
Hessian Matrices via Automatic Differentiation

Robert Mansel Gower∗ Margarida P. Mello†

Institute of Mathematics, Statistics and Scientific Computing

State University of Campinas-Unicamp

September 29, 2010

Abstract
We investigate the computation of Hessian matrices via Automatic Differentiation,
using a graph model and an algebraic model. The graph model reveals the inher-
ent symmetries involved in calculating the Hessian. The algebraic model, based on
Griewank and Walther’s state transformations [7], synthesizes the calculation of the
Hessian as a formula. These dual points of view, graphical and algebraic, lead to a
new framework for Hessian computation. This is illustrated by giving a new correct-
ness proof for Griewank and Walther’s reverse Hessian algorithm [7, p. 157] and by
developing edge pushing, a new truly reverse Hessian computation algorithm that
fully exploits the Hessian’s symmetry. Computational experiments compare the per-
formance of edge pushing on sixteen functions from the CUTE collection [1] against
two algorithms available as drivers of the software ADOL-C [4, 8, 14], and the results
are very promising.

1 Introduction

Within the context of nonlinear optimization, algorithms that use variants of Newton’s method must
repeatedly calculate or obtain approximations of the Hessian matrix or Hessian-vector products.
Interior-point methods, ubiquitous in nonlinear solvers [3], fall in this category. For instance,
the nonlinear optimization packages LOQO [12] and IPOPT [13] require that the user supply the
Hessian, whereas KNITRO [2] is more flexible, but also uses Hessian information of some kind or
other. Thus the need to efficiently calculate Hessian matrices is driven by the rising popularity of
constraint optimization methods that employ second-order information.

Automatic Differentiation AD has had a lot of success in calculating gradients and Hessian-vector
products with reverse AD procedures1 that have the same time complexity as that of evaluating
the underlying function.

∗Partially supported by CNPq and FAPESP (Grant 2009/04785-7). gowerrobert@gmail.com
†Partially supported by CNPq-PRONEX Optimization and FAPESP (Grant 2006/53768-0).

margarid@ime.unicamp.br
1Reverse in the sense that the order of evaluation is opposite to the order employed in calculating a function

value.

1

Attempts to efficiently calculate the entire Hessian matrix date back to the work of Jackson
and McCormick [10], based on Jackson’s dissertation. Their method may be classified as a forward
mode routine. It is similar to Griewank’s forward mode routine [7], though the latter uses sparsity
information in a different way. Despite the fact that [10] mentions plans for future work on the
implementation and development of new routines using the ideas introduced, apparently no further
reports were published along these lines. Truly effective methods in use combine graph coloring
with Hessian-vector AD routines [4, 14].

The paper is organized as follows. Section 2 presents concepts and notation regarding function
and gradient evaluation in AD. The graph model for Hessian computation is developed in Section 3
and the algebraic formula for the Hessian is obtained in the next section. This formula is employed
in Section 5 to show the correctness of Griewank and Walther’s reverse Hessian algorithm [7].
The new algorithm, edge pushing, is described in Section 6. The computational experiments are
reported in Section 7 and we close with conclusions and comments on future work.

2 Preliminaries: function and gradient computation

In order to simplify the discussion, we consider functions f : Rn → R that are twice continuously
differentiable. It is more convenient and the results obtained can be generalized in a straightforward
manner to smaller domains and functions that are twice continuously differentiable by parts. There
are of course multiple possibilities for expressing a function, but even if one chooses a specific way
to write down a function, or a specific way of programming a function f , one still may come up with
several distinct translations of f into a finite sequential list of functions. We assume in the following
that such a list has already been produced, namely there exists a sequence (φ1−n, . . . , φ0, φ1, . . . , φ`),
such that the first n functions are the coordinate variables, each intermediate function φi, for
i = 1, . . . , `, is a function of previous functions in the sequence, and, if we sweep this sequence in
a forward fashion, starting with some fixed vector x = (φ1−n, . . . , φ0), the value obtained for φ`

coincides with the value of f(x). Jackson and McCormick [10] dealt with a very similar concept,
which they called a factorable function, but in that case the intermediate functions were either sums
or products of precisely two previous functions, or generic functions of a single previous function,
that is, unary functions. Although the framework for calculating the Hessian developed here is valid
for intermediate functions with any number of input variables, when specifying the algorithms and
evaluating their complexity bounds, we assume that the functions φi, for i = 1, . . . , `, are either
unary or binary.

It is very convenient to model the sequential list (φ1−n, . . . , φ`) and the interdependence amongst
its components as an acyclic digraph G = (N,A), called computational graph. Loosely speak-
ing, the computational graph associated with the list has nodes {1 − n, . . . , `} and edges {(j, i) |
φi depends on the value of φj}. The interdependence relations are thus translated into predeces-
sor relations between nodes, and are denoted by the symbol ≺. Thus the arc (j, i) embodies
the precedence relation j ≺ i. Notice that, by construction, j ≺ i implies j < i. Further-
more, if we denote by vi the output value of φi for a given input, then we may shorten, for
instance, the expression vi = φi(vj, vk) to vi = φi(vj)j≺i. Figure 1 shows the computational
graph of function f(x) = (x−1x0)(x−1 + x0) that corresponds to the sequence (φ−1, . . . , φ3) =
(x−1, x0, x−1x0, x−1 + x0, (x−1x0)(x−1 + x0)).

Due to the choice of the numbering scheme for the φ’s, commonly adopted in the literature, we

2

−1 0

1 2

3

v−1 = φ−1 = x−1 v0 = φ0 = x0

v2 = φ2(v−1, v0) = v0 + v−1v1 = φ1(v−1, v0) = v0v−1

v3 = φ3(v1, v2) = v1v2

Figure 1: Computational graph of the function f(x) = (x−1x0)(x−1 + x0).

found it convenient to apply, throughout this article, a shift of −n to the indices of all matrices
and vectors. We already have x ∈ Rn, which, according to this convention, has components x1−n,
x2−n, . . . , x0. Similarly, the rows/columns of the Hessian f ′′ are numbered 1− n through 0. Other
vectors and matrices will be gradually introduced, as the need arises for expressing and deducing
mathematical properties enjoyed by the data.

For instance, a forward sweep through the sequential list (φ1−n, . . . , φ`) could be recorded in a
sequence of (n+ `)-dimensional vectors that accumulate the calculations up to a point, say

vi = (v1−n, . . . , vi, 0, . . . , 0)T , for i = 0, . . . , `. (1)

Then the computation of vi corresponds to applying the state transformation

Φi : Rn+` → Rn+`

y 7→ (y1−n, . . . , yi−1, φi(yj)j≺i, yi+1, . . . , y`)
T (2)

to vector vi−1 and we arrive at Griewank and Walther’s [7] representation of f as a composition of
state transformations

f(x) = eT` Φ` ◦ Φ`−1 ◦ · · · ◦ Φ1(P
Tx), (3)

where the n× (n+ `) matrix P is zero except for the leftmost n-dimensional block, which contains
an identity matrix.

The advantage of vector/matrix notation is that formulas expressed in terms of vector/matrix
operations usually lend themselves to straightforward algorithmic implementations. Nevertheless,
when analyzing complexity issues and actual implementation, one has to translate block operations
with vectors or matrices into componentwise operations on individual variables.

This is illustrated in Algorithms 1 and 2, which express the sequence of operations executed
in a forward sweep of the sequential list of φ’s, first as operations on single variables and then
as operations on vectors. Regarding the output of Algorithm 2, notice that, according to our
convention, the canonical vector e` has the first n + ` − 1 components equal to zero and the last
equal to 1.

3

Algorithm 1: Componentwise evaluation
of function f with computational graph G.

Input: x ∈ Rn, computational graph G
for i = 1− n, . . . , 0 do

vi = xi
end
for i = 1, . . . , ` do

vi = φi(vj)j≺i
end
Output: v`

Algorithm 2: Block evaluation of func-
tion f with computational graph G.

Input: x ∈ Rn, computational graph G
for i = 1− n, . . . , 0 do

vi = xi
end
for i = 1, . . . , ` do

vi = Φi(v
i−1)

end
Output: eT` v`

A very convenient consequence of formula (3) is that it, in turn, provides a closed formula for
the gradient of f , using the chain rule recursively,

(∇f(x))T = eT` Φ′`Φ
′
`−1 · · ·Φ′1(P Tx)P T , (4)

which can be used to deduce (or justify) algorithms for calculating ∇f(x).
One possibility is to calculate the product in (4) in a left-to-right fashion. In this case one must

start at the last Jacobian Φ′`. Its computation involves obtaining the derivatives of φ` from a table
and substituting the appropriate values for its arguments. The latter are the values associated with
the predecessors of node `. Analogously, the values associated with predecessors of nodes `−1, `−2,
etc., must be known in order to compute the Jacobians Φ′`−1, Φ′`−2, etc. This means that a forward
sweep of the computational graph must already have been performed, and the vi’s (or, vi’s) stored
for later use. We shall call the data structure that contains all information concerning the function
evaluation produced during the foward sweep a tape T , borrowing the naming convention of [8].
Thus the tape contains the relevant recordings of a forward sweep along with the computational
graph of f .

Algorithm 3: Block reverse evaluation of ∇f .

Input: tape T
initialization: v = e`
for i = `, . . . , 1 do

vT = vTΦ′i
end
Output: ∇f = Pv

Algorithm 3 implements the left-to-right product computation. The necessary partial products
are stored in v, and, right before node i is swept, the vector v satisfies

vT = eT`

`−i∏
j=1

Φ′`−j+1. (5)

The translation to a componentwise computation of the vector-matrix products of Algorithm 3
is very much simplified by the special structure of the Jacobian of the state transformation Φi. This

4

follows from the fact that the function in component j of Φi is given by

[Φi]j(y) =

{
yj, if j 6= i,
φi(yj)j≺i, if j = i.

(6)

Since row j of the Jacobian Φ′i is the transposed gradient of [Φi]j, we arrive at the following block
structure for Φ′i:

Φ′i =


I 0 0

1− n
...

i− 1

cT 0 0 row i,

0 0 I
i + 1

...
`

 (7)

where

cj =
∂φi

∂vj
, for j = 1− n, . . . , i− 1. (8)

Thus cT is basically the transposed gradient of φi padded with the convenient number of zeros at the
appropriate places. In particular, it has at most as many nonzeros as the number of predecessors of
node i, and the post-multiplication vTΦ′i affects the components of v associated with the predecessors
of node i and zeroes component i. In other words, denoting component i of v by v̄i, the block
assignment in Algorithm 4 is equivalent to

v̄j ←


v̄j + v̄i

∂φi

∂vj
, if j ≺ i,

0, if j = i,

v̄j, otherwise.

Now this assignment is done as the node i is swept, and, therefore, in subsequent iterations com-
ponent i of v will not be accessed, since the loop visits nodes in decreasing index order. Hence
setting component i to zero has no effect on the following iterations. Eliminating this superfluous
reduction, we arrive at Algorithm 3, the componentwise (slightly altered) version of Algorithm 3.

Algorithm 4: Componentwise reverse evaluation of∇f .

Input: tape T
initialization: v̄1−n = · · · = v̄`−1 = 0, v̄` = 1
for i = `, . . . , 1 do

for j ≺ i do

v̄j+ = v̄i
∂φi

∂vj
end

end
Output: ∇f = (v̄1−n, . . . , v̄0)

T

In order to give a graph interpretation of Algorithm 4, let cji = ∂φi/∂vj be the weight of arc
(j, i), and define the weight of a directed path from node j to node k as the product of the weights of

5

the arcs in the path. Then, one can easily check by induction that, right before node i is swept, the
adjoint v̄i contains the sum of the weights of all the paths from node i to node `. As node i is swept,
the value of v̄i is properly distributed amongst its predecessors, in the sense that, accumulated in
v̄j, for each predecessor j, is the contribution of all paths from j to ` that contain node i, weighted
by cji. Hence, at the end of Algorithm 4, the adjoint v̄i−n, for i = 1, . . . , n, contains the sum of
the weights of all paths from i− n to `. This is in perfect accordance with the explanation for the
computation of partial derivatives given in some Calculus textbooks, see, for instance, [11, p. 940].

Figure 2 illustrates the modification of the v̄’s after the sweeping of node 2 of the computational
graph in Figure 1. Indicated beside node i is the value vi obtained in the forward sweep that
preceded the gradient computation and the current value of v̄i. We assume the values of the input
variables were x−1 = a and x0 = b. As node i is swept in the backwards sweep, the weights of the
arcs incident thereto are calculated. Appended to the arcs in the figure are the weights that have
already been calculated.

−1 0

1 2

3

v−1 = a
v̄−1 = 0

v0 = b,
v̄0 = 0

v2 = a+ b
v̄2 = v1

v1 = ab
v̄1 = v2

v2 v1

v3 = v1v2 = ab(a+ b)
v̄3 = 1

sweeping node 2

−1 0

1 2

3

v−1 = a
v̄−1 = v1

v0 = b
v̄0 = v1

11

v2 = a+ b
v̄2 = v1

v1 = ab
v̄1 = v2

v2 v1

v3 = v1v2
v̄3 = 1

Figure 2: v̄’s values updated as node 2 is swept.

Of course different ways of calculating the product of the Jacobians of the state transformations
in (4) may give rise to different algorithms. Thus the state transformation point of view, allied with
the chain rule, produced a closed formula for the gradient that opened the door to the development
of a host of algorithms for calculating the gradient. In the following, using the same ingredients, we
obtain a closed formula for the Hessian, and show how it can be used to justify known algorithms
as well as suggest a new algorithm for Hessian computation. Before that, however, we develop a
graph understanding of the Hessian computation.

3 Hessian via computational graph

Creating a graph model for the Hessian is also very useful, as it provides insight and intuition
regarding the workings of Hessian algorithms. Not only can the graph model suggest algorithms, it
can also be very enlightening to interpret the operations performed by an algorithm as operations
on variables associated with the nodes and arcs of a computational graph.

Since second order derivatives are simply first order derivatives of the gradient, a natural ap-
proach to their calculation would be to build a computational graph for the gradient and apply
Algorithm 4 to this new graph. We do this to build our understanding of the problem, but later on
we will see that it is possible to work with the original graph plus some new edges.

Of course the gradient may be represented by distinct computational graphs, or equivalently,
sequential lists of functions, but the natural one to consider is the one associated with the com-

6

putation performed by Algorithm 4. Assuming this choice, the gradient ∇f = (v̄1−n, . . . , v̄0)
T is a

composite function of (v̄1, . . . , v̄`), as well as (v1−n, . . . , v`), which implies that the gradient (compu-
tational) graph Gg = (N g, Ag) must contain G. The graph Gg is basically built upon G by adding
nodes associated with v̄i, for i = 1 − n, . . . , `, and edges representing the functional dependencies
between these nodes.

Thus the node set N g contains 2(n+`) nodes {1−n, . . . , `, 1− n, . . . , `}, the first half associated
with the original variables and the second half with the adjoint variables. The arc set is Ag =
A1 ∪ A2 ∪ A3, where A1 contains arcs with both endpoints in “original” nodes; A2, arcs with
both endpoints in “adjoint” nodes and A3, arcs with endpoints of mixed nature. Since running
Algorithm 4 does not introduce new dependencies amongst the original v’s, we have that A1 = A.

The new dependent variables created by running Algorithm 4 satisfy

v̄i =
∑
k|i≺k

v̄k
∂vk
∂vi

(9)

at the end of the algorithm. This means the set of successors of node i gives rise to a corresponding
set of predecessors of adjoint node ı. Therefore arcs in A2 are copies of the arcs in A with the
orientation reversed. The graph Gg thus contains G and a kind of a mirror copy of G.

Arcs in A3 arise from the partial derivatives. Since none of the original variables depends on the
adjoint ones, arcs in A3 are of the type (k, ı). They arise from the partial derivatives appearing in
the sum (9). There is an arc (k, ı) only if ∂vj/∂vi is a function of vk, for k � i. Since this can only
be the case if k ≺ j, we have that (k, ı) ∈ A3 only if k and i have a common successor in G. Thus
the function v̄i = φı associated with node ı, given in (9), is a function of v̄k, for k’s that are sucessors
of i and, potentially, of vk for k’s that share a common successor with i. The only exception is
the function associated with node `, since v̄` ≡ 1. Figure 3 shows the computational graph of the
gradient of the function f given in Figure 1. Notice that on the left we have the computational
graph of f and, on the right, a mirror copy thereof. Arcs in A3 are the ones drawn dashed in the
picture. This graph has already been obtained in [7, p. 237].

−1 0

1 2

3 −1 0

1 2

3

v−1 = x−1 v̄3 = φ3 = 1
v0 = x0 v̄2 = φ2 = v̄3v1
v1 = φ1 = v−1v0 v̄1 = φ1 = v̄3v2
v2 = φ2 = v−1 + v0 v̄0 = φ0 = v̄2 + v̄1v−1
v3 = φ3 = v1 + v2 v̄−1 = φ−1 = v̄2 + v̄1v0

Figure 3: Gradient computational graph Gg of the function f(x) = (x−1x0)(x−1+x0),
represented by the computational graph in Figure 1.

We conclude that
∂2f

∂xi∂xj
=

∑
p|path from i to 

weight of path p, (10)

7

where the weight of path p is simply the product of the weights of the arcs in p.
The weights of arcs (i, j) ∈ A1 are already know. Equation (9) implies that the weight of arc

(ı, ) ∈ E2 is

cı =
∂vi
∂vj

= cji, (11)

that is, arc (i, j) has the same weight as its mirror image.
The weight of arc (k, ı) is also obtained from (9)

cjı =
∑
k|i≺k

v̄k
∂2vk
∂vj∂vi

=
∑

k|i≺k and j≺k

v̄k
∂2vk
∂vj∂vi

, (12)

since the partial derivative ∂2vk/∂vj∂vi is identically zero if k is not a successor of j. In particular,
(12) and the fact that f is twice continuously differentiable implies that

cjı = ci, for j 6= i. (13)

Notice that arcs in A3 are the only ones with second-order derivatives as weights. In a sense, they
carry the nonlinearity of f , which suggests the denomination nonlinear arcs.

Regarding the paths in Gg from i to , for fixed i, j ∈ {1 − n, . . . , 0}, each of them contains a
unique nonlinear arc, since none of the original nodes is a successor of an adjoint node. Therefore,
the sum in (10) may be partitioned according to the nonlinear arc utilized by the paths as follows:

∂2f

∂xi∂xj
=
∑

(r,s)∈A3

 ∑
p|path from i to r

weight of path p

 crs

 ∑
q|path from s to 

weight of path q

 , (14)

which reduces to

∂2f

∂xi∂xj
=
∑

(r,s)∈A3

 ∑
p|path from i to r

weight of path p

 crs

 ∑
q|path from j to s

weight of path q

 , (15)

using the symmetry in (11).
On close examination, there is a lot of redundant information in Gg. One really doesn’t need the

mirror copy of G, since the information attached to the adjoint nodes can be recorded associated
to the original nodes and the arc weights of the mirror arcs are the same. Now if we fold back the
mirror copy over the original, identifying nodes k and k, we obtain a graph with same node set as
G but with an enlarged set of arcs. Arcs in A will be replaced by pairs of arcs in opposite directions
and nonlinear arcs will become either loops (in case one had an arc (i, ı) in A3) or pairs of arcs with
opposite orientations between the same pair of nodes. Also, equations (11) and (13) imply that all
arcs in parallel have the same weight, see Figure 4. This is still too much redundancy. We may
leave arcs in A as they are, replace the pairs of directed nonlinear arcs in opposite directions with
a single nondirected arc between the same pair of nodes and the directed loops by undirected ones,

8

Gg of
Figure 3

folding simplifying

−1 0

1 2

3

−1 0

1 2

3

Figure 4: Folding of the gradient computational graph of Figure 3 and further
elimination of redundancies.

as exemplified in Figure 4, as long as we keep in mind the special characteristics of the paths we’re
interested in.

The paths needed for the computation of the Hessian, in the folded and simplified graph, are
divided into three parts. In the first part we have a directed path from some zero in-degree node,
say i, to some other node, say r. Next comes an undirected nonlinear arc (r, s). The last part is
a path from s to another zero in-degree node, say j, in which all arcs are traveled in the wrong
direction. Of course, both the first and third parts of the path may be empty, only the middle part
(the nonlinear arc) is mandatory.

This folded and simplified graph can be interpreted as a reduced gradient graph, with the
symmetric redundancies removed. The graph together with the tri-parted path interpretation for
partial derivatives constitutes our graph model for the Hessian. In Section 6 we will present an
algorithm that takes full advantage of theses symmetries and has a natural interpretation as an
algorithm that accumulates the weights of these special paths on this graph.

4 Hessian formula

The closed formula to be developed concerns the Hessian of a function g that is defined as a linear
combination of the functions Ψ1, . . . , Ψp, or, in matrix form,

g(x) = yTΨ(x), (16)

where y ∈ Rp and Ψ ∈ C2(Rn,Rp). The linearity of the differential operator implies that the
Hessian of g is simply the linear combination of the Hessians of Ψ1, . . . , Ψp:

g′′(x) =

p∑
i=1

yiΨ
′′
i (x). (17)

This motivates the introduction of the following definition of the vector-tensor product yTΨ′′(x), in
order to establish an analogy between the linear combinations in (16) and (17):

g′′(x) = (yTΨ(x))′′ = yTΨ′′ =

p∑
i=1

yiΨ
′′
i (x). (18)

9

Next we need to establish how to express g′′ when Ψ is a composition of vector functions of
several variables, the subject of the next Proposition.

Proposition 1 Let y ∈ Rp, Ω ∈ C2(Rn,Rm), Θ ∈ C2(Rm,Rp) and Ψ(x) = Θ ◦ Ω(x). Then

yTΨ′′ = (Ω′)T (yTΘ′′)Ω′ + (yTΘ′)Ω′′. (19)

Proof. By definition, applying differentiation rules, and using the symmetry of the Hessian, we
may calculate entry (j, k) of the Hessian as follows:

(yTΨ′′(x))jk =
∑
i

yi
∂2Ψi(x)

∂xj∂xk

=
∑
i

yi
∂

∂xj

(
∂Θi(Ω(x))

∂xk

)

=
∑
i

yi
∂

∂xj

(
m∑
r=1

∂Θi(Ω(x))

∂Ωr

∂Ωr(x)

∂xk

)

=
∑
i

∑
r

yi

[
∂

∂xj

(
∂Θi(Ω(x))

∂Ωr

)]
∂Ωr(x)

∂xk
+
∑
i

∑
r

yi
∂Θi(Ω(x))

∂Ωr

∂2Ωr(x)

∂xj∂xk

=
∑
r

∑
s

∑
i

yi
∂2Θi(Ω(x))

∂Ωs∂Ωr

∂Ωs(x)

∂xj

∂Ωr(x)

∂xk
+
∑
r

(yTΘ′(Ω(x))r(Ω
′′
r(x))jk

=
∑
s

∑
r

(yTΘ′′(Ω(x)))rs (Ω′(x))sj (Ω′(x))rk +
∑
r

(yTΘ′(Ω(x))r(Ω
′′
r(x))jk

=
∑
s

(Ω′(x))sj
∑
r

(yTΘ′′(Ω(x)))sr (Ω′(x))rk +
∑
r

(yTΘ′(Ω(x))r(Ω
′′
r(x))jk,

=
(
(Ω(x))T (yTΘ′′(Ω(x)))Ω′(x)

)
jk

+
(
(yTΘ′(Ω(x)))Ω′′(x)

)
jk
,

which is the entry (j, k) of the right-hand-side of (19).
Although we want to express the Hessian of a composition of state transformations, it is actually

easier to obtain the closed form for the composition of generic vector multivariable functions, our
next result.

Proposition 2 Let Ψi(x) ∈ C2(Rmi−1 ,Rm), for i = 1, . . . , k, y ∈ Rmk and

g(x) = yTΨk ◦ · · · ◦Ψ1(x).

Then

g′′ =
k∑

i=1

(
i−1∏
j=1

(Ψ′j)
T

)
((wi)TΨ′′i)

(
i−1∏
j=1

Ψ′i−j

)
, (20)

where

(wi)T = yT
k−i∏
j=1

Ψ′k−j+1, for i = 1, . . . , k. (21)

10

Proof. The proof is by induction on k. When k = 1, the result is trivially true, since in this case
(20)–(21) reduce to (w1)TΨ′′1 = yTΨ′′1, which denotes, according to (17), the Hessian of g.

Assume the proposition is true when g is the composition of k−1 functions. Now simply rewrite
the composition of k functions as follows

g = yTΨk ◦ · · · ◦Ψ3 ◦Ψ, (22)

where Ψ = Ψ2 ◦Ψ1. Then, applying the induction hypothesis to (22), we obtain

g′′ = (Ψ′)T

[
k∑

i=3

(
i−1∏
j=3

(Ψ′j)
T

)
((wi)TΨ′′i)

(
i−1∏
j=3

Ψ′i−j

)]
Ψ′ + (w2)TΨ′′. (23)

The last term in (23) is calculated separetely, using the induction hypothesis, (19) and (21):

(w2)TΨ′′ = (Ψ′1)
T ((w2)TΨ′′2)Ψ′1 + ((w2)TΨ′2)Ψ

′′
1

= (Ψ′1)
T ((w2)TΨ′′2)Ψ′1 + (w1)TΨ′′1. (24)

Using the fact that Ψ′ = Ψ′2Ψ
′
1, and expression (24) obtained for the last term, (23) becomes

g′′ = (Ψ′1)
T (Ψ′2)

T

[
k∑

i=3

(
i−1∏
j=3

(Ψ′j)
T

)
((wi)TΨ′′i)

(
i−1∏
j=3

Ψ′i−j

)]
Ψ′2Ψ

′
1

+(Ψ′1)
T ((w2)TΨ′′2)Ψ′1 + (w1)TΨ′′1

=
k∑

i=1

(
i−1∏
j=1

(Ψ′j)
T

)
((wi)TΨ′′i)

(
i−1∏
j=1

Ψ′i−j

)
,

which completes the proof.
The Hessian of the composition of state transformations follows easily from Proposition 2.

Corollary 3 Let f be the composition of state transformations given in (3). Then its Hessian is

f ′′ = P
∑̀
i=1

(
i−1∏
j=1

(Φ′j)
T

)
((vi)TΦ′′i)

(
i−1∏
j=1

Φ′i−j

)
P T , (25)

where

(vi)T = eT`

`−i∏
j=1

Φ′`−j+1, for i = 1, . . . , `. (26)

Proof. Simply apply (20) to the composition of ` + 1 functions, where Ψi = Φi, for i = 1, . . . , `,
Ψ0(x) = P Tx, and use the facts that Ψ′0 = P T and Ψ′′0 = 0.

The expression for the Hessian of f can be further simplified by noting that the tensor Φ′′i is
null except for the Hessian of its component i, [Φi]i, since the other components are just projections
onto a single variable, see (6). Thus the vector-tensor product in (25) reduces to

(vi)TΦ′′i = v̄ii[Φi]
′′
i , (27)

11

where vi = (v̄i1−n, . . . , v̄
i
`). Furthermore, notice that [Φi]

′′
i is just the Hessian of φi padded with the

appropriate number of zeros at the right places.
Letting

V̇ i =

(
i−1∏
j=1

Φ′i−j

)
P T , for i = 1, . . . , `, (28)

and using (27), (25) reduces to

f ′′ =
∑̀
i=1

(V̇ i)T v̄ii[Φi]
′′
i V̇

i

=
∑̀
i=1

v̄ii(V̇
i)T [Φi]

′′
i V̇

i. (29)

5 Griewank and Walther’s reverse Hessian algorithm

Although the inception of Griewank and Walther’s reverse Hessian computation algorithm [7, p.157],
presented in block form in Algorithm 5, follows a different line of reasoning, its correctness may be
established by means of (25).

Algorithm 5: Griewank and Walther’s Reverse Hessian computation al-
gorithm.

Input: a tape T
initialization: v = e`, W = 0, V̇ 1 = P T

for i = 2, . . . , ` do

V̇ i = Φ′i−1V̇
i−1

end
for i = `, . . . , 1 do

W = (Φ′i)
TW

W+ = vTΦ′′i V̇
i

vT = vTΦ′i
end
Output: f ′′ = PW

Algorithm 5 is the translation to block operations, using our notation, of Griewank and Walther’s
reverse Hessian computation algorithm. It recursively builds parts of expression (25) and then
combines them appropriately. It is straightforward to see that (V̇ 1, . . . , V̇ `) constructed in the first
(forward) loop satisfies (28).

In the second loop the indices are visited in reverse order, or equivalently, a backward sweep
of the computational graph is performed. Notice that the computation of v is the same as in
Algorithm 3. Thus, recalling (5), at the beginning of the iteration where node i is swept, this vector
contains the partial product eT` Φ′` · · ·Φ′i−1. Hence, at the iteration where node i is swept, W is
incremented by

vΦ′′i V̇
i = ((vi)TΦ′′i)

(
i−1∏
j=1

Φ′i−j

)
P T .

12

Finally, taking into account the pre-multiplication done at the beginning of the reverse loop, it can
be shown by induction that, at the end of the iteration where node i is swept, we have

W =
∑̀
k=i

(
k−1∏
j=i

(Φ′j)
T

)
((vk)TΦ′′k)

(
k−1∏
j=1

Φ′k−j

)
P T .

This implies that, at the end of the algorithm, PW is precisely the expression for the Hessian of f
in (25).

As far as we can ascertain, there are no reports on the implementation and testing of this
algorithm. Although the special structure of the Jacobians and Hessians of the state transformations
lead to simple and efficient componentwise versions of the block assignments, there are two obvious
downsides to this approach of calculating the Hessian. First is the fact that its symmetry is not
exploited, and second, (V̇ 1, . . . , V̇ `), calculated in the forward loop, needs to be recorded for later
use in the second loop, which is potentially a large quantity of memory, even if one takes advantage
of its special structure. Finally, the adjective “reverse” is not fully appropriate, since part of the
computation must be carried out in the forward loop.

6 A new Hessian computation algorithm: edge pushing

6.1 Development

Expression (25) leads in a straightforward fashion to an algorithm, especially if we think in terms
of block operations. Simply put, the sum in (25) is accumulated in a backward sweep as follows.
The input is the tape T , so at the iteration where node i is swept, values of φj, for all j, are known.
The updating of the initially null square matrix W of order n+ ` is as follows

Node ` W ← (Φ′`)
TWΦ′`

W ← W + (v`)TΦ′′`
Node `− 1 W ← (Φ′`−1)

TWΦ′`−1
W ← W + (v`−1)TΦ′′`−1

...

Node i W ← (Φ′i)
TWΦ′i

W ← W + (vi)TΦ′′i .

Thus, the value of W at the end of the iteration where node i is swept is given by

W =
∑̀
k=i

(
k−1∏
j=i

(Φ′j)
T

)
((vk)TΦ′′k)

(
k−i∏
j=1

Φ′k−j

)
.

Notice that, at the iteration where node i is swept, both assignments involve derivatives of Φi,
which are available. The other piece of information needed is the vector vi, which we know how
to calculate via a backward sweep from Algorithm 3. Putting these two together, we arrive at
Algorithm 6.

13

The first striking characteristic of Algorithm 6 is that the symmetry of matrix W is preserved
throughout, which is something we can take advantage of in the translation to the componentwise
version. Another welcome feature is that only contributions that really matter to f ′′ are kept and
subsequently used, in contrast with other algorihtms, e.g. Algorithm 5, in which one accumulates
(possibly linear) dependencies in the n× (n+ `) matrix V̇ , amounting to (possibly a lot) of unused
information.

Algorithm 6: Block form of edge pushing.

Input: a tape T
initialization: v = e`, W = 0
for i = `, . . . , 1 do

W = (Φ′i)
TWΦ′i

W+ = vTΦ′′i
vT = vTΦ′i

end
Output: f ′′ = PWP T

Before delving into the componentwise version of Algorithm 6, there is a key observation to be
made about matrix W , established in the following proposition.

Proposition 4 At the end of the iteration at which node i is swept in Algorithm 6, for all i, the
nonnull elements of W lie in the upper diagonal block of size n+ i− 1.

Proof. Consider the first iteration, at which node ` is swept. At the beginning W is null, so the
first block assignment ((Φ′`)

TWΦ′`) does not change that. Now consider the assignment

W ← W + (v`)TΦ′′` .

Using (27) and the initialization of v, we have

(v)TΦ′′` = v̄`[Φ`]
′′
` = [Φ`]

′′
` ,

and, since [Φ`]`(y) = φ`(yj)j≺`, the nonnull entries of [Φ`]
′′
` must have column and row indices that

correspond to predecessors of node `. This means the last row and column, of index `, are zero.
Thus the statement of the proposition holds after the first iteration.

Suppose by induction that, after node i + 1 is swept, the last ` − i rows and columns of W
are null. Recalling (7) and using the induction hypothesis, the matrix-product (Φ′i)

TWΦ′i can be
written in block form as follows:

I c 0

0 0 0

0 0 I




W1−n..i−1,1−n..i−1 W1−n..i−1,i 0

Wi,1−n..i−1 wii 0

0 0 0




I 0 0

1− n
...

i− 1

cT 0 0 row i,

0 0 I
i + 1

...
`



14

which results in
W1−n..i−1,1−n..i−1 + cWi,1−n..i−1 +W1−n..i−1,i c+ wii c c

T 0 0
1− n

...
i− 1

0 0 0 row i.

0 0 0
i + 1

...
`

 (30)

Thus at this point the last `− (i− 1) rows and columns have been zeroed.
Again using (27), we have

(v)TΦ′′i = v̄i[Φi]
′′
i ,

where the nonnull entries of [Φi]
′′
i have column and row indices that correspond to predecessors of

node i. Therefore, the last ` − (i − 1) rows and columns of [Φi]
′′
i are also null. Hence the second

and last block assignment involving W will preserve this property, which, by induction, is valid till
the end of the algorithm.

Using the definition of c in (8), the componentwise translation in the first block assignment
involving W in Algorihm 6 is

(
(Φ′i)

TWΦ′i
)
jk

=

 wjk +
∂φi

∂vk

∂φi

∂vj
wii +

∂φi

∂vk
wji +

∂φi

∂vj
wik, if j < i and k < i,

0, otherwise.
(31)

For the second block assignment, using (27), we have that

(v̄i[Φi]
′′
i)jk =

 v̄i
∂2φi

∂vj∂vk
, if j < i and k < i,

0, otherwise.
(32)

Finally, notice that, since the componentwise version of the block assignment, done as node i
is swept, involves only entries with row and column indices smaller than or equal to i, one does
not need to actually zero out the row and column i of W , as these entries will not be used in the
following iterations.

This componentwise assignment may be still simplified using symmetry. In order to avoid
unnecessary calculations with symmetric counterparts, we employ the notation w{ji} to denote
both wij and wji. Notice, however, that, when j = k in (31), we have

(
(Φ′i)

TWΦ′i
)
jj

= wjj +

(
∂φi

∂vj

)2

wii +
∂φi

∂vj
wji +

∂φi

∂vj
wij,

so in the new notation we would have(
(Φ′i)

TWΦ′i
)
{jj} = w{jj} +

(
∂φi

∂vj

)2

w{ii} + 2
∂φi

∂vj
w{ji}.

The componentwise version of Algorithm 6 adopts the point of view of the node being swept.
Say, for instance that node i is being swept. Consider the first block assignment

W ← (Φ′i)
TWΦ′i,

15

whose componentwise version is given in (31). Instead of focusing on updating each w{jk}, j, k < i,
at once, which would involve accessing w{ii}, w{ji} and w{ik}, we focus on each w{pi} at a time, and
‘push’ its contribution to the appropriate w{jk}’s. Taking into account that the partial derivatives
of φi may only be nonnull with respect to i’s predecessors, these appropriate elements will be w{jp},
where j ≺ i, see the pushing step in Algorithm 7.

The second block assignment
W ← W + (vi)TΦ′′i ,

may be thought of as the creation of new contributions, that are added to appropriate entries and
that will be pushed in later iterations. From its componentwise version in (32), we see that only
entries of W associated with predecessors of node i may be changed in this step. The resulting
componentwise version of the edge pushing algorithm is Algorithm 7.

16

Algorithm 7: Componentwise form of edge pushing.

Input: tape T
initialization: v̄1−n = · · · = v̄`−1 = 0, v̄` = 1, w{ij} = 0, 1− n ≤ j ≤ i ≤ `
for i = `, . . . , 1 do

Pushing

foreach p such that p ≤ i and w{pi} 6= 0 do
if p 6= i then

foreach j ≺ i do
if j = p then

w{pp}+ = 2
∂φi

∂vp
w{pi}

else

w{jp}+ =
∂φi

∂vj
w{pi}

end

end

else p = i
foreach unordered pair {j, k} such that j, k ≺ i do

w{jk}+ =
∂φi

∂vk

∂φi

∂vj
w{ii}

end

end

end
Creating

foreach unordered pair {j, k} such that j, k ≺ i do

w{jk}+ = v̄i
∂2φi

∂vk∂vj
end
Adjoint

foreach j ≺ i do

v̄j+ = v̄i
∂φi

∂vj
end

end
Output: f ′′ = PWP T

Algorithm 7 has a very natural interpretation in terms of the graph model introduced in Sec-
tion 3. The nonlinear arcs are ‘created’ and their weight initialized (or updated, if in fact they
already exist) in the creating step. In graph terms, the pushing step performed when node i is
swept actually pushes the endpoints of the nonlinear arcs incident to node i to its predecessors.
The idea is that subpaths containing the nonlinear arc are replaced by shortcuts. This follows from
the fact that if a path contains the nonlinear arc {i, p}, then it must also contain precisely one
of the other arcs incident to node i. Figure 5 illustrates the possible subpaths and corresponding
shortcuts. In cases I and III, the subpaths consist of two arcs, whereas in case III, three arcs are

17

i

j k

i

j k

i

j k

i

j k

i

j k

i

j k

sweeping

node i

II: i = p

((j, i), {i, i}, (j, i))
((j, i), {i, i}, (k, i))
((k, i), {i, i}, (k, i))

{j, j}
{j, k}
{k, k}

III: i 6= p ≺ i

((j, i), {i, k})
((k, i), {i, k}) and ({i, k}, (k, i))

{j, k}
{k, k}

I: i 6= p ⊀ i p p

((j, i), {i, p})
((k, i), {i, p})

{j, p}
{k, p}

subpaths

{
replaced by

}
shortcuts

Figure 5: Pushing nonlinear arc {i, p} is creating shortcuts.

replaced by a new nonlinear arc. Notice that the endpoints of a loop (case II) may be pushed
together down the same node, or split down different nodes. In this way, the contribution of each
nonlinear arcs trickles down the graph, distancing the higher numbered nodes until it finally reaches
the independent nodes.

This interpretation helps in understanding the good performance of edge pushing in the com-
putational tests, in the sense that only “proven” contributions to the Hessian (nonlinear arcs) are
dealt with.

6.2 Example

In this section we run Algorithm 7 on one example, to better illustrate its workings. Since we’re
doing it on paper, we have the luxury of doing it symbolically.

The iterations of edge pushing on a computational graph of the function f(x) = (x−2 +
ex−1)(3x−1 + x20) are shown on Figure 6. The thick arrows indicate the sequence of three itera-
tions. Nodes about to be swept are highlighted. As we proceed to the graph on the right of the
arrow, nonlinear arcs are created (or updated), weights are appended to edges and adjoint values
are updated, except for the independent nodes, since the focus is not gradient computation. For
instance, when node 3 is swept, the nonlinear arc {1, 2} is created. This nonlinear arc is pushed
and split into two when node 2 is swept, becoming nonlinear arcs {0, 1} and {−1, 1}, with weights
1 · 2v0 and 1 · 3, respectively. When node 1 is swept, the nonlinear arc {−1, 1} is pushed and split

18

into nonlinear arcs {−2,−1} and {−1,−1}, the latter with weight 2 · 3 · ev−1 . Later on, in the same
iteration, the nonlinear contribution of node 1, ∂2φ1/∂v

2
−1, is added to the nonlinear arc {−1,−1}.

Other operations are analogous. The Hessian can be retrieved from the weights of the nonlinear
arcs between independent nodes at the end of the algorithm:

f ′′(x) =

 0 3 2v0
3 ev−1(6 + v2) 2v0e

v−1

2v0 2v0e
v−1 2v1

 =

 0 3 2x0
3 ex−1(6 + 3x−1 + x20) 2x0e

x−1

2x0 2x0e
x−1 2(x−2 + ex−1)

 .

Notice that arcs that are pushed are deleted from the figure just for clarity purposes, though this
is not explicitly done in Algorithm 7. Nevertheless, in the actual implementation the memory
locations corresponding to these arcs are indeed deleted, or, in other words, made available, since
this can be done in constant time.

3

1

−2

2

−1 0

v3 = v1 v2
v̄3 = 1

v2 = 3v−1 + v20
v̄2 = 0

v1 = v−2 + ev−1

v̄1 = 0

v−2 = x−2
v−1 = x−1

v0 = x0

sweeping
node 3

3

1

−2

2

−1 0

1

v2 v1

v̄3 = 1

v̄2 = v1v̄1 = v2

3

1

−2

2

−1 0

2v03

2v0
3

2v1

v2 v1

v̄3 = 1

v̄2 = v1v̄1 = v2

sweeping
node 2

sweeping
node 1

3

1

−2

2

−1 0

2v03ev−11

v2 v1

v̄3 = 1

v̄2 = v1v̄1 = v2

2v0e
v−13

2v1

ev−1(6 + v2)

2v0

Figure 6: edge pushing applied to a computational graph of f(x) = (x−2 + ex−1)(3x−1 + x20).

6.3 edge pushing complexity bounds

For our bounds we assume that the data structure used for W in Algorithm 7 is an adjacency list.
This is a structure appropriate for large sparse graphs, which shall be our model for W , denoted by
GW . The entries in W are interpreted as the set of arc weights. Thus the nodes of GW are associated
with the rows of W . Notice that this is the same as the set of nodes of the computational graph.

19

i

j k

i

j k

i

j k

i

j k

i

j k

i

j k

sweeping

node i

II: i = p
2(d∗j + d∗k)

III: i 6= p ≺ i
d∗j + 2d∗k

I: i 6= p ⊀ i p p

d∗j + 2d∗p + d∗k

upper bound for
time spent

Figure 7: Complexity bounds for the pushing step.

The support of W is associated to the set of arcs of GW . During the execution of the algorithm,
new arcs may be created during the pushing or the creating step. After node i has been swept,
GW has accumulated all the nonlinear arcs that have been created or pushed, up to this iteration,
since arcs are not deleted. On may think of GW as the recorded history (creation and pushing) of
the nonlinear arcs.

Denote by Ni the set of neighbors of node i in GW and by di the degree of node i. Of course
the degree of node i and its neighborhood vary during the execution of the algorithm. The time for
inserting or finding an arc {i, j} and its weight w{i,j} is bounded by O(di + dj), where di and dj are
the degrees at the iteration where the operation takes place. We assume that the set of elemental
functions is composed of only unary and binary functions.

6.3.1 Time complexity

The time complexity of edge pushing depends on how many nonlinear arcs are allocated during
execution. Thus it is important to establish bounds for the number of arcs allocated to each node.
Furthermore, we may fix G∗W as the graph obtained at the end of the algorithm.

Let d∗i be the degree of node i in G∗W , and let d∗ = maxi{d∗i }. Clearly di ≤ d∗i , where di is
the degree of node i in the graph GW at any given iteration. In order to bound the complexity of
edge pushing, we consider the pushing and creating steps separately. We repeat in Figure 7 the
possible cases of pushing, and the corresponding time complexity bounds.

Studying the cases spelled out in Figure 7, one concludes that the time spent in pushing edge
{i, p} is bounded by 2(d∗j + d∗p + d∗k), where j and k are predecessors of node i. Since there are at
most d∗i nonlinear arcs incident to node i, the time spent in the pushing step at the iteration where
node i is swept is bounded by

d∗i (2(d∗j + d∗p + d∗k)) = O(d∗i (d
∗
j + d∗p + d∗k)) = O(d∗i d

∗).

20

Finally, the assumption that all functions are either unary or binary implies that at most three
nonlinear arcs are allocated during the creating step, for each iteration of edge pushing. Hence
the time used up in this step at the iteration where node i is swept is bounded by

2(d∗j + d∗k) = O(d∗j + d∗k) = O(d∗),

where j and k are predecessors of node i.
Thus, taking into account the time spent in merely visiting a node — say, when the intermediate

function associated with the node is linear — is constant, the time complexity of edge pushing is

TIME(edge pushing) ≤
∑̀
i=1

(d∗i d
∗ + d∗ + 1)

= O

(
d∗
∑̀
i=1

d∗i + `

)
. (33)

A consequence of this bound is that, if f is linear, the complexity of edge pushing is that of
the function evaluation, a desirable property for Hessian algorithms.

7 Computational experiments

All tests were run on the 32-bit operating system Ubuntu 9.10, processor Intel 2.8 GHz, and
4 GB of RAM. All algorithms were coded in C and C++. The algorithm edge pushing has been
implemented as a driver of ADOL-C, and uses the taping and operator overloading functions of
ADOL-C [8]. The tests aim to establish a comparison between edge pushing and two algorithms,
available as drivers of ADOL-C v. 2.1, that constitute a well established reference in the field.
These algorithms incorporate the graph coloring routines of the software package ColPack [5, 6]
and the sparsity detection and Hessian-vector product procedures of ADOL-C [14]. We shall denote
them by the name of the coloring scheme employed: Star and Acyclic. Analytical properties of
these algorithms, as well as numerical experiments with them, have been reported in [4, 14].

We have hand-picked fifteen functions from the CUTE collection [1] and one — augmlagn — from
[9] for the experiments. The selection was based on the following criteria: Hessian’s sparsity pattern,
scalability and sparsity. We wanted to cover a variety of patterns; to be able to freely change the
scale of the function, so as to appraise the performance of the algorithms as the dimension grows;
and we wanted to work with sparse matrices. The appendix presents results for dimension values
n in the set 5 000, 20 000, 50 000 and 100 000, but the tables in this section always refer to the
n = 50 000 case, unless otherwise explicitly noted.

The list of functions is presented in Table 1. The ‘Pattern’ column indicates the type of sparsity
pattern: bandwith (B x), arrow, box, or irregular pattern. The last two display the number of
columns of the seed matrix produced by Star and Acyclic, for dimension equal to 50 000. In order
to report the performance of these algorithms, we briefly recall their modus operandi. Their first
step, executed only once, computes a seed matrix S via coloring methods, such that the Hessian
f ′′ may be recovered from the product f ′′S, which involves as many Hessian-vector products as the
number of columns of S. The latter coincides with the number of colors used in the coloring of
a graph model of the Hessian. The recovery of the Hessian boils down to the solution of a linear

21

system. Thus the first computation of the Hessian takes necessarily longer, because it comprises
two steps, where the first one involves the coloring, and the second one deals with the calculation of
the actual numerical entries. In subsequent Hessian computations, only the second step is executed,
resulting in a shorter run. It should be noted that the number colors is practically insensitive to
changes in the dimension of the function in the examples considered, with the exception of the
functions with irregular patterns, noncvxu2 and ncvxbqp1.

colors
Name Pattern Star Acyclic

cosine B 1 3 2
chainwoo B 2 3 3
bc4 B 1 3 2
cragglevy B 1 3 2
pspdoc B 2 5 3
scon1dls B 2 5 3
morebv B 2 5 3
augmlagn 5× 5 diagonal blocks 5 5
lminsurf B 5 11 6
brybnd B 5 13 7
arwhead arrow 2 2
nondquar arrow + B 1 4 3
sinquad frame + diagonal 3 3
bdqrtic arrow + B 3 8 5
noncvxu2 irregular 12 7
ncvxbqp1 irregular 12 7

Table 1: Test functions

Table 2 reports the times taken by edge pushing and by the first and second Hessian compu-
tations by Star and Acyclic. It should be pointed out that Acyclic failed to recover the Hessian of
ncvxbqp1, the last function in the table. In the examples where edge pushing is faster than the
second run of Star (resp., Acyclic), we can immediately conclude that edge pushing is more effi-
cient for that function, at that prescribed dimension. This was the case in 14 (resp., 16) examples.
However, when the second run is faster than edge pushing, the corresponding coloring method
may eventually win, if the Hessians are computed a sufficient number of times, so as to compensate
the initial time investment. This of course depends on the context in which the Hessian is used,
say in a nonlinear optimization code. Thus the number of evaluations of Hessians is linked to the
number of iterations of the code. The minimum time per example is highlighted in Table 2.

Focusing on the two-stage Hessian methods, we see that Star always has fastest second runtimes.
Only for function sinquad is Star’s first run faster than Acyclic’s. Nevertheless, this higher invest-
ment in the first run is soon paid off, except for functions arwhead, nondquar and bdqrtic, where it
would require over 1600, 50 and 25, respectively, computations of the Hessian to compensate the
slower first run. We can also see from Tables 1 and 2 that Star’s performance on the second run
suffers the higher the number of colors needed to color the Hessian’s graph model, which is to be
expected. Thus the second runs of lminsurf, brybnd, bdqrtic, noncvxu2 and ncvxbqp1 were the slowest

22

Star Acyclic
Name 1st 2nd 1st 2nd e p

cosine 9.93 0.16 9.68 2.52 0.15
chainwoo 35.07 0.33 33.24 5.08 0.30
bc4 10.02 0.25 10.00 2.56 0.25
cragglevy 28.17 0.79 28.15 2.60 0.48
pspdoc 10.31 0.35 10.27 4.39 0.23
scon1dls 11.00 0.59 10.97 4.96 0.40
morebv 10.36 0.46 10.33 4.49 0.35
augmlagn 15.99 0.68 8.36 16.74 0.27
lminsurf 9.30 1.01 9.24 3.89 0.35
brybnd 11.87 2.44 11.73 12.63 1.68
arwhead 176.50 0.16 45.86 0.24 0.20
nondquar 166.59 0.18 28.64 2.57 0.12
sinquad 606.72 0.26 888.57 1.51 0.32
bdqrtic 262.64 1.34 96.87 7.80 0.80
noncvxu2 29.69 1.10 29.27 7.76 0.28
ncvxbqp1 13.51 2.42 – – 0.37

Averages 87.98 0.78 82.08 5.32 0.41

Variances 25 083.44 0.54 50 313.10 19.32 0.14

Table 2: Runtimes in seconds for Star, Acyclic and edge pushing.

of Star’s. Notice that, although the Hessian of bdqrtic doesn’t require as many colors as the other
four just mentioned, the function evaluation itself takes longer.

On a contrasting note, edge pushing execution is not tied to sparsity patterns and thus this
algorithm proved to be more robust, depending more on the density and number of nonlinear
functions involved in the calculation. In fact, this is confirmed by looking at the variance of the
runtimes for the three algorithms, see the last row of Table 2. Notice that edge pushing has the
smallest variance. Furthermore, although Star was slightly faster than edge pushing in the second
run for the functions arwhead and sinquad, the time spent in the first run was such that it would
require over 4 000 and 10 000, respectively, evaluations of the Hessian to compensate for the slower
first run.

The bar chart in Figure 8, built from the data in Table 2, permits a graphical comparison of
the performances of Star and edge pushing. Times for function brybnd deviate sharply from the
remaining ones, it was a challenge for both methods. On the other hand, function ncvxbq1 presented
difficulties to Star, but not to edge pushing.

23

0.18

0.33

0.25

0.79

0.35

0.59

0.46

0.68

1.01

2.44

0.16

0.18

0.26

1.34

1.1

2.42

0.15

0.3

0.25

0.48

0.23

0.4

0.35

0.27

0.35

1.68

0.2

0.12

0.32

0.8

0.28

0.37

cosine

chainwoo

bc4

cragglevy

pspdoc

scon1dls

morebv

augmlagn

lminsurf

brybnd

arwhead

nondquar

sinquad

bdqrtic

noncvxu2

ncvxbqp1

edge pushing

Star

Time (in seconds)

F
u
n
ct
io
n
s

Figure 8: Graphical comparison: Star versus edge pushing.

The bar chart containing the runtimes of the three algorihtms is made pointless by the range of
runtimes of Acyclic, much bigger than the other two. To circumvent this problem, we applied the
base 10 log to the runtimes multiplied by 10 (just to make all logs positive). The resulting chart is
depicted in Figure 9.

24

0.255

0.519

0.398

0.898

0.544

0.771

0.663

0.833

1.004

1.387

0.204

0.255

0.415

1.127

1.041

1.384

0.176

0.477

0.398

0.681

0.362

0.602

0.544

0.431

0.544

1.225

0.301

0.079

0.505

0.903

0.447

0.568

1.401

1.706

1.408

1.415

1.642

1.695

1.652

2.224

1.590

2.101

0.380

1.410

1.179

1.892

1.890

cosine

chainwoo

bc4

cragglevy

pspdoc

scon1dls

morebv

augmlagn

lminsurf

brybnd

arwhead

nondquar

sinquad

bdqrtic

noncvxu2

ncvxbqp1

Star

edge pushing

Acyclic

Log of 10 * Time (in seconds)

F
u
n
ct
io
n
s

Figure 9: Graphical comparison of times in log scale: Star, Acyclic and edge pushing.

25

Although the results presented in Table 2 correspond to the dimension 50 000 case, they rep-
resented the general behavior of the algorithms in this set of functions. This is evidenced by the
plots in Figures 10 and 11, that show the runtimes of edge pushing and Star on four functions for
dimensions varying from 5 000 to 100 000.

The functions cosine, sinquad, brybnd and noncvxu2 were selected for these plots because they
exemplify the different phenomena we observed in the 50 000 case. For instance, the performances of
both edge pushing and Star are similar in the functions cosine and sinequad, and this has happened
consistently in all dimensions. Thus the dashed and solid lines in Figure 10 intertwine, and there
is no striking dominance of one algorithm over the other. Also, these functions presented no real
challenges, and the runtimes in all dimensions are low.

H H
H

H
H H

H
H

H
H

H

� �
�

�
�

�
�

�
�

�
�

N
N

N
N

N

N

N

N

N

N

N

�
�

�

�
�

�

�

�

�

�

�

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1
0

00
0

2
0

00
0

30
000

40
000

50
000

60
000

70
000

80
000

90
000

5
000

100
000

T
im

e
(i
n

se
co

n
d
s)

Dimension

H cosine e p
� cosine 2nd Star
N sinquad e p
� sinquad 2nd Star

Figure 10: Evolution of runtimes of edge pushing and Star (2nd run) with respect to dimension,
for cosine and sinequad.

The function brybnd was chosen because it presented a challenge to all methods, and ncvxu2 is
the representative of the functions with irregular Hessians. The plots in Figure 11 show a consistent
superiority of edge pushing over Star for these two functions. All plots are close to linear, with
the exception of the runtimes of Star for the function noncvxu2. We observed that the number of
colors used to color the graph model of its Hessian varied quite a bit, from 6 to 21. This highest
number occured precisely for the dimension 70 000, the most dissonant point in the series.

Table 3 in the Appendix contains the runtimes for the three methods, including first and second
runs, for all functions, for dimensions 5 000, 20 000 and 100 000.

8 Conclusions and future research

The formula (25) for the Hessian obtained in Section 4 leads to new correctness proofs for ex-
isting Hessian computation algorithms and to the development of new ones. We also provided a
graph model for the Hessian computation and both points of view inspired the construction of

26

H H H H H H H H H H H

� �
�

� �
�

�

�

�

� �

N
N

N

N
N

N
N

N
N

N

N

�

�

�

�

�

�

�

�

�

�

�

1

2

3

4

5

1
0

00
0

2
0

00
0

3
0

00
0

40
0
00

5
0

00
0

60
0
00

7
0

00
0

80
0
00

9
0

00
0

5
00

0

100
000

T
im

e
(i
n

se
co

n
d
s)

Dimension

H noncvxu2 e p

� noncvxu2 2nd Star

N brybnd e p

� brybnd 2nd Star

Figure 11: Evolution of runtimes of edge pushing and Star (2nd run) with respect to dimension,
for noncvxu2 and brybnd.

edge pushing, a new algorithm for Hessian computation that conforms to Griewank and Walther’s
Rule 16 of Automatic Differentiation [7, p. x]:

The calculation of gradients by nonincremental reverse makes
the corresponding computational graph symmetric, a property that
should be exploited and maintained in accumulating Hessians.

The new method is a truly reverse algorithm that exploits the symmetry and sparsity of the
Hessian. It is a one-phase algorithm, in the sense that there is no preparatory run where a sparsity
pattern needs to be calculated that will be reused in all subsequent iterations. This can be an
advantage if the function involves many intermediate functions whose second derivatives are zero in
a sizable region, for instance h(u) = (max{−u, 0})2. This type of function is used as a differentiable
penalization of the negative axis. It is not uncommon to observe the ‘thinning out’ of Hessians over
the course of nonlinear optimization, as the iterations converge to an optimum, which obviously lies
in the feasible region. If the sparsity structure is fixed at the beginning, one cannot take advantaged
of this slimming down of the Hessian.

edge pushing was implemented as a driver of ADOL-C[8] and tested against two other algo-
rithms, the Star and Acyclic methods of ColPack [6], also available as drivers of ADOL-C. Com-
putational experiments were run on sixteen functions of the CUTE collection [1]. The results show
the strong promise of the new algorithm. When compared to Star, there is a clear advantage of
edge pushing in fourteen out of the sixteen functions. In the remaining two the situation is unclear,
since Star is a two-stage method and the first run can be very expensive. So even if its second run
is faster than edge pushing’s, one should take into account how many evaluations are needed in
order to compensate the first run. The answers regarding the functions arwhead and sinquad were
over 4 000 and 10 000, respectively, for dimension equal to 50 000. These numbers grow with the

27

dimension. Finally, it shoud be noted that edge pushing’s performance was the more robust, and it
wasn’t affected by the lack of regularity in the Hessian’s pattern.

We observed that Star was consistently better than Acyclic in all computational experiments.
However, Gebremedhin et al. [4] point out that Acyclic was better than Star in randomly generated
Hessians and the real-world power transmission problem reported therein, while the opposite was
true for large scale banded Hessians. It is therefore mandatory to test edge pushing not only on
real-world functions, but also within the context of a real optimization problem. Only then can one
get a true sense of the impact of using different algorithms for Hessian computation.

It should be pointed out that the structure of edge pushing naturally lends itself to paralleliza-
tion, a task already underway. The opposite seems to be true for Star and Acyclic. The more
efficient the first run is, the less colors, or columns of the seed matrix one has, and only the task of
calculating the Hessian-vector products corresponding to f ′′S can be seen to be easily parallelizable.

Another straightforward consequence of edge pushing is a sparsity pattern detection algorithm.
This has already been implemented and tested, and will be the subject of another report.

28

Appendix: Results for varying instance sizes

D
im

en
si

on
5

00
0

2
0

0
0
0

1
0
0

0
0
0

N
am

e
S

ta
r

A
cy

cl
ic

e
p

S
ta

r
A

cy
cl

ic
e
p

S
ta

r
A

cy
cl

ic
e
p

1s
t

2n
d

1s
t

2n
d

1
st

2
n

d
1
st

2
n

d
1
st

2
n

d
1
st

2
n

d
co
si
n
e

0.
10

0.
02

0.
09

0.
04

0.
02

1
.5

8
0
.0

7
1
.6

1
0
.4

5
0
.0

7
3
7

0
.3

5
3
7

9
.4

8
0
.3

1
ch
ai
n
w
o
o

0.
38

0.
04

0.
33

0.
09

0.
02

6
.1

1
0
.1

2
5
.4

1
0
.9

2
0
.1

1
1
3
7

0
.6

5
1
3
0

1
9
.5

4
0
.5

8
b
c4

0.
11

0.
02

0.
10

0.
05

0.
02

1
.5

9
0
.0

9
1
.5

8
0
.4

8
0
.1

0
3
7

0
.5

1
3
7

9
.5

7
0
.5

0
cr
ag
gl
ev
y

0.
29

0.
05

0.
28

0.
05

0.
04

4
.5

4
0
.3

0
4
.5

3
0
.4

9
0
.1

9
1
0
9

1
.5

7
1
0
9

9
.6

6
1
.0

0
p
sp
d
o
c

0.
11

0.
04

0.
11

0.
07

0.
02

1
.6

1
0
.1

4
1
.6

0
0
.8

6
0
.0

9
3
6

0
.7

0
3
6

1
7
.4

9
0
.4

4
sc
on

1d
ls

0.
11

0.
04

0.
12

0.
07

0.
04

1
.6

3
0
.2

4
1
.6

1
0
.9

2
0
.1

6
3
7

0
.9

5
3
7

2
0
.0

5
0
.8

1
m
or
eb
v

0.
12

0.
05

0.
12

0.
08

0.
04

1
.6

3
0
.1

9
1
.6

1
0
.9

1
0
.1

4
3
7

0
.8

8
3
7

1
8
.1

3
0
.7

3
au
gm

la
gn

0.
13

0.
07

0.
11

0.
21

0.
02

1
.6

4
0
.2

8
1
.3

6
2
.8

3
0
.1

2
8
4

1
.4

0
3
3

6
5
.9

8
0
.5

5
lm

in
su
rf

0.
12

0.
09

0.
12

0.
09

0.
03

1
.5

7
0
.4

5
1
.5

5
0
.7

8
0
.1

4
3
6

2
.3

0
3
6

1
5
.0

4
0
.6

8
br
yb
n
d

0.
17

0.
23

0.
16

0.
22

0.
18

1
.9

6
0
.9

6
1
.8

8
2
.2

0
0
.6

7
3
9

4
.8

8
3
9

4
2
.0

5
3
.3

6
ar
w
h
ea
d

1.
52

0.
01

0.
42

0.
03

0.
02

2
8
.8

0
0
.0

6
9
.9

9
0
.0

9
0
.0

9
9
4
3

0
.3

1
2
3
3

0
.4

7
0
.4

2
n
on

d
q
u
ar

1.
29

0.
01

0.
21

0.
04

0.
01

2
3
.1

9
0
.0

8
3
.4

9
0
.4

8
0
.0

5
1
0
1
2

0
.3

5
3
4
0

9
.6

2
0
.2

5
si
n
q
u
ad

2.
79

0.
02

5.
09

0.
05

0.
03

6
0
.9

7
0
.1

1
9
9
.5

4
0
.3

3
0
.1

3
3
9
0
5

0
.5

4
8
9
6
1

5
.1

4
0
.6

6
b
d
q
rt
ic

1.
55

0.
13

0.
48

0.
22

0.
09

2
8
.6

2
0
.5

5
7
.6

6
1
.4

0
0
.3

4
4
3
2
3

2
.6

8
8
3
3

7
1
.4

1
.6

5
n
on

cv
xu
2

0.
32

0.
08

0.
32

0.
12

0.
03

4
.8

5
0
.4

2
4
.7

3
1
.4

1
0
.1

2
1
1
8

2
.2

1
1
1
7

2
9
.4

5
0
.5

6
n
cv
xb

q
p
1

0.
15

0.
20

–
–

0.
02

2
.2

2
0
.9

1
–

–
0
.1

3
5
1

5
.3

9
–

–
0
.7

7

A
ve

ra
ge

s
0.

58
0.

07
0.

54
0.

10
0.

04
1
0
.7

8
0
.3

1
9
.8

8
0
.9

7
0
.1

7
6
8
4

1
.6

0
7
3
4

2
2
.9

0
.8

3

Table 3: Runtimes for all methods and functions, at varying dimensions.

29

References

[1] I. Bongartz, A. R. Conn, Nick Gould, and Ph. L. Toint. “CUTE: constrained and uncon-
strained testing environment”. In: ACM Trans. Math. Softw. 21.1 (1995), pp. 123–160. issn:
0098-3500. doi: http://doi.acm.org/10.1145/200979.201043. url: http://portal.acm.
org/ft_gateway.cfm?id=201043&type=pdf&coll=Portal&dl=GUIDE&CFID=106302864&

CFTOKEN=87967305.

[2] R. H. Byrd, J. N., and R. A. Waltz. “KNITRO: An integrated package for nonlinear optimiza-
tion”. In: Large Scale Nonlinear Optimization, 35–59, 2006. Springer Verlag, 2006, pp. 35–
59.

[3] Anders Forsgren, Philip E. Gill, and Margaret H. Wright. “Interior methods for nonlinear
optimization”. In: SIAM Review 44 (2002), pp. 525–597.

[4] A. H. Gebremedhin, A. Tarafdar, A. Pothen, and A. Walther. “Efficient Computation of Sparse
Hessians Using Coloring and Automatic Differentiation”. In: INFORMS J. on Computing 21.2
(2009), pp. 209–223. issn: 1526-5528. doi: http://dx.doi.org/10.1287/ijoc.1080.0286.

[5] Assefaw H. Gebremedhin, Arijit Tarafdar, Duc Nguyen, and Alex Pothen. ColPack. 2010.
url: http://www.cs.odu.edu/%7Ednguyen/dox/colpack/html/.

[6] Assefaw H. Gebremedhin, Arijit Tarafdar, and Alex Pothen. “COLPACK: A graph coloring
package for supporting sparse derivative matrix computation”. In preparation. 2008.

[7] A. Griewank. Evaluating derivatives: principles and techniques of algorithmic differentiation.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2000. isbn: 0-89871-
451-6.

[8] A. Griewank et al. ADOL-C: A Package for the Automatic Differentiation of Algorithms
Written in C/C++. Tech. rep. Updated version of the paper published in ACM Trans. Math.
Software 22, 1996, 131–167. Institute of Scientific Computing, Technical University Dresden,
1999.

[9] W. Hock and K. Schittkowski. “Test examples for nonlinear programming codes”. In: Journal
of Optimization Theory and Applications 30.1 (1980), pp. 127–129.

[10] R. H. F. Jackson and G. P. McCormick. “The polyadic structure of factorable function tensors
with applications to high-order minimization techniques”. In: J. Optim. Theory Appl. 51.1
(1986), pp. 63–94. issn: 0022-3239. doi: http://dx.doi.org/10.1007/BF00938603.

[11] James Stewart. Multivariable Calculus. Brooks Cole, 2007.

[12] R. J. Vanderbei and D. F. Shanno. “An Interior-Point Algorithm For Nonconvex Nonlinear
Programming”. In: Computational Optimization and Applications 13 (1997), pp. 231–252.

[13] A. Wächter and L. T. Biegler. “On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming”. In: Math. Program. 106.1 (2006), pp. 25–
57. issn: 0025-5610. doi: http://dx.doi.org/10.1007/s10107-004-0559-y.

[14] A. Walther. “Computing sparse Hessians with automatic differentiation”. In: ACM Trans.
Math. Softw. 34.1 (2008), pp. 1–15. issn: 0098-3500. doi: http://doi.acm.org/10.1145/
1322436.1322439.

30

http://dx.doi.org/http://doi.acm.org/10.1145/200979.201043
http://portal.acm.org/ft_gateway.cfm?id=201043&type=pdf&coll=Portal&dl=GUIDE&CFID=106302864&CFTOKEN=87967305
http://portal.acm.org/ft_gateway.cfm?id=201043&type=pdf&coll=Portal&dl=GUIDE&CFID=106302864&CFTOKEN=87967305
http://portal.acm.org/ft_gateway.cfm?id=201043&type=pdf&coll=Portal&dl=GUIDE&CFID=106302864&CFTOKEN=87967305
http://dx.doi.org/http://dx.doi.org/10.1287/ijoc.1080.0286
http://www.cs.odu.edu/%7Ednguyen/dox/colpack/html/
http://dx.doi.org/http://dx.doi.org/10.1007/BF00938603
http://dx.doi.org/http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/http://doi.acm.org/10.1145/1322436.1322439
http://dx.doi.org/http://doi.acm.org/10.1145/1322436.1322439

	Introduction
	Preliminaries: function and gradient computation
	Hessian via computational graph
	Hessian formula
	Griewank and Walther's reverse Hessian algorithm
	A new Hessian computation algorithm: edge_pushing
	Development
	Example
	edge_pushing complexity bounds
	Time complexity

	Computational experiments
	Conclusions and future research

