A NOTE ON THE NUMBER OF NODAL SOLUTIONS OF AN ELLIPTIC EQUATION WITH SYMMETRY

MARCELO F. FURTADO

ABSTRACT. We consider the semilinear problem

\(- \Delta u + \lambda u = |u|^{p-2}u \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega\)

where \(\Omega \subset \mathbb{R}^N\) is a bounded smooth domain and \(2 < p < 2^* = 2N/(N-2)\). We show that if \(\Omega\) is invariant by a nontrivial orthogonal involution then, for \(\lambda > 0\) sufficiently large, the equivariant topology of \(\Omega\) is related with the number of solutions which change sign exactly once.

1. INTRODUCTION

Consider the problem

\((P_\lambda)\)

\[- \Delta u + \lambda u = |u|^{p-2}u \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega,\]

where \(\Omega \subset \mathbb{R}^N\) is a bounded smooth domain and \(2 < p < 2^* = 2N/(N-2)\). It is well known that it possesses infinitely many solutions. However, when we require some properties of the sign of the solutions, the problem seems to be more complicated. In the paper [1], Benci and Cerami showed that, if \(\lambda\) is sufficiently large, then \((P_\lambda)\) has at least \(\text{cat}(\Omega)\) positive solutions, where \(\text{cat}(\Omega)\) denotes the Lusternik-Schnirelmann category of \(\Omega\) in itself. Since the work [1], multiplicity results for \((P_\lambda)\) involving the category have been intensively studied (see [2, 3, 4] for subcritical, and [5, 6, 7] for critical nonlinearities).

In the aforementioned works, the authors considered positive solutions. In [8], Bartsch obtained infinite nodal solutions for \((P_\lambda)\), that is, solutions which change sign. Motivated by this work and for a recent paper of Castro and Clapp [9], we are interested in relating the topology of \(\Omega\) with the number of solutions which change sign exactly once. This means that the solution \(u\) is such that \(\Omega \setminus u^{-1}(0)\) has exactly two connected components, \(u\) is positive in one of them and negative in the other. We deal with the problem

\[(P^\tau_\lambda)\]

\[
\begin{align*}
- \Delta u + \lambda u &= |u|^{p-2}u, & \text{in } \Omega, \\
\quad u &= 0, & \text{on } \partial \Omega, \\
\quad u(\tau x) &= -u(x), & \text{for all } x \in \Omega,
\end{align*}
\]

where \(\tau : \mathbb{R}^N \to \mathbb{R}^N\) is a linear orthogonal transformation such that \(\tau \neq \text{Id}\), \(\tau^2 = \text{Id}\), and \(\Omega \subset \mathbb{R}^N\) is a bounded smooth domain such that \(\tau \Omega = \Omega\). Our main result can be stated as follows.

Key words and phrases. Nodal solutions, equivariant category, symmetry.

The author was supported by CAPES/Brazil.

1
Theorem 1.1. For any \(p \in (2, 2^*) \) fixed there exists \(\overline{\lambda} = \overline{\lambda}(p) \) such that, for all \(\lambda > \overline{\lambda} \), the problem \((P_\lambda^*)\) has at least \(\tau\text{-cat}_\Omega(\Omega \setminus \Omega^\tau) \) pairs of solutions which change sign exactly once.

Here, \(\Omega^\tau = \{ x \in \Omega : \tau x = x \} \) and \(\tau\text{-cat} \) is the \(G_\tau \)-equivariant Lusternik-Schnirelmann category for the group \(G_\tau = \{ \text{Id}, \tau \} \). There are several situations where the equivariant category turns out to be larger than the nonequivariant one. The classical example is the unit sphere \(S^{N-1} \subset \mathbb{R}^N \) with \(\tau = -\text{Id} \). In this case \(\text{cat}(S^{N-1}) = 2 \) whereas \(\tau\text{-cat}(S^{N-1}) = N \). Thus, as an easy consequence of Theorem 1.1 we have

Corollary 1.2. Let \(\Omega \) be symmetric with respect to the origin and such that \(0 \notin \Omega \). Assume further that there is an odd map \(\varphi : S^{N-1} \to \Omega \). Then, for any \(p \in (2, 2^*) \) fixed there exists \(\lambda = \lambda(p) \) such that, for all \(\lambda > \lambda \), the problem \((P_\lambda)\) has at least \(N \) pairs of odd solutions which change sign exactly once.

The above results complement those of [9] where the authors considered the critical semilinear problem

\[
-\Delta u = \lambda u + |u|^{2^*-2}u, \quad u \in H^1_0(\Omega), \quad u(\tau x) = -u(x) \quad \text{in} \quad \Omega,
\]

and obtained the same results for \(\lambda > 0 \) small enough. It also complement the aforementioned works that deal only with positive solutions. We finally note that Theorem 1.1 also holds if \(\lambda \geq 0 \) is fixed and the exponent \(p \) is sufficiently close to \(2^* \) (see Remark 3.2).

2. Notations and Some Technical Results

Throughout this paper, we denote by \(H \) the Hilbert space \(H^1_0(\Omega) \) endowed with the norm \(\| u \| = \left\{ \int_\Omega |\nabla u|^2 \, dx \right\}^{1/2} \). The involution \(\tau \) of \(\Omega \) induces an involution of \(H \), which we also denote by \(\tau \), in the following way: for each \(u \in H \) we define \(\tau u \in H \) by

\[
(\tau u)(x) = -u(\tau x). \tag{2.1}
\]

We denote by \(H^\tau = \{ u \in H : \tau u = u \} \) the subspace of \(\tau \)-invariant functions.

Let \(E_\lambda : H \to \mathbb{R} \) be given by

\[
E_\lambda(u) = \frac{1}{2} \int_\Omega (|\nabla u|^2 + \lambda u^2) \, dx - \frac{1}{p} \int_\Omega |u|^p \, dx,
\]

and its associated Nehari manifold

\[
N_\lambda = \{ u \in H \setminus \{ 0 \} : \langle E_\lambda'(u), u \rangle = 0 \} = \{ u \in H \setminus \{ 0 \} : \| u \|^2 + \lambda |u|^2_2 = |u|^p_2 \}
\]

where \(|u|_s \) denote the \(L^s(\Omega) \)-norm for \(s \geq 1 \). In order to obtain \(\tau \)-invariant solutions, we will look for critical points of \(E_\lambda \) restricted to the \(\tau \)-invariant Nehari manifold

\[
N^\tau_\lambda = \{ u \in N_\lambda : \tau u = u \} = N_\lambda \cap H^\tau,
\]
by considering the following minimization problems

\[m_\lambda = \inf_{u \in \mathcal{N}_\lambda} E_\lambda(u) \text{ and } m_\lambda^* = \inf_{u \in \mathcal{N}_\lambda^*} E_\lambda(u). \]

For any \(\tau \)-invariant bounded domain \(D \subset \mathbb{R}^N \) we define \(E_{\lambda,D}, \mathcal{N}_{\lambda,D}, \mathcal{N}_{\lambda,D}^* \), \(m_{\lambda,D} \) and \(m_{\lambda,D}^* \) in the same way by taking the above integrals over \(D \) instead \(\Omega \). For simplicity, we use only \(m_{\lambda,r} \) and \(m_{\lambda,r}^* \) to denote \(m_{\lambda,B_r(0)} \) and \(m_{\lambda,B_r(0)}^* \) respectively.

Lemma 2.1. For any \(\lambda \geq 0 \), we have that \(2m_\lambda \leq m_\lambda^* \).

Proof. Note that, if \(u \in H^\tau \) is positive in some subset \(A \subset \Omega \), we can use (2.1) to conclude that \(u \) is negative in \(\tau(A) \). Thus, for any given \(u \in \mathcal{N}_\lambda^* \), we have that \(u^+, u^- \in \mathcal{N}_\lambda \), where \(u^\pm = \max\{ \pm u, 0 \} \). Hence \(E_\lambda(u) = E_\lambda(u^+) + E_\lambda(u^-) \geq 2m_\lambda \), and the result follows. □

Lemma 2.2. If \(u \) is a critical point of \(E_\lambda \) restricted to \(\mathcal{N}_\lambda^* \), then \(E_\lambda^*(u) = 0 \) in the dual space of \(H \).

Proof. By the Lagrange multiplier rule, there exits \(\theta \in \mathbb{R} \) such that

\[\langle E'_\lambda(u) - \theta J'_\lambda(u), \phi \rangle = 0, \]

for all \(\phi \in H^\tau \), where \(J_\lambda(u) = \|u\|^2 + \lambda|u|^2 - |u|^p \). Since \(u \in \mathcal{N}_\lambda^* \), we have

\[0 = \langle E'_\lambda(u), u \rangle - \theta \langle J'_\lambda(u), u \rangle = \theta(p - 2)|u|^p. \]

This implies \(\theta = 0 \) and therefore \(\langle E'_\lambda(u), \phi \rangle = 0 \) for all \(\phi \in H^\tau \). The result follows from the principle of symmetric criticality [10] (see also [11, Theorem 1.28]). □

By standard regularity theory we know that if \(u \) is a solution of \((P_\lambda) \), then it is of class \(C^1 \). We say it changes sign \(k \) times if the set \(\{ x \in \Omega : u(x) \neq 0 \} \) has \(k + 1 \) connected components. By (2.1), if \(u \) is a nontrivial solution of problem \((P_\lambda^*) \) then it changes sign an odd number of times.

Lemma 2.3. If \(u \) is a solution of problem \((P_\lambda^*) \) which changes sign \(2k - 1 \) times, then \(E_\lambda(u) \geq km_\lambda^* \).

Proof. The set \(\{ x \in \Omega : u(x) > 0 \} \) has \(k \) connected components \(A_1, \ldots, A_k \). Let \(u_i(x) = u(x) \) if \(x \in A_i \cup \tau A_i \) and \(u_i(x) = 0 \), otherwise. We have that

\[0 = \langle E'_\lambda(u), u_i \rangle = \int_{\Omega} (\nabla u \nabla u_i + \lambda uu_i - |u|^{p-2}uu_i) \, dx = \|u_i\|^2 + \lambda|u_i|^2 - |u_i|^p. \]

Thus, \(u_i \in \mathcal{N}_\lambda^* \) for all \(i = 1, \ldots, k \), and \(E_\lambda(u) = E_\lambda(u_1) + \cdots + E_\lambda(u_k) \geq km_\lambda^* \), as desired. □

We recall now some facts about equivariant Lusternik-Schnirelmann theory. An involution on a topological space \(X \) is a continuous function \(\tau_X : X \to X \) such that \(\tau_X^2 \) is the identity map of \(X \). A subset \(A \) of \(X \) is called \(\tau_X \)-invariant if \(\tau_X(A) = A \). If \(X \) and \(Y \) are topological spaces equipped with involutions \(\tau_X \) and \(\tau_Y \) respectively, then an equivariant map is a continuous function
f : X → Y such that f ◦ τX = τY ◦ f. Two equivariant maps \(f_0, f_1 : X \to Y \) are equivariantly homotopic if there is an homotopy \(\Theta : X \times [0, 1] \to Y \) such that \(\Theta(x, 0) = f_0(x), \Theta(x, 1) = f_1(x) \) and \(\Theta(\tau_X(x), t) = \tau_Y(\Theta(x, t)) \), for all \(x \in X, t \in [0, 1] \).

Definition 2.4. The equivariant category of an equivariant map \(f : X \to Y \), denoted by \((\tau_X, \tau_Y)\)-cat\((f)\), is the smallest number \(k \) of open invariant subsets \(X_1, \ldots, X_k \) of \(X \) which cover \(X \) and which have the property that, for each \(i \in \{ \text{cat} \tau \} \)

\[\Theta : X_1, \ldots, X_k \to X \text{ is an homotopy} \]

\[\Theta(x, 0) = x, \Theta(x, 1) = \tau_X(x) \]

\[\text{for every } x \in X, t \in [0, 1]. \]

If no such covering exists we define \((\tau_X, \tau_Y)\)-cat\((f)\) = \(\infty \).

The following properties can be verified.

Lemma 2.5. (i) If \(f : X \to Y \) and \(h : Y \to Z \) are equivariant maps then

\[(\tau_X, \tau_Z)\)-cat\((h \circ f) \leq \tau_Z\)-cat\((Y) \).

(ii) If \(f_0, f_1 : X \to Y \) are equivariantly homotopic, then \((\tau_X, \tau_Y)\)-cat\((f_0) = (\tau_X, \tau_Y)\)-cat\((f_1) \).

Let \(V \) be a Banach space, \(M \) be a \(C^1 \)-manifold of \(V \) and \(I : V \to \mathbb{R} \) a \(C^1 \)-functional. We recall that \(I \) restricted to \(M \) satisfies de Palais-Smale condition at level \(c \) \((\text{PS})_c \) for short) if any sequence \((u_n) \subset M \) such that \(I(u_n) \to c \) and \(\|I'(u_n)\| \to 0 \) contains a convergent subsequence. Here we denote by \(\|I'(u)\| \) the norm of the derivative of the restriction of \(I \) to \(M \) (see [11, Section 5.3]).

Let \(\tau_a : V \to V \) be the antipodal involution \(\tau_a(u) = -u \) on the vector space \(V \). Equivariant Lusternik-Schnirelmann category provides a lower bound for the number of pairs \(\{u, -u\} \) of critical points of an even functional, as stated in the following abstract result (see [12, Theorem 1.1], [13, Theorem 5.7]).

Theorem 2.6. Let \(I : M \to \mathbb{R} \) be an even \(C^1 \)-functional on a complete symmetric \(C^{1,1} \)-submanifold \(M \) of some Banach space \(V \). Assume that \(I \) is bounded below and satisfies \((\text{PS})_c \) for all \(c \leq d \).

Then, if \(I^d = \{ u \in M : I(u) \leq d \} \), the functional \(I \) has at least \(\tau_a\)-cat\(_{I_0}\)(I\(^d\)) antipodal pairs \(\{u, -u\} \) of critical points with \(I(\pm u) \leq d \).

3. Proofs of the results

Given \(r > 0 \), we define the sets

\[\Omega^+_r = \{ x \in \Omega : \operatorname{dist}(x, \Omega) < r \} \quad \text{and} \quad \Omega^-_r = \{ x \in \Omega : \operatorname{dist}(x, \partial \Omega \cup \Omega^r) \geq r \}. \]
Throughout the rest of the paper we fix $r > 0$ sufficiently small in such way that the inclusion maps $\Omega^{-}_r \hookrightarrow \Omega \setminus \Omega^r$ and $\Omega \hookrightarrow \Omega^+_r$ are equivariant homotopy equivalences. Without loss of generality we suppose that $B_r(0) \subset \Omega$.

We now note that, in [1], Benci and Cerami considered the minimization problem

$$\tilde{m}_\lambda = \inf \left\{ \int_\Omega (|\nabla u|^2 + \lambda u^2) \, dx : u \in H, \int_\Omega |u|^p \, dx = 1 \right\}.$$

An easy calculation show that

$$m_\lambda = \left(\frac{p-2}{2p} \right) \frac{\tilde{m}_\lambda^{p/(p-2)}}{\lambda}. \quad \text{Therefore, if we denote by } \beta : H \setminus \{0\} \to \mathbb{R}^N \text{ the barycenter map given by }$$

$$\beta(u) = \frac{\int_\Omega x \cdot |\nabla u(x)|^2 \, dx}{\int_\Omega |\nabla u(x)|^2 \, dx},$$

we can rephrase [1, Lemma 3.4] as

Lemma 3.1. For any fixed $p \in (2, 2^*)$ there exist $\overline{\lambda} = \overline{\lambda}(p)$ such that,

(i) $m_{\lambda,r} < 2m_\lambda,$

(ii) if $u \in N_\lambda$ and $E_\lambda(u) \leq m_{\lambda,r}$, then $\beta(u) \in \Omega^+_r$,

for all $\lambda > \overline{\lambda}$.

We are now ready to present the proof of our main result.

Proof of Theorem 1.1. Let $p \in (2, 2^*)$ and $\overline{\lambda}$ be given by the Lemma 3.1. For any $\lambda > \overline{\lambda}$, since $2 < p < 2^*$, the even functional E_λ satisfies the Palais-Smale condition at any level $c \in \mathbb{R}$. Thus, we can apply Theorem 2.6 to obtain τ_a-cat$(N^r_\lambda \cap E^{2m_\lambda,r}_\lambda)$ pairs $\pm u_i$ of critical points of E_λ restricted to N^r_λ verifying

$$E_\lambda(\pm u_i) \leq 2m_{\lambda,r} < 4m_\lambda \leq 2m^{r}_\lambda,$$

where we used Lemma 3.1(i) and Lemma 2.1. It follows from Lemmas 2.2 and 2.3 that $\pm u_i$ are solutions of (P^{r}_λ) which change sign exactly once.

It suffices now to check that

$$\tau_a \text{-cat}(N^r_\lambda \cap E^{2m_\lambda,r}_\lambda) \geq \tau \text{-cat}_{\Omega}(\Omega \setminus \Omega^r).$$

With this aim, we claim that there exist two maps

$$\Omega^{-}_r \xrightarrow{\alpha_\lambda} N^r_\lambda \cap E^{2m_\lambda,r}_\lambda \xrightarrow{\gamma_\lambda} \Omega^+_r$$

such that $\alpha_\lambda(\tau x) = -\alpha_\lambda(x)$, $\gamma_\lambda(-u) = \tau \gamma_\lambda(u)$, and $\gamma_\lambda \circ \alpha_\lambda$ is equivariantly homotopic to the inclusion map $\Omega^{-}_r \hookrightarrow \Omega^+_r$.

Assuming the claim and recalling that the maps $\Omega^{-}_r \hookrightarrow \Omega \setminus \Omega^r$ and $\Omega \hookrightarrow \Omega^+_r$ are equivariant homotopy equivalences, we can use Lemma 2.5 to get

$$\tau_a \text{-cat}(N^r_\lambda \cap E^{2m_\lambda,r}_\lambda) \geq \tau \text{-cat}_{\Omega^+_r}(\Omega^-_r) = \tau \text{-cat}_{\Omega}(\Omega \setminus \Omega^r).$$
In order to prove the claim we follow [9]. Let $v_\lambda \in \mathcal{N}_{\lambda, B_r(0)}$ be a positive radial function such that $E_{\lambda, B_r(0)}(v_\lambda) = m_{\lambda,r}$. We define $\alpha_\lambda : \Omega^- \rightarrow E_{\lambda}^\ast \cap E_{\lambda}^{2m_{\lambda,r}}$ by

$$\alpha_\lambda(x) = v_\lambda(x) - v_\lambda(\cdot - \tau x). \quad (3.1)$$

It is clear that $\alpha_\lambda(\tau x) = -\alpha_\lambda(x)$. Furthermore, since v_λ is radial and τ is an isometry, we have that $\alpha_\lambda(x) \in H^\ast$. Note that, for every $x \in \Omega^-$, we have $|x - \tau x| \geq 2r$ (if this is not true, then $\bar{x} = (x + \tau x)/2$ satisfies $|x - \bar{x}| < r$ and $\tau \bar{x} = \bar{x}$, contradicting the definition of Ω^-). Thus, we can check that $E_\lambda(\alpha_\lambda(x)) = 2m_{\lambda,r}$ and $\alpha_\lambda(x) \in \mathcal{N}_{\lambda}^\ast$. All this considerations show that α_λ is well defined.

Given $u \in \mathcal{N}_{\lambda}^\ast \cap E_{\lambda}^{2m_{\lambda,r}}$ we can use (2.1) and the τ-invariance of Ω to conclude that $u^+ \in \mathcal{N}_{\lambda}$ and $2E_\lambda(u^+) = E_\lambda(u) \leq 2m_{\lambda,r}$. Hence, $u^+ \in \mathcal{N}_{\lambda}^\ast \cap E_{\lambda}^{m_{\lambda,r}}$ and it follows from Lemma 3.1(ii) that $\gamma_\lambda : \mathcal{N}_{\lambda}^\ast \cap E_{\lambda}^{2m_{\lambda,r}} \rightarrow \Omega_\lambda^+$ given by $\gamma_\lambda(u) = \beta(u^+)$ is well defined. A simple calculation shows that $\gamma_\lambda(-u) = \tau \gamma_\lambda(u)$. Moreover, using (3.1) and the fact that v_λ is radial we get

$$\gamma_\lambda(\alpha_\lambda(x)) = \frac{\int_{B_r(x)} y \cdot |\nabla v_\lambda(y - x)|^2 \, dy}{\int_{B_r(x)} |\nabla v_\lambda(y - x)|^2 \, dy} = \frac{\int_{B_r(0)} (y + x) \cdot |\nabla v_\lambda(y)|^2 \, dy}{\int_{B_r(0)} |\nabla v_\lambda(y)|^2 \, dy} = x,$$

for any $x \in \Omega^-$. This concludes the proof. \qed

Remark 3.2. Arguing along the same lines of the above proof and using a version of Lemma 4.2 in [1] instead of Lemma 3.1, we can check that Theorem 1.1 also holds if $\lambda \geq 0$ is fixed and the exponent p is sufficiently close to 2^\ast.

Proof of Corollary 1.2. Let $\tau : \mathbb{R}^N \rightarrow \mathbb{R}^N$ be given by $\tau(x) = -x$. It is proved in [9, Corollary 3] that our assumptions imply $\tau\text{-cat}(\Omega) \geq N$. Since $0 \notin \Omega$, $\Omega^\tau = \emptyset$. It suffices now to apply Theorem 1.1. \qed

References

UNICAMP-IMECC, CX. POSTAL 6065, 13083-790 CAMPINAS-SP, BRAZIL

E-mail address: furtado@ime.unicamp.br