the complete-data log-likelihood, given as

ℓc(θθθ |yobs,yL,u) =−n

2
log(2π)− n

2
logσ 2 +

n

2

n

∑
i=1

logui −
1

2σ 2

n

∑
i=1

ui(yi −x⊤icβββ c)
2 +

n

∑
i=1

logh(ui|ν),

where u = (u1, . . . ,un)
⊤ and h(·|ν) is the Gamma density with both parameters equal to ν/2.

In what follows, the superscript (k) indicates the estimate of the related parameter at stage k of

the algorithm. In path E of the algorithm, we must obtain the so-called Q-function

Q(θθθ |θθθ (k)) = E
θθθ (k)[ℓc(θθθ |Yobs,YL,U)|yobs],
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where E
θθθ (k) means that the expectation is being effected using θθθ (k) for θθθ . Observe that the expres-

sion of the Q-function is completely determined by the knowledge of the expectations

Esi(θθθ
(k)) = E

θθθ (k)[UiY
s
i |yobsi

], s = 0,1,2,

Thus, dropping unimportant constants, the Q-function can be written in a synthetic form as

Q(θθθ |θθθ (k)) = −n

2
logσ 2 − 1

2σ 2

n

∑
i=1

[
E2i(θθθ

(k))−2E1i(θθθ
(k))x⊤icβββ c +E0i(θθθ

(k))(x⊤icβββ c)
2
]

+
n

∑
i=1

E
θθθ (k)[logh(Ui|ν)|yobsi

]. (2.6)

From Massuia et al. (2015), we have that for an uncensored observation i,

Esi(θθθ
(k)) = ys

i Eθθθ (k)[Ui|yi], with E
θθθ (k) [Ui|yi] =

ν +1

ν +d2(θθθ (k),yi)
(2.7)

and for a censored observation i, we have that Yobsi
= κi iff Yi ≥ κi, such that

Esi(θθθ
(k)) = E

θθθ (k)

[
(ν +1)Y s

i

ν +d2(θθθ (k),Yi)

∣∣Yi ≥ κi

]
, (2.8)

which can be easily obtained from Lemma 2.

When the M-step turns out to be analytically intractable, it can be replaced with a sequence

of conditional maximization (CM) steps. The resulting procedure is known as the ECM algorithm

(Meng & Rubin, 1993). The ECME algorithm (Liu & Rubin, 1994), a faster extension of EM and

ECM, is obtained by maximizing the constrained Q-function with some CM-steps that maximize

the corresponding constrained actual marginal likelihood function, called CML-steps. Next, we

describe this EM-type algorithm (ECME) for ML estimation of the parameters of the tCR model.

E-step: Given θθθ = θθθ (k). For i = 1, . . . ,n.

- If the observation i is uncensored then, for s = 0,1,2, compute Esi(θθθ
(k)) given in (2.7);

- If the observation i is censored then, for s = 0,1,2, compute Esi(θθθ
(k)) in (2.8) using Lemma

2 with r = 1.

CM-step: Update θθθ (k) by maximizing Q(θθθ |θθθ (k)) over θθθ , which leads to the following expressions

βββ (k+1)
c =

(
n

∑
i=1

E0i(θθθ
(k))xicx⊤ic

)−1
n

∑
i=1

xicE1i(θθθ
(k)), (2.9)

σ 2(k+1)
=

1

n

n

∑
i=1

[
E2i(θθθ

(k))−2E1i(θθθ
(k))x⊤icβββ (k+1)

c +E0i(θθθ
(k))(x⊤icβββ (k+1)

c )2
]
, (2.10)

CML-step : Update ν(k) by maximizing the actual marginal log-likelihood function, obtaining

ν(k+1) = argmaxν

{
m

∑
i=1

log

[
Tν

(
x⊤icβββ (k+1)

c −κi

σ (k+1)

)]
+

n

∑
i=m+1

log
[
tν(yi|x⊤icβββ (k+1)

c ,σ 2(k+1))
]}

.

(2.11)
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The more efficient CMLstep (2.11) can be easily accomplished by using, for instance, the

optim routine in the R software. The algorithm iterates between the E- and M-steps until reaching

convergence. This process is iterated until some distance involving two successive evaluations

of the actual log-likelihood ℓ(θθθ), like ||ℓ(θθθ (k+1))− ℓ(θθθ (k))|| or ||ℓ(θθθ (k+1))/ℓ(θθθ (k))−1||, is small

enough. This algorithm is implemented as part of the R package CensRegMod () (Massuia et al.,

2012), which can be downloaded at no charge from the CRAN repository.

3 The FM-tCR model

Ignoring censoring for the moment, we first consider a more general and robust framework for the

random error εi of the regression model defined in (2.2), which is assumed to follows a mixture of

Student-t distributions. More precisely, the model considered is based on assumptions (2.2) and

(2.3), with

εi ∼
G

∑
j=1

p j tν j
(µ j,σ

2
j ), (3.12)

where p j are weights adding to 1 and the µ ′
js satisfy the identifiability constraint ∑G

j=1 p jµ j = 0

and G is the number of groups (also called components in mixture models).

The mixture regression model considered in (2.2), (2.3) and (3.12) is defined as: let Zi be a

latent class variable such that given Zi = j, the response Yi depends on the p-dimensional predictor

x⊤i = (xi1, . . . ,xip) in a linear way

Yi = β0 +µ j +x⊤i βββ + εi j, εi j ∼ tν j
(0,σ 2

j ), i = 1, . . . ,n, j = 1, . . . ,G, (3.13)

where βββ = (β1, . . . ,βp)
⊤. Concerning the parameter ν j, j = 1, . . . ,G, for computational conve-

nience we assume that ν = ν1 = ν2 = . . . ,= νG. This strategy works very well in the empirical

studies that we have conducted and greatly simplifies the optimization problem.

Now, suppose P(Zi = j) = p j and Zi is independent of xi. Then, the conditional density of Yi

given xi, without observing Zi, is

f (yi|xi,θθθ) =
G

∑
j=1

p j tν(yi|ϕ j +x⊤i βββ ,σ 2
j ), (3.14)

where ϕ j = β0 + µ j and θθθ = (γγγ⊤,θθθ⊤
1 , . . . ,θθθ

⊤
G)

⊤, with γγγ = (ν,β0,βββ
⊤)⊤ and θθθ j = (p j,σ

2
j ,µ j)

⊤.

The model (3.14) is the regression model based on the mixture of Student-t distributions, studied,

for instance, by Galimberti & Soffritti (2014).

Following Karlsson & Laitila (2014), the mixture model for censored data can be formulated

in a similar way to the model defined in (3.14) as:

f (yi|xi,θθθ ) =
G

∑
j=1

p jgi j(yi|xi,γγγ,θθθ j), (3.15)
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where

gi j(yi|xi,γγγ,θθθ j) =

[
Tν

(
ϕ j +x⊤i βββ −κi

σ j

)]I{yi≤κi} [
tν(yi|ϕ j +x⊤i βββ ,σ 2

j )
]I{yi>κi}

.

The model defined in (3.15) will be called the FM-tCR model.

3.1 Maximum likelihood estimation via EM algorithm

In this section, we present an EM algorithm for the ML estimation of the FM-tCR model defined

in (3.15). To explore the EM algorithm, we present the FM-tCR in an incomplete-data framework,

using the results presented in Section 2.

In order to simplify notations, algebra and future interpretations, it is appropriate to deal with

a random vector Zi = (Zi1, . . . ,ZiG)
⊤ instead of the random variable Zi, where

Zi j =





1, if the ith observation is from the jth component;

0, otherwise.

Consequently, under this approach the random vector Z has multinomial distribution considering

a withdrawal into G categories, with probabilities p1, . . . , pG, i.e.,

P(Zi = zi) = p
zi1

1 p
zi2

2 . . . p
ziG

G ,

where ∑G
j=1 p j = 1, such that

Yi|Zi j = 1
ind∼ tν(x

⊤
i βββ +ϕ j,σ

2
j ).

For the vector Zi we will use the notation Zi
iid∼ Multinomial(1, p1, . . . , pg). Observe that Zi j = 1 if

and only if Zi = j. Thus, from (2.1), the set-up defined above can be written hierarchically as

Yi|Ui = ui,Zi j = 1
ind∼ N(x⊤i βββ +ϕ j,u

−1
i σ 2

j ), (3.16)

Ui|Zi j = 1
ind∼ Gamma(ν/2,ν/2), (3.17)

Zi
iid∼ Multinomial(1, p1, . . . , pg), (3.18)

for i = 1, . . . ,n, all independent. For censored data, let yobs = {κ1, . . . ,κm,ym+1, . . . ,yn}, yL =

(y1, . . . ,ym)
⊤, u = (u1, . . . ,un)

⊤, and z = (z⊤1 , . . . ,z
⊤
n )

⊤. Then, under the hierarchical represen-

tation (3.16)–(3.17), it follows that the complete log-likelihood function associated with yc =

(y⊤obs,yL,u
⊤,z⊤)⊤ is

ℓc(θθθ |yc) = c+
n

∑
i=1

G

∑
j=1

zi j log p j −
1

2

n

∑
i=1

G

∑
j=1

zi j logσ 2
j −

1

2

n

∑
i=1

G

∑
j=1

zi jui

σ 2
j

(yi −x⊤i βββ j −ϕ j)
2

+
n

∑
i=1

G

∑
j=1

zi j logh(ui|ν), (3.19)
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where c is a constant that is independent of the parameter vector θθθ .

Letting θθθ (k)=(γγγ(k)⊤,θθθ (k)⊤
1 , . . . ,θθθ

(k)⊤
G )⊤, with γγγ (k)=(ν(k),β

(k)
0 ,βββ (k)⊤)⊤ and θθθ j =(p

(k)
j ,σ

2(k)
j ,µ

(k)
j )⊤,

j = 1, . . . ,G, the estimates of θθθ at the k–th iteration.

It follows, after some simple algebra, that the conditional expectation of the complete log-

likelihood function has the form

Q(θθθ |θθθ (k)) = c+
n

∑
i=1

G

∑
j=1

Zi j(θθθ
(k)) log p j −

1

2

n

∑
i=1

G

∑
j=1

Zi j(θθθ
(k)) logσ 2

j −
1

2

n

∑
i=1

G

∑
j=1

E2i j(θθθ
(k))

σ 2
j

+
n

∑
i=1

G

∑
j=1

E1i j(θθθ
(k))

σ 2
j

(x⊤i βββ +ϕ j)−
1

2

n

∑
i=1

G

∑
j=1

E0i j(θθθ
(k))

σ 2
j

(x⊤i βββ +ϕ j)
2, (3.20)

where

Esi j(θθθ
(k)) = E

θθθ (k)[Zi jUiY
s
i |yobsi

], s = 0,1,2,

Zi j(θθθ
(k)) = E

θθθ (k)[Zi j|yobsi
].

By using known properties of conditional expectation, we obtain

Zi j(θθθ
(k)) =

p
(k)
j gi j(yi|xi,γγγ

(k),θθθ
(k)
j )

G

∑
j=1

p
(k)
j gi j(yi|xi,γγγ

(k),θθθ
(k)
j )

, (3.21)

E0i j(θθθ
(k)) = Zi j(θθθ

(k))E
θθθ(k) [Ui|yobsi

,Zi j = 1], E1i j(θθθ
(k)) = Zi j(θθθ

(k))E
θθθ (k)[UiYi|yobsi

,Zi j = 1] and

E2i j(θθθ
(k)) = Zi j(θθθ

(k))E
θθθ (k)[UiY

2
i |yobsi

,Zi j = 1], where the conditional expectations of the form

E
θθθ (k) [UiY

s
i |yobsi

,Zi j = 1], s = 0,1,2, (3.22)

can be easily derived from equations (2.7) and (2.8) given in Section 2. Thus, we have closed form

expression for all the quantities involved in path E of the algorithm. Next, we describe the ECME

algorithm for maximum likelihood estimation of the parameters of the FM-tCR model.

E-step: Given θθθ = θθθ (k), compute Esi j(θθθ
(k)), s = 0,1,2 and Zi j(θθθ

(k)) for i = 1, . . . ,n, j = 1, . . . ,G.

CM-step: Update θθθ (k+1) by maximizing Q(θθθ |θθθ (k)) over θθθ , which leads to the following closed

form expressions:

p
(k+1)
j =

∑n
i=1 Zi j(θθθ

(k))

n
, (3.23)

βββ (k+1) =




n

∑
i=1

G

∑
j=1

E0i j(θθθ
(k))

σ
2(k)
j

xix
⊤
i




−1
n

∑
i=1

G

∑
j=1

xi

σ
2(k)
j

(
E1i j(θθθ

(k))−E0i j(θθθ
(k))ϕ

(k)
j

)
,(3.24)

ϕ
(k+1)
j =

∑n
i=1

[
E1i j(θθθ

(k))−E0i j(θθθ
(k))x⊤i βββ (k)

]

∑n
i=1 E0i j(θθθ

(k))
, (3.25)

σ 2(k+1)
j =

∑n
i=1 ∆

(k)
i j

∑n
i=1 Zi j(θθθ

(k))
, j = 1, . . . ,G, (3.26)

9



where

∆
(k)
i j =

(
E2i j(θθθ

(k))+E0i j(θθθ
(k))ϕ2(k)+E0i j(θθθ

(k))(x⊤i βββ (k))2 −2E1i j(θθθ
(k))ϕ(k)

−2E1i j(θθθ
(k))x⊤i βββ (k)+2E0i j(θθθ

(k))ϕ
(k)
j x⊤i βββ (k)

)
.

Following Bartolucci & Scaccia (2005), we can also obtain an estimative of β0 as β
(k)
0 =

∑G
j=1 p

(k)
j ϕ

(k)
j , and for j = 1, . . .G, µ

(k)
j as ϕ

(k)
j −β

(k)
0 .

CML-step: Update ν(k) by maximizing the actual marginal log-likelihood function, obtaining

ν(k+1) = argmaxν

n

∑
i=1

log

(
G

∑
j=1

p
(k+1)
j gi j(yi|xi,ν,β

(k+1)
0 ,βββ (k+1),θθθ

(k+1)
j )

)
, (3.27)

where gi j(yi|xi,γγγ,θθθ j) as defined in (3.15).

A more parsimonious model is achieved by supposing σ 2
1 = . . .= σ 2

G = σ 2, which can be seen

as an extension of the FM-NCR model with restricted variance-covariance components. In this

case, the updates for p
(k)
j , βββ (k)

and ϕ
(k)
j remain the same, and the update for σ 2(k) is given as

σ 2(k+1)
=

1

n

n

∑
i=1

G

∑
j=1

Zi j(θθθ
(k))σ

2(k+1)
j .

It is well known that mixture models can provide a multimodal log-likelihood function. In this

sense, the method of maximum likelihood estimation through EM algorithm may not give maxi-

mum global solutions if the starting values are far from the real parameter values. Thus, the choice

of starting values for the EM algorithm in the mixture context plays a big role in parameter estima-

tion. In our examples and simulation studies, we consider the following procedure for the FM-tCR

model:

• For βββ (0)
, use the ordinary least-square (OLS) estimate in the regression model defined in

(2.2).

• Partition the residuals into G groups using the K-means clustering algorithm (Basso et al.,

2010);

• Compute the proportion of data points belonging to the same cluster j, say p
(0)
j , j = 1, . . . ,G.

This is the initial value for p j;

• For each group j, compute the initial values µ
(0)
j , (σ 2

j )
(0) using the method of moments

estimators. The starting value for ν is taken to be 3.

10



3.2 Provision of standard errors

A simple way of obtaining the standard errors of ML estimates of mixture model parameters is

to approximate the asymptotic covariance matrix of θ̂θθ by the inverse of the observed information

matrix. Let Io(θθθ |y)=−∂ 2ℓ(θθθ |y)/∂θθθ∂θθθ⊤ be the observed information matrix, where ℓ(θθθ |y) is the

observed log-likelihood function as in (3.15). In this work we use the alternative method suggested

by Basford et al. (1997), which consists of approximating the inverse of the covariance matrix by

Io(θ̂θθ |y) =
n

∑
i=1

ŝîs
⊤
i , (3.28)

where ŝi = E [∂ (ℓc(θθθ |yc))/∂θθθ ] |
θθθ=θ̂θθ

, with ℓc(θθθ |yc) as in (3.19) and

ŝi = (ŝ
i,βββ , ŝi,β0

, ŝi,σ2
1
, . . . , ŝi,σ2

G
, ŝi,µ1

, . . . , ŝi,µG
, ŝi,p1

, . . . , ŝi,pG−1
)⊤.

Expressions for the elements ŝ
i,βββ , ŝi,β0

, ŝi,σ2
j
, ŝi,µ j

, ŝi,p j
are given in the following:

ŝ
i,βββ =

G

∑
j=1

{
1

σ̂ 2
j

[
E1i j(θ̂θθ

(k)
)xi −E0i j(θ̂θθ

(k)
)(x⊤i β̂ββ + ϕ̂ j)xi

]}
,

ŝi,β0
=

G

∑
j=1

{
1

σ̂ 2
j

[
E1i j(θ̂θθ

(k)
)−E0i j(θ̂θθ

(k)
)(x⊤i β̂ββ + ϕ̂ j)

]}
,

ŝi,σ2
j

= −1

2

{
1

σ̂ 4
j

[
Zi j(θ̂θθ

(k)
)σ̂ 2

j −E2i j(θ̂θθ
(k)
)+2E1i j(x

⊤
i β̂ββ + ϕ̂ j)−E0i j(θ̂θθ

(k)
)(x⊤i β̂ββ + ϕ̂ j)

2

]}
,

ŝi,µ j
=

1

σ̂ 2
j

[
E1i j(θ̂θθ

(k)
)−E0i j(θ̂θθ

(k)
)(x⊤i β̂ββ + ϕ̂ j)

]
,

ŝi,p j
=

Zi j(θ̂θθ
(k)
)

p̂ j
−1,

ŝi,ν =
1

2

G

∑
j=1

{
Zi j(θ̂θθ

(k)
)

[
log

(
v̂

2

)
+1−ψ

(
ν̂

2

)
+E(log(Ui)|yobsi

, θ̂θθ )

]
−E0i j(θ̂θθ

(k)
)

}
,(3.29)

where ψ(x) represents the digamma function of x. It is important to stress that the SE of ν , obtained

from ŝi,ν , depends heavily on the calculation of E[log(Ui)|yobsi
, θ̂θθ ], of Equation (3.29), which

relies on computationally intensive Monte Carlo integrations, since we do not have an analytical

expression for this expected value. Thus, in our analysis we focus solely on comparing the SE of

βββ , σ 2
j and p j, with j = 1, . . . ,G.

The information-based approximation (3.28) is asymptotically applicable. However, it is less

reliable unless the sample size is sufficiently large. It is common practice to perform the parametric

bootstrap approach (Efron & Tibshirani, 1986) to obtain more accurate standard error estimates.

However, we do not employ the bootstrap approach, since it requires enormous amounts of com-

puting power.
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3.3 Model selection

Because there is no universal criterion for mixture model selection, we chose three criteria to

compare the FM-tCR and FM-NCR models. The first three are the Akaike information criterion

(AIC), the Bayesian information criterion (BIC) and the efficient determination criterion (EDC).

Like the more popular AIC and BIC criteria, EDC has the form

−2ℓ(θ̂θθ)+ρcn,

where ℓ(θθθ) is the actual log-likelihood, ρ is the number of free parameters that have to be estimated

in the model and the penalty term cn is a convenient sequence of positive numbers. Here, we use

cn = 0.2
√

n, a proposal that was considered in Basso et al. (2010) and Cabral et al. (2012). We

have cn = 2 for AIC, cn = logn for BIC, where n is the sample size.

Table 1: Simulation Study 1: Mean and standard deviations (SD) for EM estimates based on 500

samples from FM-tCR model. True values of parameters are in parentheses.

Scenario 1: (σ2
1 = 0.3, σ2

2 = 0.6) Scenario 2: (σ2
1 = 2, σ2

2 = 2)

Parameter 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

β0(1) Mean 1.0851 1.1764 1.2630 1.3786 1.4751 1.1107 1.2173 1.3524 1.5059 1.6978

SD 0.0070 0.0073 0.0079 0.0084 0.0092 0.0358 0.0354 0.0366 0.0380 0.0381

β1(−1) Mean -0.9933 -1.0037 -1.0031 -1.0106 -1.0115 -1.0133 -1.0058 -0.9992 -1.0000 -0.9961

SD 0.1132 0.1146 0.1139 0.1154 0.1151 0.2920 0.2908 0.2763 0.2689 0.2500

β2(4) Mean 3.9970 4.0014 4.0066 4.0004 4.0029 3.9953 3.9997 4.0141 3.9923 3.9603

SD 0.1115 0.1151 0.1128 0.1159 0.1175 0.3014 0.2824 0.2779 0.2774 0.2490

µ1(1) Mean 0.9159 0.8303 0.7380 0.6384 0.5448 0.9172 0.8315 0.7136 0.6010 0.4752

SD 0.0255 0.0227 0.0212 0.0204 0.0200 0.2111 0.1925 0.1878 0.1889 0.1977

µ2(−4) Mean -4.0760 -4.1800 -4.2684 -4.3768 -4.4614 -4.0597 -4.1699 -4.3224 -4.5097 -4.6943

SD 0.1324 0.1261 0.1153 0.1103 0.1204 0.6524 0.6121 0.5304 0.4795 0.3884

σ2
1 Mean 0.3021 0.3010 0.3021 0.3002 0.3034 1.9960 2.0178 2.0212 2.0452 2.1193

SD 0.0863 0.0871 0.0895 0.0916 0.0965 0.2333 0.2229 0.2333 0.2205 0.2191

σ2
2 Mean 0.6011 0.5941 0.5654 0.5710 0.6377 2.0405 1.9793 1.7786 1.6927 1.4190

SD 0.1237 0.1211 0.1171 0.1147 0.1174 0.3489 0.3313 0.3167 0.2930 0.2634

ν(3) Mean 3.1772 3.1259 3.1418 3.1750 3.4809 3.1386 3.1124 3.0011 3.0576 3.0690

SD 0.8457 0.7577 0.8808 1.0017 1.4816 0.6392 0.7025 0.6674 1.3066 1.0674

p1(0.8) Mean 0.8164 0.8342 0.8525 0.8726 0.8905 0.8170 0.8377 0.8596 0.8822 0.9046

SD 0.1125 0.1209 0.1311 0.1447 0.1602 0.1739 0.1843 0.2049 0.2339 0.2830

4 Simulated studies

In this section, we consider three simulation experiments to show the applicability of our pro-

posed model. Our intention is to show that the FM-tCR can do exactly what it is designed for,

that is, satisfactorily model CR models that have serious departures from the normal and Student-t

assumptions.
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4.1 Parameter recovery (simulation study 1)

In this section, we consider two scenarios for simulation in order to verify if we can estimate

the true parameter values accurately by using the proposed ECM algorithm. This is the first step

to ensure that the estimation procedure works satisfactorily. We fit the FM-tCR data that were

artificially generated from the following FM-CR model with two components:





Yi = β0 +µ1 +x⊤i βββ + ε1, Zi1 = 1,

Yi = β0 +µ2 +x⊤i βββ + ε2, Zi2 = 1,

where Zi j is a component indicator of Yi with P(Zi j = 1) = p j, j = 1,2, x⊤i = (xi1,xi2), such

that xi1 ∼ U(0,1) and xi2 ∼ U(0,1), i = 1, . . . ,n, and ε1 and ε2 follow a distribution as in the

assumption given in (3.12) and several censoring proportion settings (10%, 20%, 30%, 40% and

50%). We generated 500 Monte Carlo samples of size n = 500, with the following parameter

values: β0 = 1, βββ = (β1,β2)
⊤ = (−1,4)⊤, µ1 = 1, µ2 = 1, p1 = 0.8 and ν = 3. In addition,

we consider the following scenarios: scenario 1 (small variances and different): σ 2
1 = 0.3 and

σ 2
2 = 0.6, and scenario 2 (large variances and equal): σ 2

1 = 2 and σ 2
2 = 2. The Monte Carlo mean

and corresponding standard deviations (SD) of the ML estimates are presented in the Table 1.

The EM estimates across all samples were computed using the R package CensMixReg(). Note

that in both scenarios, the estimates of the regression parameters β1 and β2 are less sensitive to

the variation in the censoring level. In general, the results suggest that the proposed FM-tCR

model produced satisfactory estimates when the censoring level was small (around 30%) and lost

performance when the censoring level increased.

4.2 Asymptotic properties of the EM estimates (simulation study 2)

Here, the experiment is planned to show the asymptotic properties of the EM estimates. Our

strategy is to generate generated artificial samples from the FM-tCR model (3.13), with x⊤i =

(x1i,x2i), such that xi1 ∼U(0,1) and xi2 ∼U(0,1), i= 1, . . . ,n. We chose various settings of censor-

ing proportions p = 10,20,30,40 and 50% and samples sizes n= 100,150,200,300,400,500,700,

800,900 and 1000. The true values of the regression parameters were taken as β0 = 1, βββ =

(β1,β2)
⊤ = (−1,4)⊤, σ 2

1 = 1 and σ 2
2 = 0.5. For each combination of parameters, sample sizes and

censoring levels, we generated 500 random samples from the FM-tCR. In order to analyze asymp-

totic properties of the EM estimates, we computed the bias and the mean squared error (MSE) for

each combination of sample size, censoring level and parameter values. For θi, they are given by

Bias(θi) =
1

500

500

∑
j=1

(θ
( j)
i −θi),

RMSE(θi) =

√√√√ 1

500

500

∑
j=1

(θ
( j)
i −θi)2,
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where θ̂
( j)
i is the estimate of θi for the j-th sample. The results for β1, β2 and σ 2

1 are shown in

Figure 1. We can see a pattern of convergence to zero of the bias and RMSE when n increases

independently of the censoring pattern (a similar pattern was observed for the other parameters).

As a general rule, we can say that Bias and RMSE tend to approach zero when the sample size

increases, indicating that the estimates based on the proposed EM-type algorithm under the FM-

tCR model do provide good asymptotic properties.
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Figure 1: Simulation study 2: Average bias (first row) and RMSE (second row) of parameter

estimates under the FM-tCR model.

4.3 Robustness of the EM estimates (simulation study 3)

In this section, we illustrate the ability of our FM-tCR model (compared to the FM-NCR

model) to fit data with a mixture structure generated from a different family of distributions. Thus,

we generated the error terms from two different mixtures with G = 2 components: (a) mixtures of

skew normal Birnbaum-Saunders distributions and (b) mixtures of inverse Gaussian distributions.

According to Santana et al. (2011), a random variable T follows a skew normal Birnbaum-

Saunders distributions (SNBS) if its pdf is given by

f (t) = 2φ(a(t;α,β ))Φ(λa(t;α,β ))A(t;α,β ), t > 0, (4.30)

where α > 0, β > 0 and λ ∈ R are the shape, scale and skewness parameters respectively. A

random variable with pdf as in (4.30) will be denoted by SNBS(α,β ,λ ). We can use the R package
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bssn() (Maehara & Benites, 2015), to generate random observations from a mixture of SNBS

distributions.

On the other hand, according Karlis & Santourian (2008), an inverse Gaussian random variable

has pdf given by

f (x) = a(α,β ,µ,δ )q

(
x−µ

δ

)−1

K1

[
δαq

(
x−µ

δ

)]
exp(βx), x ∈ R, (4.31)

where a(α,β ,µ,δ ) = π−1αexp(δ
√

α2 −β 2−β µ), q(x) =
√

1+ x2 and K1 is the Bessel function

of third order and index 1. Furthermore, α , β , µ and δ are parameters, satisfying 0 ≤ |β | ≤ α ,

µ ∈ R and 0 < δ . A random variable with pdf as in (4.31) will be denoted by NIG(α,β ,µ,δ ).

Table 2: Simulation study 3: Arithmetic averages of the model comparison measures. In parenthe-

ses are the percentages in which the respective model was selected for each criterion.

FM-tCR FM-NCR

Model CR AIC BIC EDC AIC BIC EDC

10% 2166.078 2204.009 2188.327 2176.248 2209.964 2196.025

(81.8%) (67.6%) (72.6%) (18.2%) (32.4%) (27.4%)

20% 1956.377 1994.308 1978.626 1967.047 2000.764 1986.824

(83.8%) (70.8%) (75.8%) (16.2%) (29.2%) (24.2%)

.8NIG(
√

5,−2,1,1)+ .2NIG(
√

5,2,2,1) 30% 1746.918 1784.850 1769.168 1756.237 1789.954 1776.015

(81.2%) (66.4%) (73.6%) (18.8%) (33.6%) (26.4%)

40% 1531.820 1569.751 1554.069 1540.370 1574.087 1560.147

(79.6%) (61%) (68.4%) (20.4%) (39%) (31.6%)

50% 1316.714 1354.646 1338.964 1324.907 1358.624 1344.684

(80%) (57.2%) (65.6%) (20%) (42.8%) (34.4%)

FM-tCR FM-NCR

Model CR AIC BIC EDC AIC BIC EDC

10% 2659.020 2696.952 2681.270 2717.679 2751.396 2737.456

(99.4%) (98.4%) (99%) (0.6%) (1.6%) (1.0%)

20% 2406.826 2444.758 2429.075 2457.646 2491.362 2477.423

(99.6%) (97.6%) (98.4%) (0.4%) (2.4%) (1.6%)

.8SNBS(2.5,1,3)+ .2SNBS(0.5,1,4) 30% 2153.714 2191.645 2175.963 2195.563 2229.280 2215.340

(98.8%) (97.6%) (98.2%) (1.2%) (2.4%) (1.8%)

40% 1900.141 1938.072 1922.390 1932.415 1966.132 1952.192

(95.2%) (92.4%) (93.6%) (4.8%) (7.6%) (6.4%)

50% 1635.699 1673.630 1657.948 1660.925 1694.642 1680.702

(90%) (84%) (86.8%) (10.0%) (16.0%) (13.2%)

For each generated dataset, we computed the AIC, BIC and EDC criteria under the FM-NCR

and FM-tCR models and their respective values were recorded. Table 2 shows the arithmetic

average of these comparison measures, as well as, the percentages in that the Student-t and normal

models were chosen. Note that all the measures favored the FM-tCR model. This fact indicates

that the FM-tCR model is, in general, more robust to deviations from the model assumptions and

fits better than the FM-NCR model when neither is the true generating model. This affirmation can

be also observed in Figure 2, where we plot the values of AIC, BIC and EDC for each scenario

and model, with 10% censored responses.
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Figure 2: Simulation study 3. Model selection criteria behavior along the 100 generated samples

of mixtures of two NIG distributions (first row) and two SNBS distributions(second row).

5 Application

In order to study the performance of our proposed model and algorithm, we analyze a real

dataset. The computational procedures were implemented using the R software (R Development

Core Team, 2015), through the package CensMixReg(). We consider the wage rate dataset de-

scribed in Mroz (1987), where a measure of the wage of 753 married white women, with ages

between 30 and 60 years old in 1975, is evaluated. Of 753 women considered in this study, 428

worked at some point during that year, while the remaining did not work for pay. Thus, we can

consider these last ones as left censored with κi = 0, i = 1, . . . ,n.. The following variables were

considered:

• yi : wage rates, defined as the average hourly earnings. If the wage rates are set equal to

zero, these wives did not work in 1975. Therefore, these observations are considered left

censored at zero;

• xi1: wife’s age;

• xi2: educational attainment (in years);

• xi3: husband’s hours worked in 1975.
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This application is based on left-censoring, which is immediate and follows from (2.3) by re-

versing the order of yi and κi. Each of the vectors of explanatory variable values is given by

x⊤i = (xi1,xi2,xi3) for i = 1,2, . . . ,753. This dataset was analyzed by Arellano-Valle et al. (2012)

and Massuia et al. (2015) using a censored regression model with Student-t responses and, more

recently by Garay et al. (2015), using a censored regression model with scale mixtures of normal

distributions. Here, we revisit this dataset in order to evaluate the performance of the proposed

methods considering the FM-NCR and FM-tCR models.

The results of the EM algorithm are shown in Table 3. This table shows that the estimates of

β0 −β3 for the FM-NCR and FM-tCR models are close. However, the standard errors (SE) of βββ

are smaller than those of the FM-NCR model, indicating that the FM-tCR model seem to produce

more precise estimates. The estimates for the variance components are not comparable since they

are on a different scale. Also, notice that the small value of the estimate of ν for the FM-tCR

model indicates a lack of adequacy of the normal (FM-NCR) assumption. Table 4 compares the

fit of the two mixture models using the model selection criteria discussed in Subsection 3.3. Note

that, as expected, the FM-tCR model performs significantly better than the FM-NCR model.

Table 3: Wage rate data: results of the parameter estimation via the EM algorithm.

Parameter FM-NCR model FM-tCR model

Estimative SE Estimative SE

β0 6.1596 0.0365 5.6901 0.0369

β1 -0.0057 0.0155 -0.0096 0.0127

β2 0.4375 0.0577 0.4180 0.0439

β3 2.9609 0.5377 2.8746 0.1691

σ 2
1 4.9390 0.6847 3.8023 0.3833

σ 2
2 92.8447 38.2790 8.5156 9.9294

µ1 0.2056 1.1456 0.1845 0.9159

µ2 -1.9448 3.5514 -22.2453 2.4183

p 0.9044 0.5542 0.9918 0.6083

ν - - 3.1758 -

The robustness of the FM-tCR model can be assessed by considering the influence of a single

outlier on the EM estimate of θθθ . In particular, we can assess how much the EM estimate of θθθ is

influenced by a change of δ units in a single observation yi. Replacing yi by yi(δ ) = yi + δ , let

β̂ j(δ ) be the EM estimates of β j after contamination, j = 0,1,2,3. We are particularly interested

in the relative change |(β̂ j(δ )− β̂ j)/β̂ j|. Figure 3 displays the results of the relative changes of the

estimates for different values of δ , under both models, contaminating observation 100 (uncensored)

and varying δ between 0 and 10 using 0.5 step size. As expected, the estimates from the FM-tCR

model are less affected by variations of δ , especially when δ is large.
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Table 4: Wage rate data. Model selection criteria

Criterion FM-tCR FM-NCR

log-likelihood -1239.529 -1250.085

AIC 2499.057 2518.171

BIC 2545.298 2559.787

EDC 2533.939 2549.564
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Figure 3: Wage rate data. Relative changes in the maximum-likelihood estimation of βββ and σσσ

from the FM-NCR (solid line) and FM-tCR (dashed line) models for different contaminations δ .

6 Conclusions

In this paper, a novel approach to censored linear regression analysis has been developed based

on the use of finite mixtures of Student-t components for the random errors. This approach includes

some previously proposed solutions, namely, the classic Tobit linear models in which the error

terms are assumed to follow a Gaussian (Chib, 1992) or a Student-t distribution (Arellano-Valle

et al., 2012; Garay et al., 2015) or a finite mixture of Gaussian components (Karlsson & Laitila,

2014). In a sense, each of these models is broadened by the proposed approach because our

approach provides better estimates of the regression coefficients when the distribution of the error

terms is characterized by the presence of multimodality, outlying observations and also skewness

depending on the structure of the mixture components. Furthermore, the experimental results and

the analysis of a real datasets provide support for the usefulness and effectiveness of our proposal.

A simple and efficient EM-type algorithm was developed, which has closed-form expressions at the
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E-step and relies on formulas for the mean and variance of the truncated Student-t distributions.

The proposed EM algorithm was implemented as part of the R package CensMixReg() and is

available for download at the CRAN repository.

Recently, Garay et al. (2015) considered the problem of censored linear regression models

using the normal/independent (NI) distributions. Therefore, it would be a worthwhile task to in-

vestigate the applicability of a likelihood-based treatment in the context of finite mixtures of NI

censored regression (FM-NICR) models. Other extensions of the current work include, for ex-

ample, a generalization of FM-tCR linear model to skew-t distribution (Lachos et al., 2010) and

multivariate setting.
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