Soft local times

Serguei Popov, Augusto Teixeira

Serguei Popov, Augusto Teixeira Soft local times

ヘロト 人間 とくほとくほとう

₹ 990

- we describe a method for simulating an adapted stochastic process on a general space Σ by means of a Poisson point process on Σ × ℝ₊;
- in particular, it is useful for constructing couplings of two processes, simply by using the same realization of the Poisson point process for both of them;
- ▶ with this coupling, one can study the *range* of a stochastic process (i.e., the set {X₁,..., X_n})

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Consider the space of Radon point measures on $\Sigma\times\mathbb{R}_+$

$$\begin{split} L &= \Big\{ \eta = \sum_{\lambda \in \Lambda} \delta_{(z_{\lambda}, v_{\lambda})}; z_{\lambda} \in \Sigma, v_{\lambda} \in \mathbb{R}_{+} \\ & \text{ and } \eta(K) < \infty \text{ for all compact } K \Big\}. \end{split}$$

One can now canonically construct a Poisson point process η on the space (L, D, \mathbb{Q}) with intensity given by $\mu \otimes dv$, where dv is the Lebesgue measure on \mathbb{R}_+ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Proposition

Let $g : \Sigma \to \mathbb{R}_+$ be a measurable function with $\int g(z)\mu(dz) = 1$. For $\eta = \sum_{\lambda \in \Lambda} \delta_{(z_{\lambda}, v_{\lambda})} \in L$, we define

 $\xi = \inf\{t \ge 0; \text{ there exists } \lambda \in \Lambda \text{ such that } tg(z_{\lambda}) \ge v_{\lambda}\}.$

Then under the law \mathbb{Q} of the Poisson point process η ,

- there exists a.s. a unique $\hat{\lambda} \in \Lambda$ such that $\xi g(z_{\hat{\lambda}}) = v_{\hat{\lambda}}$,
- $(z_{\hat{\lambda}}, \xi)$ is distributed as $g(z)\mu(dz) \otimes \operatorname{Exp}(1)$,
- η' := Σ_{λ≠λ} δ_{(z_λ,v_λ-ξg(z_λ))} has the same law as η and is independent of (ξ, λ̂).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Figure: An example illustrating the definition of ξ and $\hat{\lambda}$ in the above Proposition. Observe that this construction can be iterated to obtain a realization of a stochastic process *X* (here, $X_1 = z_1, X_2 = z_2$). The quantity G_n is called the *soft local time* of the process *X* at time *n*.

Assume that *X*, *Y* are two stochastic processes on the same space Σ , and we want to couple them in such a way that

$$\mathbb{P}\big[\{X_1,\ldots,X_{T_1}\}\subset \{Y_1,\ldots,Y_{T_2}\}\big]\geq 1-\varepsilon,$$

where $T_{1,2}$ are some (random) moments. The above proposition provides a way to construct such a coupling. Let \hat{G} be the soft local time for the process *Y*, and we construct both processes using *the same* realization of the Poisson process η . Then

$$\mathbb{P}\big[\{X_1,\ldots,X_{\mathcal{T}_1}\}\subset\{Y_1,\ldots,Y_{\mathcal{T}_2}\}\big]\geq\mathbb{P}[G_{\mathcal{T}_1}\leq\hat{G}_{\mathcal{T}_2}],$$

ヘロン 人間 とくほ とくほ とう

and the last probability can be estimated in some way.

Applications:

- in [Popov-Teixeira, 2012] we used soft local times to obtain some decoupling ineuqalities for random interlacements
- in [Comets-Gallesco-Popov-Vachkovskaia, 2013], this method was used to obtain large deviation for cover times of the torus (in these two applications, the space Σ is a certain space of excursions of SRW)
- a similar method was used in an earlier paper by Tsirelson [EJP, 2006] to solve the following kind of problem: let X_1, X_2, X_3, \ldots be i.i.d.r.v. $\sim U[0, 1]$, and let g > 0 be a density on [0, 1]. Construct (having additional randomness) a permutation σ such that Y_1, Y_2, Y_3, \ldots are i.i.d.r.v. with density g, where $Y_k = X_{\sigma(k)}$. (It is an open problem to do that without additional randomness.)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Figure: The construction of the excursions of the SRW on the torus.

★ロト★個と★注と★注と、注