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(Comets, Popov, Schütz, Vachkovskaia, ARMA, 2009)

The model can be informally described in the following way:

I A particle moves with constant speed inside some
d-dimensional domain

I When it hits the boundary, it is reflected in some random
direction, not depending on the incoming direction, and
keeping the absolute value of its speed
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Notations:

I Xt ∈ D is the location of the process at time t , and
Vt ∈ Sd−1 is the corresponding direction;

I ξn ∈ ∂D, n = 0,1,2, . . . are the points where the process
hits the boundary.
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Reflection: cosine reflection law:

x

α

n(x)

The density of the outgoing direction is proportional to cosα
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For the case of cosine reflection law (finite domains):

Theorem
(assuming that the boundary is Lipschitz and a.e. continuously
differentiable)

I The stationary measure of the random walk ξn is uniform
on ∂D.

I The stationary measure of the process (Xt ,Vt ) is the
product of uniform measures on D and Sd−1.

Proof: follows from the reversibility (the transition density is
symmetric).
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Stationary random tube in Rd
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Let Z (m)
· be the polygonal interpolation of n/m 7→ m−1/2ξn · e

(the discrete time random walk).

We denote by Q the stationary measure for the environment
seen from the particle (there is an explicit formula for Q).

Theorem
Assume Conditions L, P, R (“nice boundary”), and suppose that
the second moment of the jump projected on the horizontal
direction

〈
b
〉
Q

is finite. Then, there exists a constant σ > 0 such

that for P-almost all ω, σ−1Z (m)
· converges in law, under Pω, to

Brownian motion as m→∞.
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The corresponding result for the continuous time Knudsen
stochastic billiard is available too. Define Ẑ (s)

t = s−1/2Xst · e.

Theorem
Assume Conditions L, P, R, and suppose that

〈
b
〉
Q
<∞.

Denote

σ̂ =
σΓ(d

2 + 1)Z
π1/2Γ(d+1

2 )
〈
|ω0|

〉
P
d
,

where σ is from the above Theorem and Z is the normalizing
constant from the definition of Q. Then, for P-almost all ω,
σ̂−1Ẑ (s)

· converges in law to Brownian motion as s →∞.
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Let D̂ωH be the part of the random tube ω which lies between 0
and H:

D̂ωH = {z ∈ ω : z · e ∈ [0,H]}.

D̂` = {0} × ω0,

D̂r = {H} × ωH ,

ω̃0 is the set of points of ω0, from where the particle can
reach D̂r by a path which stays within D̂ωH and D̃` := {0} × ω̃0

CH : the event that the particle crosses the tube without going
back to D̃`
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On the definition of D̃`, D̃ωH , and the event CH (a trajectory
crossing the tube is shown)
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Results (TH is the total lifetime of the particle):

I EωTH ∼
γd |Sd−1|

〈
|ω0|
〉
P

2|ω̃0| · H

I Pω[CH ] ∼
γd |Sd−1|σ̂2

〈
|ω0|
〉
P

2|ω̃0| · 1
H

I Eω(TH | CH) ∼ 1
3σ̂2 · H2

As a consequence,

Eω(THI{Cc
H}) ∼

H
3
γd |Sd−1|

〈
|ω0|

〉
P

〈
|ω̃0|−1〉

P
∼ 2Eω(THI{CH})
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(Comets, Popov, arXiv:1009.0048; to appear in AIHP-PS)

Informal definition:
I the process lives in the infinite random tube
I the jumps in the positive direction are always accepted
I the jumps in the negative direction are accepted with

probability e−λu, where u is the horizontal size of the
attempted jump.
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Main result: LLN

Theorem
Assume that d ≥ 3. There exists a positive deterministic v̂ such
that for P-almost every ω

ξn · e
n
→ v̂ as n→∞, Pω-a.s.

Main difficulty: although the random walk is still reversible, it is
unclear how to obtain an explicit form for the invariant measure
for environment seen from the particle.
So, we first consider an analogous process in discrete space.
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Consider a Markov chain (Sn,n = 0,1,2, . . .) in Z with transition
probabilities

Px0
ω [Sn+1 = x + y | Sn = x ] = ωxy for all n ≥ 0, Px0

ω [S0 = x0] = 1,

so that Px0
ω is the quenched law of the Markov chain starting

from x0 in the environment ω.

The environment is chosen at random from the space Ω
according to a law P before the random walk starts; we assume
that the sequence of random vectors (ωx ·, x ∈ Z) is stationary
and ergodic.
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The random walk S is supposed to satisfy the following
conditions:

Condition E. There exists ε̃ such that P[ω01 ≥ ε̃] = 1.

Condition C. There exist γ1 > 0 and α > 1 such that for all
s ≥ 1 we have

∑

y :|y |≥s

ω0y ≤ γ1s−α, P-a.s.
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Denote by S% the random walk in the truncated environment
(jumps that are larger than % are rejected).

Let N%
∞(x) be the total number of visits of S% to x .

Condition D. There is a function g1 ≥ 0 with the property∑∞
k=1 kg1(k) <∞ and a finite %0, such that for all x ≤ 0 and

all % ≥ %0, P-almost surely it holds that E0
ωN%
∞(x) ≤ g1(|x |).
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With these assumptions, we can prove that the speed of the
random walk is well-defined and positive:

Theorem
For all % ∈ [%0,∞] there exists v% > 0 such that for P-a.a. ω we
have

S%
n

n
→ v% as n→∞, Pω-a.s.

Using this result, one can also prove the LLN for the random
billiard with drift by a discretization/coupling argument.
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Let us write an outline of the proof of the LLN for RWRE.

Denote by T %
z = min{k ≥ 0 : S%

k ≥ z}.
Let

r%x (z) = Px
ω[S%

T%z
= z]

be the probability that, at moment T %
z , the (truncated) random

walk is located exactly at z.
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Lemma
Assume Conditions E, C, D. Then, there exists ε1 > 0 such
that, P-a.s.,

r%x (0) ≥ 2ε1

for all x ≤ 0 and for all % ∈ [%0,∞].

Proof:
I define uk = essinf

P
miny∈[−k ,0] r

%
y (0)

I using Condition C, prove that usβ ≥ (1− C3s−ϕ)us for fixed
constants β and ϕ

I Iterating, we obtain that um ≥ 2ε1 > 0 for all m ≥ 2, where

ε1 =
1
2

u2(1− C32−ϕ)(1− C32−βϕ)(1− C32−β
2ϕ) . . . > 0

Random billiards and RWRE



Random billiards with cosine reflection law
Stationary random tube: quenched invariance principles

Finite tube: crossing probabilities and crossing time
Knudsen billiards with drift

A strongly transient RWRE with unbounded jumps

Proof of the theorem (sketch):

I fix some integer % ∈ [%0,∞), and consider a sequence of
i.i.d. random variables ζ1, ζ2, ζ3, . . . with
P[ζj = 1] = 1− P[ζj = 0] = ε1

I for all j ≥ 1, Lemma implies that r%x (j%) ≥ 2ε1 for all
x ∈ [(j − 1)%, j%− 1]

I we couple the sequence ζ = (ζ1, ζ2, ζ3, . . .) with the random
walk S% in such a way that ζj = 1 implies that S%

T%j%
= j%

I denote `1 = min{j : ζj = 1}
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I then, since ζ (and therefore `1) is independent of ω, θ`1%ω
has the same law P as ω

I this allows us to break the trajectory of the random walk
into stationary ergodic (after suitable shift) sequence of
pieces, and then apply the ergodic theorem to obtain the
law of large numbers

I the stationary measure of the environment seen from the
particle (for the truncated random walk) can also be
obtained from this construction by averaging along the
cycle

I finally, we pass to the limit as %→∞
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