Exame de Qualificação do Doutorado Análise Funcional - 21/07/2010 DM - IMECC - UNICAMP

Questão 1. Seja E um espaço normado e seja M um subespaço vetorial fechado de E. Demonstre que M é fechado em E para a topologia fraca.

Questão 2. Seja E um espaço de Banach e seja $(\varphi_j)_{j=1}^{\infty}$, $\varphi_j \in E'$ para $j \geq 1$, tal que para qualquer $x \in E$,

$$\sup_{j} |\varphi_j(x)| < \infty.$$

Seja $T: E \to l_{\infty}$ definido por

$$T(x) = (\varphi_j(x))_{j=1}^{\infty}, \ \forall x \in E.$$

Demonstre que T é linear e contínuo.

Questão 3. Seja $S: l_2 \rightarrow l_2$ definido por

$$S(\xi_1, \xi_2, \xi_3, \xi_4, \ldots) = (\xi_3, \xi_4, \xi_5, \xi_6, \ldots).$$

- (a) Demonstre que $S \in L(l_2, l_2)$.
- (b) Demonstre que cada $\lambda \in \mathbb{C}$ com $|\lambda| < 1$ é um autovalor de S de multiplicidade 2.
- (c) Demonstre que $\lambda \in \sigma(T)$ (espectro do operador T) se e só se $|\lambda| \leq 1$.

Questão 4. Sejam E um espaço de Hilbert, M um subespaço vetorial fechado de E e $x \in E \backslash M$. Demonstre que **existe um único** $y \in M$ tal que

$$||x - y|| = d(x, M) = \inf_{z \in M} ||x - z||.$$

Sugestão: Use a Lei do Paralelogramo.

Questão 5. Seja F um espaço de Banach e seja $T \in L(F, l_1)$ um operador sobrejetivo.

- (a) Demonstre que existe uma sequência limitada $(y_n)_{n=1}^{\infty}$ de elementos de F tal que $Ty_n = e_n$, $\forall n \in \mathbb{N}$, onde $e_n = (0, 0, \dots, 0, 1, 0, 0, \dots)$ (o n-ésimo termo igual a 1 e os demais termos iguais a zero)
- (b) Demonstre que existe um operador $S \in L(l_1, F)$ tal que $Se_n = y_n, \forall n \in \mathbb{N}$.
- (c) Demonstre que $T(Sx) = x, \forall x \in l_1$.

Sugestão: Em (a) use o Teorema da Aplicação Aberta.

Exame de Qualificação ao Doutorado 14/07/2010Geometria Riemanniana

 $M^n \approx (M, F, \langle, \rangle, \nabla)$, conexa e munida da conexão de Levi-Civita ou Riemanniana ∇ e $\gamma: [0,1] \to M$ uma geodésica.

M é dita simétrica se para cada $p \in M$, existe uma isometria $I_p : M \to M$ tal que se $\gamma(0) = p$ então $I_p(\gamma(t)) = \gamma(-t)$.

.1^a Questão:

Seja M simétrica. Mostre que:

- a) M é completa, $I_p \circ I_q$ preserva campos paralelos ao longo de γ e I_p é única.
- b) Se U, V e W são campos paralelos ao longo de γ então R(U, V)W é também paralelo ao longo de γ .

2^a Questão:

Seja $\gamma:[0,\infty)\to M$ uma geodésica normal. Ela será chamada de **raio** se $d(\gamma(0),\gamma(t))=t$. Prove que se M não for compacta então para cada $p\in M$ existe um raio começando em p. Quais são os raios de $S^1\times R$?

3^a Questão:

 $\gamma_{\tau} = \gamma \mid_{[0,\tau]} [0,\tau] \to M$. Considere $i(\tau)$ como sendo o índice de $E(\gamma_{\tau})$. Prove que:

- a) $i(\tau)$ é uma função monótona não-decrescente em τ .
- b) $i(1) = \text{indice de } \gamma \in \infty$.
- c) Se $K_M = 0$ então o recobrimento universal \widetilde{M} de M é isométrico à \mathbb{R}^n . Justifique através de um exemplo que M pode não ser nem homeomorfa a \mathbb{R}^n .

4^a Questão:

Considere a variedade diferenciável $Q = G_6(R^9)xS^2 \times T^2$,. Podemos torná-la uma variedade Riemanniana completa? Como? Caso possamos colocar uma métrica Riemannianas completa em Q será que podemos ter $K_Q \ge 1$?

5^a Questão:

Considere $E(\gamma): \Omega_{\gamma} \times \Omega_{\gamma} \to R$. Prove que:

- a) Se $\gamma:[0,1]\to M$ uma geodésica minimal ligando $p=\gamma(0)$ à $q=\gamma(1)$ então o índice de $E'(\gamma)$ é 0.
- b) A nulidade de $E'(\gamma)$ é $\leq n-1$.
- c) Encontre M e γ onde $E(\gamma) = n 1$. Justifique a sua resposta.

Exame de Qualificação: Grupos de Lie

14/julho/2010

Escolha 5 dentre as 7 questões abaixo.

- 1. Seja G um grupo de Lie. Mostre que existe uma vizinhança V do elemento neutro 1 que não contém nenhum subgrupo de G. Vale para grupos topológicos? Dado G conexo, mostre que se V for uma vizinhança de 1 então G é gerado por V, i.e. $G = \bigcup_{n \geq 1} V^{(n)}$. Conclua que se um subgrupo $H \subset G$ de um grupo conexo tem interior não vazio então H = G.
- 2. A forma de Cartan-Killing de uma álgebra de Lie \underline{g} é dada por $< X,Y>=tr(ad(X)\circ ad(Y))$ para elementos $X,Y\in \underline{g}$. Mostre que um automorfismo ϕ em \underline{g} sempre preserva essa 2-forma. Mostre que toda derivação D em \underline{g} é anti-simétrica em relação à forma de Cartan-Killing.
- 3. Seja $H \subset G$ um subgrupo de Lie conexo. Mostre que H é normal em seu fecho feH. Dê um exemplo.
- 4. Seja G um grupo de Lie conexo e H um subgrupo fechado. Seja também K um subgrupo compacto e suponha que $\dim K \dim(K \cap H) = \dim G/H$. Mostre que K age transitivamente em G/H.
- 5. Seja \underline{g} uma álgebra de Lie e denote por \widetilde{G} o grupo de Lie conexo e simplesmente conexo cuja álgebra de Lie é \underline{g} . Mostre que o grupo dos automorfismos de \widetilde{G} é isomorfo a $\operatorname{Aut}(g)$.
- 6. a) Seja g(t), $t \in \mathbf{R}$, uma curva diferenciável em um grupo de Lie G. Verifique que existe uma única curva A(t) na álgebra de Lie de G tal que $g'(t) = R_{g(t)*}A(t)$.
 - b) Use o item acima para mostrar que $e^{tA}e^{tB}=e^{t(A+B)}$ se e somente se o colchete [A,B]=0.
 - c) Use os itens acima para mostrar que se [A,[A,B]]=[B,[A,B]]=0 então

 $e^{tA}e^{tB} = e^{t(A+B) + \frac{t^2}{2}[B,A]}.$

7. Seja G um grupo de Lie compacto e \underline{g} sua álgebra de Lie correspondente. Mostre que os autovalores de $ad(\overline{X}), \ X \in \underline{g}$ são imaginários puros. Conclua que a forma de Cartan-Killing $< X, \overline{Y} > = tr(ad(X) \circ ad(Y))$ de \underline{g} é negativa semidefinida.

Álgebra Comutativa (MM427)-1S 2010-Exame de Qualificação-Doutorado

Nome:	$PA \cdot$	16/07/2010
Nome:	_ na: _	10/07/2010

Em todas as questões a palavra "anel" significa anel comutativo com identidade não nula. Todo módulo é um módulo (unitário) sobre um anel. Sistemas multiplicativos não contém o zero. Escolha questões de modo que o total de pontos possíveis seja 100. Respostas sem justificativas não serão consideradas. Bom trabalho!

- 1. Determine se cada uma das afirmações abaixo é verdadeira ou falsa.
 - (a) (06pts) Se um ideal I de um anel R possui um idempotente não nulo e ($e^2 = e$), então existe um ideal maximal de R que não contem I.
 - (b) (06pts) Todo módulo livre é livre de torção.
 - (c) (06pts) Se $f: A \to B$ é homomorfismo de anéis, S é sistema multiplicativo (subsemigrupo) de A e T = f(S), então $(S^{-1}A) \otimes_A B$ é isomorfo a $T^{-1}B$.
 - (d) (06pts) Sejam R um anel e I,J dois ideais próprios de R tal que I+J=R. Se $\frac{R}{I}$ e $\frac{R}{J}$ são Noetherianos então R também é.
 - (e) (06pts) O conjunto dos divisores de zero de um anel é igual à união de seus ideais primos minimais.
 - (f) (06pts) Se $A \subseteq B$ é uma extensão de anéis e Q, Q' são ideais primos de B satisfazendo $Q \subseteq Q'$ e $Q \cap A = Q' \cap A$, então Q = Q'.
- 2. Dado um anel R, suponha que M e N sejam dois R-módulos finitamente gerados tais que $M \otimes_R N = 0$.
 - (a) (06pts) Prove que se R é um corpo, então M=0 ou N=0.
 - (b) (04pts) Para R um anel qualquer a afirmação do item (a) continua valendo?
 - (c) (06pts) Mostre que o item (a) também vale caso R seja um anel local.
- 3. Sejam M um módulo simples (M tem exatamente dois submódulos) do anel R, I um ideal de R e denote por rad(R) o radical de Jacobson de R.
 - (a) (06pts) Demonstre que $\{r \in R : rM = 0\}$ é um ideal maximal de R.
 - (b) (09pts) Mostre que: $I \subset \operatorname{rad}(R)$ se e somente se IN = 0 para todo R-módulo simples N.
- 4. (10pts) Calcule a dimensão de Krull do anel k[x, y, z, w]/I onde k é um corpo e $I = (x y, z^2 w)$.
- 5. Seja R um anel local com ideal maximal m. Seja também A um anel que é um R-módulo finitamente gerado e denote por rad(A) o radical de Jacobson de A. Demonstre que:
 - (a) (06pts) O anel quociente A/mA é artiniano;
 - (b) (06pts) $mA \subseteq \operatorname{rad}(A)$;
 - (c) (06pts) Existe $n \ge 1$ tal que rad $(A)^n \subset mA$.
- 6. (10pts) Seja um anel $A\subseteq B$ uma extensão de anéis tal que B é um domínio de integridade e é finitamente gerado como A-módulo. Suponha que para todo ideal próprio I de B vale $I\cap A=\{0\}$. Mostre que B é um corpo.
- 7. (a) (06pts) Enuncie o teorema de Krull para ideal principal de um anel.
 - (b) (09pts) Mostre que: se R é um anel noetheriano, $I \subset R$ é um ideal que admite duas decomposições primárias minimais distintas e $\overline{R} = \frac{R}{I}$ então existe $a \in R$ tal que $\overline{a} = a + I$ é divisor de zero de \overline{R} e todo ideal primo minimal de $\overline{a}\overline{R}$ tem altura 1.

Exame de Qualificação ao Doutorado Primeiro semestre de 2010 Introdução à Topologia Algébrica 14/07/2010

Nome:

R.A.:

Assinatura:

Responder todas as questões. As respostas das Verdadeiro ou Falso devem ser justificadas.

O valor de cada questão está assinalado em parénteses.

- 1. (a) (1,0) Enuncie o Teorema de van Kampen.
- (b) (1,0) Seja $X \subset \mathbb{R}^3$ a união de 4 retas distintas, todas passando pela orígem. Calcule $\pi_1(\mathbb{R}^3 \setminus X)$.
- 2. (2,0) (**V ou F**) Se $\mathbb{Q}^2 = \mathbb{Q} \times \mathbb{Q} \subset \mathbb{R}^2$, onde \mathbb{Q} é o conjunto dos números racionais, então o grupo $\pi_1(\mathbb{R}^2 \setminus \mathbb{Q}^2)$ não é enumerável.
- 3. (2,0) Seja H(p), resp., N(q), superfície orientável de gênero p, resp., q. Calcule os grupos de homologia com coefficientes inteiros de H(p), resp., N(q) com $p \geq 0$, $q \geq 1$. Faça o mesmo para a soma conexa H(p) # N(q), $q \geq 1$.
- 4. (2,0) (**V ouF**) Existe um CW complexo 4 dimensional, X, com $\pi_1(X) = \mathbb{Z}_3$, cujo recobrimento universal é a esfera S^4 .
 - 5. (2,0) Considere os dois fibrados principais com grupo-fibra $SO(2) = S^1$:
 - (a) A fibração de Hopf, $S^1 \cdots S^3 \longrightarrow S^2$
- (b) $SO(2)\cdots SO(3)\longrightarrow S^2$ (projeção na primeira coluna) e a porção da sequência exata de homotopia de cada um deles $\cdots \pi_2(S^2) \stackrel{\partial}{\longrightarrow} \pi_1(S^1) \longrightarrow \cdots$ onde ambos os grupos são isomorfos a \mathbb{Z} . Qual é a imagem $\partial(1)$ no caso (a), resp., (b)?
- 6. (2,0) (**V ou F**) Dada qualquer aplicação contínua $f: S^3/\mathbb{Z}_3 \longrightarrow S^5/\mathbb{Z}_5$, então f é homotópica à uma constante.
- 7. (**V ou F**) (1,0) (i) $\mathbb{C}P^2$ é homeomorfo a $S^2 \times S^2$ ou a $\mathbb{C}P^1 \times \mathbb{C}P^1$ ou a HP^1 .
- $(1,0) \text{ (ii) } S^4 \text{ \'e homeomorfo a } HP^1, \, S^3 \times S^1 \text{ ou a } S^2 \times \mathbb{C}P^1.$ $(1,0) \text{ (iii) } \mathbb{R}P^3 \text{ \'e homeomorfo a } SO(3), \, \mathbb{R}P^2 \times \mathbb{R}P^1 \text{ ou a } S^1 \times S^1 \times S^1.$