Departamento de Matemática – IMECC – Unicamp Exame de Análise Funcional – 9 de dezembro de 2013.

Nome:		
D 4		

1. Questão. Considere o espaço de Banach real C([0,1]) com a norma $\|\cdot\|_{\infty}$ e defina

$$M := \{ f \in C([0,1]) \mid f(0) = 0 \}.$$

- (a) (0.5) Fixada $g \in C([0,1])$, encontre uma expressão simples para a classe $g + M \in C([0,1])/M$.
- **(b) (0.5)** Se $\|\cdot\|$ é a norma usual em C([0,1])/M, verifique que

$$||g+M|| = |g(0)|.$$

- (c) (1.0) Encontre um espaço vetorial normado familiar que é isometricamente isomorfo ao espaço C([0,1])/M.
- **2. Questão.** (1.5) Considere novamente o espaço de Banach real C([0,1]) com a norma $\|\cdot\|_{\infty}$ e defina

$$A := \{ f \in C([0,1]) \mid f \text{ \'e constante em } [0,1] \}.$$

Defina o funcional linear $\varphi: A \to \mathbb{R}$ por $\varphi(f_c) = c$, onde f_c denota a função constante com valor $c \in \mathbb{R}$. Sejam $g_0 \in C([0,1])$ dada por $g_0(x) = x$ e

$$B = \{ f_c + \lambda g_0 \mid f_c \in A \text{ e } \lambda \in \mathbb{R} \}.$$

É possível encontrar $\tilde{\varphi}: B \to \mathbb{R}$ linear e contínuo com $\tilde{\varphi}|_A = \varphi$ e $\|\tilde{\varphi}\| = \|\varphi\|$? Em caso afirmativo, encontre um tal funcional.

3. Questão. (1.5) Seja H um espaço de Hilbert e $A: H \rightarrow H$ um operador linear tal que

$$\langle Ax, y \rangle = \langle x, Ay \rangle$$
, para quaisquer $x, y \in H$.

Demonstre que A é um operador linear limitado.

4. Questão. Defina $P: L^2([a,b]) \to L^2([a,b])$ por

$$Pf(t) = tf(t)$$
.

- a) [0.5] Demonstre que *P* está bem definido e é um operador limitado.
- b) [1.0] Demonstre que *P* não possui autovalores.
- c) [0.5] Para cada $g \in L^2([a,b])$ e cada $\lambda \notin [a,b]$, defina

$$h(t) := \frac{g(t)}{t - \lambda}.$$

Verifique que $h \in L^2([a,b])$ e que $(P - \lambda I)h = g$.

- d) [1.0] A afirmação $\sigma(P) \subset [a,b]$ é falsa ou verdadeira? Justifique.
- **5. Questão.** (2.0) Seja X um espaço de Banach e $A: D(A) \subset X \to X$ um operador fechado com domínio D(A). Demonstre que D(A) com a norma

$$||x||_{D(A)} := ||x||_X + ||Ax||_X$$

é um espaço de Banach. Demonstre ainda que se $0 \in \rho(A)$ então as normas $\|\cdot\|_{D(A)}$ e

$$||x||_A := ||Ax||_X$$

em D(A) são equivalentes.

Departamento de Matemática – IMECC – Unicamp Exame de Equações Diferenciais Parciais I – 09 de dezembro de 2013.

Nome:		
RA:		

- **1. Questão.** Seja Ω um aberto limitado em \mathbb{R}^n e seja $u \in C^2(\overline{\Omega})$.
- (a)(1.0) Se $-\Delta u = \lambda u$ em Ω e $u|_{\partial\Omega} = 0$ com $\lambda < 0$, então $u \equiv 0$.
- (b)(1.0) Seja $K \in \mathbb{R}$ e suponha que $u(x) \ge K$ para $x \in \partial \Omega$ e que $\Delta u \le 0$ em Ω . Mostre que $u \ge K$ em Ω .
- **2. Questão.(2.5)** Encontre a função de Green do semi-espaço $\mathbb{R}^n_+ = \{(x', x_n); x' \in \mathbb{R}^{n-1} \text{ e } x_n > 0\}$, onde $n \ge 3$. Para $g \in C_c^{\infty}(\mathbb{R}^{n-1})$, encontre a solução do problema

$$\begin{cases} \Delta u = 0, \text{ em } \mathbb{R}^n_+ \\ u = g, \text{ em } \partial \mathbb{R}^n_+ = \mathbb{R}^{n-1} \end{cases}.$$

3. Questão.(2.0) Seja $c \in \mathbb{R}, g \in C_c^{\infty}(\mathbb{R}^n)$ e $f \in C_c^{\infty}(\mathbb{R}^n \times (0, \infty))$. Encontre uma fórmula explícita para uma solução do problema

$$\begin{cases} u_t - \Delta u + cu = f(x,t), \text{ em } \mathbb{R}^n \times (0,\infty) \\ u(x,0) = g(x) \text{ em } \mathbb{R}^n \end{cases}.$$

Sugestão: Use a mudança $v = e^{ct}u$.

4. Questão.(2.5) Seja $U \subset \mathbb{R}^n$ aberto e limitado. Mostre que existe no máximo uma solução $u \in C^2(\overline{U} \times [0,\infty))$ para o problema

$$\begin{cases} u_{tt} - \Delta u = 0, \text{ em } U \times (0, \infty) \\ u = f, u_t = g, \text{ em } \overline{U} \times \{t = 0\} \\ u = 0 & \text{em } \partial U \times [0, \infty) \end{cases}.$$

5. Questão.(1.0) Seja $F \in \mathscr{S}'(\mathbb{R})$ tal que $\langle xF, \varphi \rangle = 0$, para todo $\varphi \in \mathscr{S}(\mathbb{R})$; isto é xF = 0 em $\mathscr{S}'(\mathbb{R})$. Mostre que existe $c \in \mathbb{R}$ tal que $F = c\delta_0$, onde δ_0 é a delta de Dirac em 0.

Boa Prova!

Exame de Qualificação ao Doutorado Álgebra Não Comutativa

Dezembro de 2013

- 1. Definir os conceitos a seguir: anel primitivo, anel simples, anel de divisão, anel primo. Quais são as "relações" entre esses conceitos?
- **2.** Sejam dados os R-módulos A_1 , A_2 , B_1 , B_2 , onde R é anel com unidade. Assuma que $A_1 \times A_2 \simeq B_1 \times B_2$ é um módulo Artiniano e Noetheriano e $A_1 \simeq B_1$. Mostrar que $A_2 \simeq B_2$ como R-módulos.
- 3. Enunciar e demonstrar o Teorema sobre a densidade.
- **4.** Definir o grupo de Brauer de um corpo. Em particular, definir como é feita a multiplicação e como a inversa no grupo de Brauer. Enunciar os teoremas que permitem usar essas definições.
- **5.**Seja R um anel. Descrever de duas maneiras Rad R bem como rad R.
- **6.** Seja R um anel Artiniano à direita. O que pode ser dito sobre os radicais de R (duas afirmações).

Exame Qualificação - Álgebra Comutativa - 11/12/2013

Todos os anéis considerados nesta prova são comutativos e com identidade não nula.

- 1. Responda falso ou verdadeiro a cada uma das afirmações abaixo
- a)(8pts) Se R é um anel noetheriano , S=R[X] e para todo $r\in R, \ dim_{Krull} \frac{S}{rS}\leq 1$ então $dim_{Krull}(R)\leq 1$.
- **b(8pts)** Existe $q \in \mathbb{Q}$ com $q \notin \mathbb{Z}$ tal que $\mathbb{Z}[q]$ é \mathbb{Z} -módulo finitamente gerado.
- c)(8pts) Sejam K um corpo e R = K[X] o anel de polinômios sobre K. Se existe um R-módulo finitamente gerado M tal que o seu submódulo de torção T(M) é finito e não nulo então K é um corpo finito.
- **d)(8pts)** Se (R, \mathbf{m}) é um anel local, $k = \frac{R}{\mathbf{m}}$ e M é um R- módulo de comprimento finito igual a 1, ie, l(M) = 1, então $M \otimes_R k \simeq M$.
- e)(8pts) Se num anel R um ideal não nulo admite uma decomposição primária minimal então ela é única.
- **2.** Sejam R um anel, $\varphi: R^n \to R^n$ um R-homomorfismo e $A = [\varphi]_{\mathcal{C}}$ a matriz, $n \times n$, de φ na base canônica \mathcal{C} . Seja * a seguinte afirmação:
 - (*) φ é injetora se e somente se é sobrejetora
- a)(7pts) Mostre que: i) φ é injetora se e somente se det(A) é não divisor de zero (regular) em R. ii) φ é sobrejetora se e somente se $det(A) \in R^*$ (R^* é o conjunto dos elementos invertíveis de R). Conclua que φ é sobrejetora se e somente se é bijetora.
- **b)(8pts)** Mostre que: Se R é noetheriano, Spec(R) = o conjunto dos ideais primos de R é infinito e $n \in \mathbb{N}$ então existe R-homorfismo $\varphi : R^n \to R^n$ que é injetora mas não sobrejetora.
- c)(8pts) Se R é noetheriano e $dim_{Krull}(R) \geq 2$ então em R existe um número infinito de ideais primos de altura 1.
- d)(7pts) Se R é noetheriano e satisfaz a propriedade (*) então R é semilocal (numero finito de ideais maximais) e $dim_{Krull}(R) \leq 1$. Mais ainda se R é Artiniano então R satisfaz (*).
- **3.(10pts)** Seja R um anel. **a)** Dado um ideal primo \wp de R. Defina a altura de \wp e enuncie o teorema generalizado de Krull para ideais.
- **b)(10pts)** Seja (R, \mathbf{m}) um anel local noetheriano e suponha que $\mathbf{m} = (x_1, x_2, \dots, x_n)$. Mostre que $dim_{Krull}(R) \leq n$ e mostre ainda que:
 - (**) se $dim_{Krull}(R) = n$ então: $\forall a_1, \dots, a_n \in R, y = \sum_i x_i a_i \in \mathbf{m}^2 \iff a_1, \dots, a_n \in \mathbf{m}$
- **c**)(10pts) Aqui suponha que R = K[X,Y] anel de polinômios em 2 variáveis sobre um corpo K e que $I = (X^2 Y^2)$ é o ideal principal gerado por $f(X,Y) = X^2 Y^2$. Chame $\overline{R} = \frac{R}{I} = K[x,y]$, onde x = X + I e y = Y + I e $\overline{\mathbf{m}} = (x,y)$ o ideal maximal de \overline{R} gerado por x,y. Mostre que: $dim_{Krull}(\overline{R}) = 1$, a altura de $\overline{\mathbf{m}}$ é 1 e que $\overline{\mathbf{m}}\overline{R}_{\overline{\mathbf{m}}} = (x,y)\overline{R}_{\overline{\mathbf{m}}}$ satisfaz:
- $\forall \ a, b \in \overline{R}_{\overline{\mathbf{m}}}, \ ax + by \in \overline{\mathbf{m}}^2 \overline{R}_{\overline{\mathbf{m}}} \Longleftrightarrow a, b \in \overline{\mathbf{m}} \overline{R}_{\overline{\mathbf{m}}} \text{ (ie, a reciproca de (**) não é verdadeira)}$
- (Sugestão para a ultima parte de c) verifique que $\alpha \in \overline{R}$ se e somente se existem únicos $g(y), h(y) \in K[y]$ tal que $\alpha = xg(y) + h(y)$ e conclua que y é regular em \overline{R})

Boa Prova

ATENÇÃO: Não é permitido destacar as folhas

Exame Qualificação Dezembro 2013 - Grupos de Lie.

NOME:	R.A:
NOME:	IUA

Incluir na prova todas as contas feitas nas resoluções. Respostas não acompanhadas de argumentos que as justifiquem não serão consideradas.

Bom Trabalho!

Escolha 5 questões das abaixo

1) Seja G um grupo de Lie conexo então

$$Ker(Ad) = Cent(G) = \{g \in G, gh = hg \ \forall h \in G\}$$

- 2) Seja H um subgrupo de Lie de G e denote por \mathfrak{h} sua álegebra de Lie. Se $gHg^{-1}\subset H$ então $\mathrm{Ad}(g)\mathfrak{h}=\mathfrak{h}$.
- 3) Seja G um grupo de Lie conexo e smiplesmente conexo e H um subgrupo discreto e normal. Então H isomorfo a $\pi_1(G/H)$.
- 4) Seja G um grupo de Lie nilpotente e conexo e $\mathfrak g$ sua álgebra de Lie. Então exp: $\mathfrak g \to G$ uma aplicação de recobrimento.
- 5) Seja G um grupo de Lie conexo e simplesmente conexo com Álgebra de Lie \mathfrak{g} . Seja [G,G] o subgrupo gerado pelos elementos da forma $ghg^{-1}h^{-1}$ com $g,\ h\in G$. Mostrar que [G,G] é um subgrupo de Lie normal, fechado com álgebra de Lie dada por $[\mathfrak{g},\mathfrak{g}]$
- 6) Dado um grupo de Lie conexo e simplesmente conexo \widetilde{G} sejam $G_1 = \widetilde{G}/\Gamma_1$ e $G_2 = \widetilde{G}/\Gamma_2$ com $\Gamma_1, \Gamma_2 \subset \widetilde{G}$ subgrupos discretos centrais de \widetilde{G} . Mostre que G_1 é isomorfo a G_2 se, e só se, existe um automorfismo diferenciável ϕ de \widetilde{G} tal que ϕ (Γ_1) = Γ_2 .
- 7) Seja G um grupo conexo, simplesmente conexo e compacto com álgebra de Lie \mathfrak{g} . Mostre que o grupo dos automorfismos Aut (\mathfrak{g}) de \mathfrak{g} é compacto.

1	2	3	4	5	6	Σ

ATENÇÃO: Não é permitido destacar as folhas

Exame Qualificação Dezembro 2013 - Geometria Riemanniana.

NOME:	TD A
IN CHIVI H:	RA:
T 1 O TATTO:	

Incluir na prova todas as contas feitas nas resoluções. Respostas não acompanhadas de argumentos que as justifiquem não serão consideradas.

Bom Trabalho!

- 1) (2,0 pts.) Uma geodésica normal $\gamma:[0,\infty)\to M$ é dita um raio se $d(\gamma(0),\gamma(t))=t$. Mostre que se M não é compacta então para cada $p\in M$ existe um raio começãndo em p. Determine os raios de $S^n\times\mathbb{R}$ com a métrica produto canônica. Existem raios em variedades compactas?
- 2) (2,0 pts.) Seja $V = \{(r,\theta) \in \mathbb{R}^2, \ 0 < r < \infty \ -\epsilon < \theta < 2\pi + \epsilon\} \text{ e } \phi : V \to \mathbb{R}^3 \text{ definido por } \phi(r,\theta) = (r\cos(\theta),r\sin(\theta),r^2).$

Considere sobre $M = \phi(V)$ a métrica induzida por \mathbb{R}^3 . Determine a equação da geodésica passando por (1,0,1) com vetor tangente (1,0,2).

- 3) (1,0 pts.) É possível munir ao Toro $T^n=S^1\times\cdots\times S^1$ com uma métrica de curvatura de Ricci positiva?. Justifique.
- 4) (1,0 pts.) Seja $p \in M$ e $\gamma:[0,a] \to M$ uma geodésica com $\gamma(0)=p$ e $\gamma'(0)=v$. Seja $w \in T_v(T_pM)$ com ||w||=1. Mostre que

$$J(t) = (d \exp_p)_{tv}(tw) \qquad 0 \le t \le a$$

é um campo de Jacobi.

- 5) (2,0 pts.) Sejam M_1 e M_2 duas variedades Riemannianas completas de igual dimensão e $\gamma_i:[0,1]\to M_i$ (i=1,2) duas geodésicas parametrizadas pelo comprimento de arco. Assuma que $K_{M_1} < K_{M_2}$. Quais das seguintes afirmações é válida?
 - a) $\operatorname{Ind}(\gamma_1)$ e $\operatorname{Ind}(\gamma_2)$ não são comparáveis.
 - b) $\operatorname{Ind}(\gamma_1) \leq \operatorname{Ind}(\gamma_2)$
 - c) $\operatorname{Ind}(\gamma_2) \leq \operatorname{Ind}(\gamma_1)$

Justifique.

6) (2,0 pts.) Para quais valores de n temos que $S^3 \times \mathbb{R}P^n$ admite uma métrica com curvatura seccional positiva?. Justifique.

MM439 - 2S 2013 - Exame de Qualificação

Nome:	RA:

Em todas as questões, \mathfrak{g} denota uma álgebra de Lie de dimensão finita sobre um corpo \mathbb{K} algebricamente fechado de característica zero. Escolha questões cujo total de pontos possíveis não exceda 10,5 (existem 12 disponíveis). Respostas sem justificativas serão desconsideradas. Bom trabalho!

- 1. (1,0) Enuncie o teorema de Levi e encontre uma decomposição de Levi para \mathfrak{gl}_n .
- 2. (0,8) Seja \mathfrak{h} a sub-álgebra de \mathfrak{gl}_2 das matrizes triangulares superiores. Calcule a matriz da forma de Killing de \mathfrak{h} com relação a uma base de \mathfrak{h} .
- 3. Determine se cada uma das afirmações abaixo é verdadeira ou falsa.
 - (a) (0,8) Se g for nilpotente, então g possui ideal de codimensão 1.
 - (b) (0,8) Os elementos de uma subálgebra nilpotente de uma álgebra de Lie semissimples são ad-nilpotentes.
 - (c) (0,8) Se $\phi : \mathfrak{a} \to \mathfrak{b}$ é um homorfismo de álgebras de Lie de dimensão finita e \mathfrak{c} é subálgebra de Cartan de \mathfrak{a} , então $\phi(\mathfrak{c})$ é subálgebra de Cartan de \mathfrak{b} .
 - (d) (0,8) Se Δ é base de um siatema de raízes $R, \alpha \in \Delta$ e $\sigma \in \mathcal{W}$ são tais que $\ell(\sigma_{\alpha}\sigma) = \ell(\sigma) + 1$, então $\sigma^{-1}(\alpha) \in R^+$.
 - (e) (0,8) Existe uma álgebra de Lie semissimples de dimensão 7.
 - (f) (0,8) Se \mathfrak{g} é semissimples e V é um \mathfrak{g} -módulo de dimensão finita tal que $V=U(\mathfrak{g})v$ para algum $v\in V$, então V é irredutível.
- 4. Suponha que $\Delta = \{\alpha_1, \alpha_2\}$ seja uma base de um siustema de raízes R e que as outras raízes positivas de R sejam $\alpha_1 + \alpha_2$ e $\alpha_1 + 2\alpha_2$.
 - (a) (0.8) Determine a matriz de Cartan de R.
 - (b) (0.8) Encontre todas as outras bases de R.
- 5. Suponha que $\mathfrak{g} = \mathfrak{sl}_3$.
 - (a) (0,8) Descreva duas subálgebras de Borel distintas contendo a mesma subálgebra de Cartan.
 - (b) (1,0) Descreva duas subálgebras de Cartan distintas.
- 6. Para cada inteiro não negativo m, considere uma representação irredutível V(m) de $\mathfrak{g} = \mathfrak{sl}_2$ de dimensão m+1. Sejam V e W representações de \mathfrak{g} .
 - (a) (1,0) Demonstre a fórmula $V(m) \otimes V(n) \cong \bigoplus_{j=0}^k V(m+n-2j)$, onde $k = \min\{m,n\}$.
 - (b) (1,0) Mostre que existe um isomorfismo de \mathfrak{g} -módulos $V(m)^* \cong V(m)$.