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Abstract

This paper deals with the dynamics of time-reversible Hamiltonian vector
fields with 2 degrees of freedom around an elliptic equilibrium point in presence
of 1 : −1 resonance. The main result says that under certain conditions there
are 2 one-parameter families of reversible periodic solutions terminating at the
equilibrium.

1 Introduction

In 1895 Liapunov published his celebrated center theorem (see for example in Abra-
ham and Marsden [1] p 498). Generalizations of such result were made by Weinstein
[20] and Moser [14]. They concern on the existence of n families of periodic solu-
tions filling up smooth 2-dimensional manifolds going through an elliptic equilibrium
point. Other generalized versions of such result came up: Devaney [7] considered
time-reversible systems, Golubitisky-Krupa-Lim [8] and Montaldi-Roberts-Stewart
[13] studied classes of equivariant systems.

Let X be a (germ of a) smooth vector field on RN with X(0) = 0. The vector field
is called time-reversible if there is a germ of a smooth involution φ : RN , 0 → RN , 0
(φ2 = Id) satisfying the relation

X(φ(x)) = −φ′(x).X(x) , x ∈ RN , 0
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The main aim of this paper is to study the existence of one parameter families
of periodic orbits passing through a typical singularity for smooth time-reversible
Hamiltonian systems with respect to a symplectic involution. Our systems belong
to the class of vector fields presenting a 1 : −1 resonance at the equilibrium (in
two-degrees of freedom). We observe that only two distinct non-trivial symplectic
involutions can arise. Moreover these symplectic involutions force the system to have
a non-positive definite Hessian, and the linearized system to be semi-simple 1 : −1
resonant. Examples of such systems were exhibited in [6] and [10].

Our approach consists in using Birkhoff normal form, adapted to time-reversible
systems with respect to a symplectic involution, to find a formal normal form which
has its second order terms as a first integral. We use this formal normal form and
transversality theory, restricted to the energy surfaces, to prove that the periodic
solutions of the linearized system persist. In the present paper we start the problem
by considering the problem for one degree of freedom. We point out that our main
result is given by Theorem B. Roughly speaking, it exhibits conditions on systems
of 2 degrees of freedom for which there are two one-parameter family of reversible
periodic orbits passing through the equilibrium point.

We first study time-reversible Hamiltonian systems of one degree of freedom. In
our setting the problem is carried out to consider planar vector fields that are (−Id)-
reversible. So we know that such systems have no periodic orbits that encircle the
equilibrium point. We present an anti-invariant version of a result of Poènaru [15] for
mappings on Rn. This result will be very useful throughout the paper. We also apply
such result to derive the classification of generic two-parameter families of reversible
Hamiltonian vector fields of one degree of freedom.

This paper is organized as follows. In section 2 we briefly recall basics concepts of
time-reversible systems, introduce some notations and definitions and establish the
Theorem 1 to be used in the sequel. In section 3.1, we study Hamiltonian systems
with one degree of freedom. In section 3.2, we work with time-reversible Hamiltonian
systems with two degrees of freedom.

Acknowledgments. We wish to express our gratitude to the referee for the im-
provement of the Theorem B and many others helpful suggestions.

2 Preliminaries

2.1 Reversible Systems

In this section we recall some basic definitions, concepts and results concerning re-
versible vector fields.

A Ck diffeomorphism ϕ : Rn → Rn is called an involution if ϕ ◦ ϕ = Id.
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Definition 1 Given an involution ϕ : Rn → Rn we say that a Ck vector field X
over Rn is ϕ-reversible, if ϕ∗X = −X ◦ ϕ, i. e., dϕp(X(p)) = −X(ϕ(p)).

Let S be the fixed points set of ϕ. An orbit γ is said symmetric if ϕ(γ) = γ.
Hence, every critical point of X in S is a symmetric singularity of X. Some classical
properties of reversible systems are:

• The phase portrait of X is symmetric with respect to S.

• A symmetric critical point or symmetric periodic orbit can not be attractor or
repellor.

• If X(p) = 0 and p 6∈ S then X(ϕ(p)) = 0.

• If a regular orbit γ intersects S in two distinct points then γ is a periodic orbit.

• If X(p) 6= 0 and p ∈ S then X(p) 6∈ TpS.

• Any periodic orbit γ of X not crossing S is paired by another periodic solution
given by ϕ(γ).

The concept of structural stability comes from the following definition:

Definition 2 Two vector fields X1 and X2 are said Ck-orbitally equivalent, k ≥ 1,
if there is a Ck-diffeomorphism h in the phase space that sends trajectories of X1

in trajectories of X2 preserving the orientation, but not necessarily the time. If h
preserves the time, i. e., dh ◦X1 = X2 ◦ h, then X1 and X2 are Ck-conjugated.

Definition 3 Given a vector field X0, a family (Xλ)λ∈Λ is an unfolding to X0 if
there exists λ0 ∈ Λ such that Xλ0 = X0. An unfolding (Xµ) is Ck-versal, k ≥ 1, if
given another unfolding (Yλ) of Xµ0 there is a Ck-reparametrization λ 7→ µ(λ) such
that for all parameters λ, the systems Yλ and Xµ(λ) are Ck-orbitally equivalent.

In the same way, we can define unfoldings and versal unfoldings for maps using
the concept of right-equivalence to be aborded in the next section.

2.2 Hamiltonian Vector Fields

We consider (germs of) smooth functions H : R2n, 0 → R having the origin as a
critical point. The corresponding Hamiltonian vector field, to be denoted by XH ,
has the origin as an equilibrium or singular point. We here recall that dH = ω(XH , .),
where ω = dx1 ∧ dy1 + dx2 ∧ dy2 + · · · + dxn ∧ dyn denotes the standard 2-form on
R2n. In coordinates XH is expressed as:

ẋi =
∂H

∂yi

, ẏi = −∂H

∂xi

for i = 1, 2, . . . , n.
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Definition 4 Let H and K be two functions defined in V . We say that H is Ck-right
equivalent to K if there exists a Ck diffeomorphism Φ : V → V such that H = K ◦Φ.

We will see that, in dimension two, if H and K are Ck-right equivalent then
the Hamiltonian vector fields XH and XK are Ck-orbitally equivalent. In dimension
greater than two, H and K being Ck-right equivalent does not imply that XH and
XK are Ck- orbitally equivalent. But if Φ is a Ck-right equivalence between H and
K and preserves the symplectic structure then it is a Ck-conjugacy between XH and
XK .

Let’s define a vector field induced by a diffeomorphism Φ.

Definition 5 Let XH be a Hamiltonian vector field and Φ be a Ck-diffeomorphism.
We say that the vector field Φ∗(XH)(Φ(p)) := dΦp(XH(p)) is induced from XH by Φ.

We observe that XH and Φ∗(XH) are always Ck-conjugate.

Lemma 1 [3] Let H and K be functions defined in an open subset of R2. Suppose
that there is a Ck-diffeomorphism Φ such that H = K ◦ Φ. If XH and XK are
Hamiltonian vector fields, with respect to H and K respectively, then Φ∗(XH) =
(det dΦ)XK . Consequently XH and XK are Ck-orbitally equivalent.

Proof We transport the equation dH = ω(XH , .) by Φ. Write Φ∗(H) := H ◦
Φ−1 = K and Φ∗(ω) = (Φ−1)∗(ω), so dK = dΦ∗(H) = Φ∗(ω)(Φ∗XH , .). Here
Φ∗(ω) = (det dΦ)−1ω, hence dK = (det dΦ)−1ω(Φ∗(XH), .), therefore we have that
dK = ω((det dΦ)−1Φ∗(XH), .) and (det dΦ)−1Φ∗(XH) = XK . Since the vector fields
XH and Φ∗(XH) are Ck-conjugate, the presence of the scalar factor det dΦ implies
that the Hamiltonian vector fields XH and XK are Ck-orbitally equivalent, which
immediately proves the lemma. 2

Remark 1 We observe here that the main step in the above proof is the relation
Φ∗(ω) = (det dΦ)−1ω. This is true only in dimension two. In dimension greater
than two, we must suppose that Φ preserves the symplectic structure, in the sense of
the next definition.

Definition 6 A diffeomorphism Φ is symplectic if Φ∗(ω) = ω, i. e., ω(vp, wp) =
ω(dΦp(vp), dΦp(wp)).

Proposition 1 If Φ is symplectic and is a Ck-right equivalence between H and K,
then it is a Ck-conjugacy between XH and XK.

The proof of this proposition is practically the same as lemma 1, considering the
remark 1.

The next proposition gives a normal form for symplectic involutions.
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Proposition 2 Fixed the symplectic structure ω and given an involution ϕ, there
exists a symplectic change of coordinates that transform ϕ into the normal form

ϕ0(x1, y1, x2, y2) = (x1, y1,−x2,−y2) or ϕ0 = Id or ϕ0 = −Id.

Before the proof we observe that the mapping σ = 1
2
(ϕ + dϕ) is a symplectic

conjugacy between ϕ and dϕ, i. e., ϕ ◦ σ = σ ◦ dϕ. This means that we can assume
ϕ is linear.

Lemma 2 If ϕ is a linear symplectic involution, then R4 = Fix(ϕ)⊕ Fix(−ϕ) and
ω(Fix(ϕ), F ix(−ϕ)) = 0.

Proof For every u ∈ R4, we can write u = u+ϕ(u)
2

+ u−ϕ(u)
2

. Observe that u+ϕ(u)
2

∈
Fix(ϕ) and u−ϕ(u)

2
∈ Fix(−ϕ). Let u be in Fix(ϕ) and v be in Fix(−ϕ), so we have

that ω(u, v) = ω(ϕ(u),−ϕ(v)). By using that ϕ is symplectic, i.e., ω(ϕ(u), ϕ(v)) =
ω(u, v) we have that ω(u, v) = −ω(u, v) = 0. So ω(Fix(ϕ), F ix(−ϕ)) = 0. 2

A linear subspace U of R4 is symplectic if ω is non-degenerate in U , i.e., if ω(u, v) =
0 for all u ∈ U then v = 0.

Lemma 3 Fix(ϕ) and Fix(−ϕ) are symplectic subspaces.

Proof Suppose u ∈ Fix(ϕ) and u 6= 0 such that ω(u, F ix(ϕ)) = 0. By using
lemma 2, we have ω(Fix(ϕ), F ix(−ϕ)) = 0, so ω(u, F ix(−ϕ)) = 0. Again by lemma
2 (R4 = Fix(ϕ) ⊕ Fix(−ϕ)) we have ω(u,R4) = 0 and so ω is degenerate in R4

which is not true. So Fix(ϕ) is a symplectic subspace. The proof for Fix(−ϕ) is
analogous. 2

Proof of proposition 2 By using lemmas 2 and 3, if ϕ0 6= Id and ϕ0 6= −Id,
we can find symplectic basis {e1, f1} for Fix(ϕ) and {e2, f2} for Fix(−ϕ) such that
ω(ei, fj) is equal to 1 if i = j and 0 if i 6= j, and ω(ei, ej) = ω(fi, fj) = 0 for all i
and j. Note that ϕ(ei) and ϕ(fi) are equal to 1 if i = 1 and −1 if i = 2. So in these
coordinates ϕ has the normal form given in proposition. 2

2.3 The Anti-invariant Theory

Hamßmann, in [9], studied Hamiltonian vector fields XH , where H is G-invariant,
i. e., H(gx) = H(x) for all g ∈ G. We can not apply this theory here, because
we will see in proposition 3 that our H satisfies H(ϕx) = −H(x). Observe that if
H(g1x) = −H(x) and H(g2x) = −H(x), then H(g1g2x) = H(x). So, we decided to
work with Gϕ-anti-invariant functions to be defined in the following way.
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Definition 7 Let ϕ be a linear involution in Rn and G be a compact group acting
linearly on Rn. If f ∈ H we say that f is Gϕ-anti-invariant if:

f(gx) = f(x) ∀g ∈ G and
f(ϕx) = −f(x)

where H denotes the set of all (germs of) smooth functions.

The notation to the set of (germs of) Gϕ-anti-invariant functions will be HG. If
G = {Id} and f is Gϕ-anti-invariant we simply say that f is ϕ-anti-invariant.

Definition 8 A vector field X(x) will be said Gϕ-equivariant if X(ϕx) = ϕX(x)

and X(gx) = Tg(X(x)) = gX(x) for all g ∈ G. We denote by -xG the set of all
(germs of) Gϕ-equivariant vector fields.

Lemma 4 If f ∈ HG then

< df(gx), v >=< df(x), g−1v > ∀g ∈ G, ∀v ∈ Rn and
< df(ϕx), v >= − < df(x), ϕv > ∀v ∈ Rn.

where < ., . > is the standard inner product on Rn.

Proof Fix g ∈ G and let L be its left multiplying, i. e., L : x 7→ gx. In this
case we have f ◦ L = f , so dfx = dfL(x) ◦ dLx. Therefore dfx(w) = dfgx(gw) for all
w ∈ Rn. In another words, < df(x), w > = < df(gx), gw >, so < df(x), g−1w > =
< df(gx), w > for all w ∈ Rn. In the second case we get analogous result with the
minus sign and using dfx = −dfϕ(x) ◦ dϕx. 2

Lemma 5 If f ∈ HG and X ∈ -xG then df(X) ∈ HG.

Proof By using the previous lemma, fix g ∈ G, so df(X)(gx) = < df(gx), X(gx) >
= < df(gx), gX(x) > = < df(x), g−1gX(x) > = < df(x), X(x) > = df(X)(x). And
df(X)(ϕx) = < df(ϕx), X(ϕx) > = < df(ϕx), ϕX(x) > = − < df(x), ϕ2X(x) > =
− < df(x), X(x) > = −df(X)(x). 2

Now we define the Gϕ-anti-invariant Jacobian ideal.

Definition 9 The Gϕ-anti-invariant Jacobian ideal is defined by

JG(f) = {df(X) : X ∈ -xG}.
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Let dµ(g) be a Haar measure in G such that
∫

G
dµ(g) = 1, and let’s define the

following evaluation maps Av : H −→ HG by

[Av(f)](x) =
1

2

∫

G

[f(gx)− f(ϕgx)]dµ(g)

and Av : -x −→ -xG by

[Av(X)](x) =
1

2

∫

G

[g−1X(gx) + g−1ϕX(ϕgx)]dµ(g).

The next theorem is a Gϕ-anti-invariant version of a result due to Poènaru [15]
and it is the main result of this section.

Theorem 1 Let f(x) ∈ HG be such that dimRH/J (f) < ∞. If the functions
ϕ1, . . . , ϕk are a basis for H/J (f) then Av(ϕ1), . . . , Av(ϕk) span the real vector space
HG/JG(f).

Proof Let h ∈ H/J (f). There are λ1, . . . , λk ∈ R and X ∈ -x such that

h(x) =
k∑

i=1

λiϕi(x)+ < df(x), X(x) > .

By hypothesis f ∈ HG, using the lemma 4 we have

Av(< df(x), X(x) >) =
1

2

∫

G

[< df(gx), X(gx) > − < df(ϕgx), X(ϕgx) >]dµ(g) =

=
1

2

∫

G

[< df(x), g−1X(gx) > + < df(gx), ϕX(ϕgx) >]dµ(g) =

=
1

2

∫

G

[< df(x), g−1X(gx) > + < df(x), g−1ϕX(ϕgx) >]dµ(g) =

=< df(x),
1

2

∫

G

[g−1X(gx) + g−1ϕX(ϕgx)]dµ(g) >=

=< df(x), [Av(X)](x) > .

Therefore, considering h(x) ∈ HG, we have that

h(x) = Av(h(x)) =
k∑

i=1

λiAv(ϕi)+ < df, Av(X) >,

and so, we have that Av(ϕ1), . . . , Av(ϕk) span HG/JG(f). 2
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The relationship between the ϕ-reversible vector field and the Hamiltonian func-
tion is given by the next proposition.

Proposition 3 Let ϕ be a symplectic involution. A Ck Hamiltonian vector field XH

is ϕ-reversible if, and only if, the Hamiltonian function H is ϕ-anti-invariant.

Proof XH is ϕ-reversible iff XH(ϕ(x)) = −ϕ ◦ XH(x) for all x ∈ R2n, i. e.,
ω(XH(ϕ(x)), ϕ(y)) = −ω(ϕXH(x), ϕ(y)) for all x, y ∈ R2n. By hypothesis, ϕ is
symplectic. Thus ω(XH(ϕ(x)), ϕ(y)) = −ω(XH(x), y) for all x, y ∈ R2n, i. e.,
−dHx(y) = dHϕ(x)(ϕ(y)) = d(H ◦ ϕ)x(y) for all x, y ∈ R2n. It is equivalent to
H ◦ ϕ = −H. 2

3 Hamiltonian reversible vector fields

The symplectic involutions in R2, 0 are Id and −Id. The symplectic involutions in
R4, 0, according to proposition 2, are Id, −Id or ϕ1(x1, y1, x2, y2) = (x1, y1,−x2,−y2).

We observe that if a vector field X is reversible with respect to Id then X = 0.
So we will consider only the cases where the involution is not the Id.

3.1 Hamiltonian with one-degree of freedom

First of all we recall that in [9] Hamßmann classified the generic codimension two
singularities and presented the respective versal unfoldings of Hamiltonian reversible
vector fields with respect to an anti-symplectic involution. In [5] there is a general
classification of planar singularities of (−Id)-reversible vector fields. Here we classify
generically the codimension two symmetric singularities by presenting their versal
unfoldings in the case of symplectic time-reversing symmetry.

Due to an orientation problem, if the vector field is reversible with respect to −Id
on the plane, then there is no periodic solution that encircles the origin. So, there
is no Liapunov center families in one degree of freedom. On the other hand, using
the anti-invariant theory described in section 2.3 we can derive the behavior of the
dynamics near a symmetric equilibrium point by showing their versal unfoldings.

If XH is (−Id)-reversible, then H belongs to HG and the origin is a critical point
of H, so its second jet at 0 is null. The possible non-vanishing terms are those of order
three. We know, from singularity theory, (see [2]) that the generic functions with zero
2-jet have the following normal forms f 1(x, y) = x3 + xy2 and f 2(x, y) = x3 − xy2.
Their versal unfoldings, in the world of all smooth functions, are

f 1
λ,µ,η(x, y) = x3 + xy2 + λ(x2 − y2) + µx + ηy

and
f 2

λ,µ,η(x, y) = x3 − xy2 + λ(x2 + y2) + µx + ηy,
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respectively.
Theorem A

(i) If XH : R2, 0 → R2 is (−Id)-reversible , then there is no Liapunov center
families for XH .

(ii) The versal unfoldings of f 1(x, y) = x3 + xy2 and f 2(x, y) = x3 − xy2 in HG

are f 1
µ,η(x, y) = x3 + xy2 + µx + ηy and f 2

µ,η(x, y) = x3− xy2 + µx + ηy, respectively.
(iii)The two-parameter family of reversible Hamiltonian vector fields

X1
µ,η :

{
ẋ = 2xy + η
ẏ = −3x2 − y2 − µ

and X2
µ,η :

{
ẋ = 2xy + η
ẏ = −3x2 + y2 − µ

are the C∞-versal unfoldings of X1
0,0 and X2

0,0 respectively.

Proof (i) Any vector field on the plane that is (−Id)-reversible cannot have peri-
odic solutions that encircle the origin.

(ii) It is a immediate application of theorem 1 to the previous versal unfoldings.
(iii) Given an unfolding XKλ

of X1
0,0, we have that Kλ is also an unfolding of f 1.

By (ii), f 1
µ,η is a C∞-versal unfolding of f 1. So there exists a C∞-reparametrization

λ 7→ (µ(λ), η(λ)) such that for all λ, Kλ and f 1
µ(λ),η(λ) are C∞-right equivalent. From

lemma 1 we deduce that XKλ
and X1

µ(λ),η(λ) are C∞-equivalent. 2

The figures 1 and 2 show the bifurcation diagram of these families.

3.2 Hamiltonian with two-degrees of freedom

If XH is a (−Id)-reversible Hamiltonian vector field then, from proposition 3, the
Hamiltonian function H has only monomials of odd order. So the linear part of XH

is zero. This case is very degenerate and its analysis is addressed to a forthcoming
paper.

Throughout this section we are assuming that XH is ϕ1-reversible, where ϕ1 is
given by ϕ1(x1, y1, x2, y2) = (x1, y1,−x2,−y2). From proposition 3, the function H
satisfies H ◦ ϕ = −H. So, the second order terms of H are

H2 = ax1x2 + bx1y2 + cy1x2 + dy1y2.

If bc− ad > 0, then the eigenvalues of the linear part of XH are {β, β,−β,−β},
where β =

√
bc− ad. We are interested in elliptic equilibria, so this case will not be

treated here.
If bc− ad < 0, then the eigenvalues of the linear part of the vector field XH are

{αi, αi,−αi,−αi}, where α =
√

ad− bc. We will conclude that this is a semi-simple
1 : −1 resonant case.
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µ

λ

Cod 0

Cod 1

Cod 2

Cod 0Cod 1

Cod 1

Cod 0

Figure 1: Bifurcation diagram of X2
λ,µ

By means of the symplectic change of coordinates

M :








x1

y1

x2

y2


 =




−c/α −d/α 0 0
a/α b/α 0 0
0 0 1 0
0 0 0 1


 .




x̃1

ỹ1

x̃2

ỹ2




we obtain
H2(x̃1, ỹ1, x̃2, ỹ2) = α(x̃1ỹ2 − ỹ1x̃2)
ϕ1(x̃1, ỹ1, x̃2, ỹ2) = (x̃1, ỹ1,−x̃2,−ỹ2)

XH2(x̃1, ỹ1, x̃2, ỹ2) = (−αx̃2,−αỹ2, αx̃1, αỹ1).

Observe that the Hessian of H is non-positive definite. Consequently, we cannot
apply the results of Weinstein [20] and Moser [14].

Consider

T :








x̃1

ỹ1

x̃2

ỹ2


 =




√
2

2
0

√
2

2
0

0
√

2
2

0
√

2
2

−i
√

2
2

0 i
√

2
2

0

0 i
√

2
2

0 −i
√

2
2


 .




z1

w1

z2

w2


 .
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µ

λ

Cod 1

Cod 0

Cod 1

Cod 0

Cod 1

Cod 2

Cod 0

Cod 0

Figure 2: Bifurcation diagram of X1
λ,µ

This mapping is symplectic and in these new coordinates we have

H2(z1, w1, z2, w2) = αi(z1w1 − z2w2)
ϕ1(z1, w1, z2, w2) = (z2, w2, z1, w1)

XH2(z1, w1, z2, w2) = (αiz1,−αiw1,−αiz2, αiw2)

We observe that, according to Van der Meer [18], this is the semi-simple 1 : −1
resonant case.

The function {f, g} = ω(Xf , Xg) is called the Poisson bracket of the smooth
functions f and g. Let Hn be the set of all homogeneous polynomials of degree n.
The application adjoint AdH2 : Hn → Hn is defined by

AdH2(H) = {H2, H} = ω(XH2 , XH) =< −XH2 ,∇H > .

The Birkhoff Normal Form Theorem [16] states that if we have a Hamiltonian
H = H2 + H3 + H4 + · · ·, where Hi ∈ Hi is the homogeneous part of degree i, and
Gi ⊂ Hi satisfies Gi ⊕ Range(AdH2) = Hi, then there exists a formal symplectic

power series transformation Φ such that H ◦ Φ = H2 + H̃3 + H̃4 + · · · where H̃i ∈
Gi (i = 3, 4 . . .). In particular, if AdH2 is semi-simple, as in our case, then Ker(AdH2)
complements Range(AdH2).
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As ϕ1 is symplectic, the change of coordinates Φ can be chosen in such a way
that H ◦ Φ is ϕ1-anti-invariant. In order to see this, we can split Hi = H+

i ⊕ H−
i ,

where H+
i = {H ∈ Hi : H ◦ ϕ1 = H} and H−

i = {H ∈ Hi : H ◦ ϕ1 = −H}.
If ϕ1 is symplectic, then AdH2(H±

i ) = H∓
i . In this case, if Hi = Gi ⊕ AdH2(Hi),

then H−
i = (Gi ∩ H−

i )⊕ AdH2(H+
i ). Now we can perform the change of coordinates

restricted to H−
i .

Let’s apply this theorem in our case. For H = zα1
1 wβ1

1 zα2
2 wβ2

2 , we have AdH2(H) =
αi(β1−α1 + α2− β2)z

α1
1 wβ1

1 zα2
2 wβ2

2 . Therefore, the monomial zα1
1 wβ1

1 zα2
2 wβ2

2 is in the
kernel of AdH2 if, and only if, β1 − α1 + α2 − β2 = 0.

Lemma 6 The function H does not have monomials of odd order in Ker(AdH2).

Proof Let zα1
1 wβ1

1 zα2
2 wβ2

2 be a monomial such that β1 +α1 +α2 +β2 = 2n+1, then
β1 − α1 + α2 − β2 6= 0. 2

Lemma 7 Let H = zα1
1 wβ1

1 zα2
2 wβ2

2 be in the kernel of AdH2 and suppose that we have
β1 + α1 + α2 + β2 = 2n. In this case, there are positive integer numbers p, q, r and
s that satisfy H = (z1w1)

p(z1z2)
q(w1w2)

r(z2w2)
s.

Proof The hypothesis (β1 + α2) + (α1 + β2) = 2n and (β1 + α2)− (α1 + β2) = 0,
imply that β1 + α2 = n and α1 + β2 = n. Therefore

if α1 ≥ α2 we take





s = 0
r = n− α1

q = α2

p = α1 − α2

and if α1 < α2 we take





p = 0
r = n− α2

q = α1

s = α2 − α1

.

2

Theorem 2 If H ∈ HG and ad − bc > 0, then there is a formal symplectic change
of coordinates Φ such that H̃ = H ◦ Φ = I1.f(I2

1 , I2, I3, I4) where

I1 = x̃2ỹ1 − x̃1ỹ2

I2 = x̃1ỹ1 + x̃2ỹ2

I3 = ỹ1
2 + ỹ2

2

I4 = x̃1
2 + x̃2

2.

Proof We know by Birkhoff normal form theory [16], that there exists a formal
symplectic change of coordinates Φ in such a way that H◦Φ has only terms in the ker-
nel of AdH2 . By using lemmas 6 and 7, we have that H◦Φ = g(z1w1, z2w2, w1w2, z1z2).
Let

I1 = −i(z1w1 − z2w2) = x̃2ỹ1 − x̃1ỹ2

I2 = z1w1 + z2w2 = x̃1ỹ1 + x̃2ỹ2

I3 = 2w1w2 = ỹ1
2 + ỹ2

2

I4 = 2z1z2 = x̃1
2 + x̃2

2.
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So H ◦ Φ = g̃(I1, I2, I3, I4).
On the other hand, I1 ◦ ϕ1 = −I1, I2 ◦ ϕ1 = I2, I3 ◦ ϕ1 = I3 and I4 ◦ ϕ1 = I4.

Hence H ◦ Φ = I1.f(I2
1 , I2, I3, I4). 2

This theorem confirms the result of Meyer [12], where each real homogeneous
polynomial of degree i, in the normal form, is a first integral of the original linearized
system.

The classical theorem due to Liapunov [1] establishes the existence of families of
periodic orbits arising from an equilibrium point for real Hamiltonian systems under
the following conditions: (i) the 2n eigenvalues ±λ1, ±λ2, . . . ,±λn are distinct, (ii)
λ1 is purely imaginary and (iii) λp

λ1
is non integer for p = 2, 3, . . . , n (non-resonance).

Each such family of periodic orbits is parameterized by some real parameter µ such
that as µ → 0, the periodic orbits tend towards the equilibrium while their periods
tend towards 2π

|iλ1| . In our context the eigenvalues are αi and −αi, and so the classical
Liapunov’s theorem cannot be applied.

The families
γk(t) = (k cos(αt), 0, k sin(αt), 0)

σs(t) = (0, s cos(αt), 0, s sin(αt))

are two one-parameter families of periodic solutions as in the Liapunov’s theorem
for the system

XH2(x̃1, ỹ1, x̃2, ỹ2) = (−αx̃2,−αỹ2, αx̃1, αỹ1).

The planes {x̃1 = x̃2 = 0} and {ỹ1 = ỹ2 = 0} are 2-dimensional manifolds filled
up by periodic orbits.

Theorem B Assume H ∈ HG and ad − bc > 0. Then there exists H̃, formally Ck-
right equivalent to H, such that the vector field XH̃ has two one-parameter families
of symmetric periodic solutions, with period near 2π

α
, as in the Liapunov’s Theorem,

going through the equilibrium point. Here H̃ = H◦Φ, where Φ is given by Theorem 2.

We recall that the referee point out that the above result can be improved in the
following way. The statement remains true if one drops ‘formal’ in the conclusions.
To archive this improvement one would have to argue along lines of [18] where sim-
ilarly first a normal form is obtained and then singularity theory is used to match
the periodic orbits of the normal form with those of the ‘real’ system.

Proof Let’s recall that I1 is a first integral of H2 and H̃, i.e., {H2, I1} = 0 and

{H̃, I1} = 0. We will perform the proof for the family γk. Each orbit of the fam-
ily γk, of periodic solutions of XH2 , intersects Fix(ϕ1) = {x̃2 = ỹ2 = 0} in two
points {p1, p2}. The reversibility implies that Tp1(γk) ⊕ Tp1(Fix(ϕ1)) has dimen-
sion 3. The same thing happens to p2. In coordinates (x̃1, ỹ1, x̃2, ỹ2) we have
that I1(x̃1, ỹ1, x̃2, ỹ2) = x̃2ỹ1 − x̃1ỹ2. This means that the set {(x̃1, ỹ1, x̃2, ỹ2) :
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I1(x̃1, ỹ1, x̃2, ỹ2) = 0} is a 3-dimensional manifold in every open set U , such that
0 6∈ U . Let’s take two open sets U1 and U2 such that p1 ∈ U1, p2 ∈ U2, 0 6∈ U1 ∪ U2,
{I1 = 0} ∩ U1 = S1 and {I1 = 0} ∩ U2 = S2. S1 and S2 are 3-dimensional
manifolds in R4. Consider Fix(ϕ1) ∩ U1 = Σ1 and Fix(ϕ1) ∩ U2 = Σ2. Σ1

and Σ2 are 2-dimensional submanifolds such that Σ1 ⊂ S1 and Σ2 ⊂ S2, since
Fix(ϕ1) = {x̃2 = ỹ2 = 0} ⊂ {I1 = 0}. We have that I1(γk(t)) = 0 ∀t. Now, let’s

consider the full system XH̃ , where H̃ = H2 +h.o.t. There is an orbit γε
k for XH̃ , near

γk, such that I1(γ
ε
k(t)) = 0 ∀t, since I1 is a first integral for H̃. Then we have the

following situation: dim(Σ1) = 2, dim(S1) = 3, Σ1 ⊂ S1, γk ∩ U1 ⊂ S1 and γk inter-
sects Σ1 transversally in S1. By transversality theory, we have that γε

k ∩ Σ1 = {pε
1}.

In analogous way, we have that γε
k ∩ Σ2 = {pε

2}. By reversibility we derive that if
γε

k∩Fix(ϕ) = {pε
1, p

ε
2} then γε

k is a periodic solution for XH̃ . The Theorem of Contin-
uous and Differential Dependence with Respect to Initial Conditions and Parameters
tell us that the periods are near 2π

α
. For the family σs the analysis is similar. 2
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