

Exame de Bolsas 2022

Programa de Pós–Graduação em Matemática Aplicada 12 de dezembro de **2022**

Código de Identificação:	
Codigo de Identificação:	

Questões	Notas
Q1	
Q2	
Q3	
Q4	
Q5	
Q6	
Q7	
Q8	
Total	

- Desligue o celular.
- $\bullet~{\bf N\tilde{A}O}$ retire o grampo da prova nem destaque páginas da prova.
- Faça uma leitura com muita atenção do enunciado de todas as questões. Todas as questões têm a mesma pontuação.
- A prova tem duração de quatro horas.
- \bullet Respostas sem justificativas ${\bf N\tilde{A}O}$ serão consideradas.

Boa prova!

Q1. O plano 4x+9y+z=0 intercepta o parabolóide elíptico $z=2x^2+3y^2$ em uma elípse. Determine os pontos mais alto e mais baixo nessa elípse.

${f Q2.}$ Considere a função

$$f(x) = \begin{cases} x \operatorname{sen}\left(\frac{1}{x}\right) &, \text{ se } x \neq 0 \\ 0 &, \text{ se } x = 0. \end{cases}$$

- a) Em quais pontos do domínio a função f é contínua?
- b) Em quais pontos do domínio a função f é diferenciável?

Q3. Definimos a exponencial de uma matriz real $A, n \times n$ por

$$e^{A} = \sum_{k=0}^{+\infty} \frac{1}{k!} A^{k}, \tag{1}$$

com a convenção de que $e^0=I_n$. Mostre que a série de potências (1) é convergente para qualquer A.

 ${\bf Q4.}$ Considere a equação diferencial ordinária

$$(3 - x^2)y'' - 3xy' - y = 0 (2)$$

- a) Mostre que x = 0 é um ponto ordinário para (2).
- b) Determine a fórmula de recorrência da solução em série de (2).
- c) Determine a fórmula para o coeficiente geral da solução de (2).
- d) Encontre a solução por série de potências de (2) em termos de x=0, dado que y(0)=2 e y'(0)=3

$\mathbf{Q5.}$ Considere o sistema linear:

$$S: \left\{ \begin{array}{cccccc} x & + & y & - & z & = & 0 \\ x & - & 3y & + & z & = & 1 \\ & - & 2y & + & bz & = & a \end{array} \right..$$

Determine os valores de a e b de modo que S tenha:

- a) Solução única.
- b) Infinitas soluções.
- c) Nenhuma solução.

Q6. Seja
$$T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$$
 dada por $T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

- a) Obter $T \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
- b) Verifique se o operador definido em a) é injetor. Podemos afirmar que ele é sobrejetor? Justifique.

Q7. Uma matriz A, de ordem n, é dita ortogonal quando $AA^t=I_n$. Mostre que $det A=\pm 1$ sempre que A for ortogonal.

Q8. Seja $P_2(\mathbb{R})$ o espaço dos polinômios reais de grau menor ou igual a dois. Considere o operador linear $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ dado por

$$Tp(x) = p(x) + (1+x)p'(x), \quad \forall x \in \mathbb{R}.$$

Determine os autovalores de T.