On the internal distance in the interlacement set

Jiří Černý Serguei Popov

Černý, Popov Internal distance in the interlacement set

Definition of the interlacement set \mathcal{I}^u

Graph distance within the interlacement set

Černý, Popov Internal distance in the interlacement set

(ロ) (同) (三) (三) (三) (0) (0)

- \mathbb{Z}^d , $d \ge 3$, so that SRW is transient
- informally speaking, random interlacements = stationary soup of doubly infinite SRW's trajectories
- *u* is the "intensity" of the interlacement set, so *I*^{*u*₁} ≿ *I*^{*u*₂} for *u*₁ > *u*₂
- see the recent papers of Sznitman

(日) (同) (日) (日) (日)

Sac

Construction of \mathcal{I}^u on a *finite* set $A \subset \mathbb{Z}^d$:

• $e_A(x) := P_x[SRW \text{ escapes from } A]\mathbf{1}_A(x)$

$$\blacktriangleright \operatorname{cap}(A) := \sum_{x \in A} e_A(x)$$

- ► place Poisson(ue_A(x)) particles to x, independently for x ∈ A
- each particle performs a SRW
- ► (so that the total number of particles walking on A is Poisson(u cap(A)))

For example,

• $A = S_n = \{x \in \mathbb{Z}^d : ||x|| \le n\}$

•
$$e_{S_n}(x) = O(n^{-1})$$
 for $x \in \partial S_n$

- ► total number of particles on ∂S_n is $Poisson(u \operatorname{cap}(S_n)) = O(un^{d-2})$
- observe that $P_x[SRW \text{ hits } y] \simeq ||x y||^{-(d-2)}$
- so, we have "just enough" particles (i.e., 0 < ℙ^u[0 ∈ I^u_{Sn}] < 1 uniformly)

In fact, on the previous page we have the *exact* definition of \mathcal{I}^u on any given finite set (i.e., no need to take the limit $n \to \infty$ here)!

In particular, $\mathbb{P}^{u}[0 \notin \mathcal{I}_{S_{n}}^{u}] = \exp(-\frac{u}{g(0,0)})$

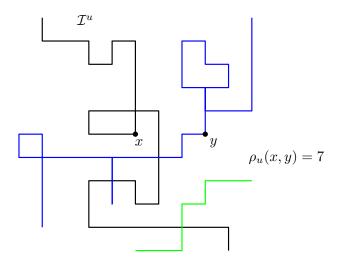
・ロト ・ 同ト ・ ヨト ・ ヨト

San

Definition of the interlacement set \mathcal{I}^u

Graph distance within the interlacement set

Černý, Popov Internal distance in the interlacement set



- ▶ let $\mathbb{P}_0^u = \mathbb{P}[\cdot | 0 \in \mathcal{I}^u]$ be the conditional law given that $0 \in \mathcal{I}^u$
- For x, y ∈ I^u we define ρ_u(x, y) to be the internal distance between x and y within the interlacement set I^u
- Let ∧^u(n) = {y ∈ I^u : ρ^u(0, y) ≤ n} be the ball of radius n in the internal distance

Theorem

For every u > 0 and $d \ge 3$ there exists $D_u \subset \mathbb{R}^d$ such that for any $\varepsilon > 0$

$$ig((\mathsf{1}-arepsilon)\mathsf{n} \mathcal{D}_u\cap \mathcal{I}^uig)\subset \wedge^u(\mathsf{n})\subset (\mathsf{1}+arepsilon)\mathsf{n} \mathcal{D}_u$$

eventually.

イロト 不得 トイヨト イヨト ニヨー

DQC

- ► the set D_u is symmetric under rotations and reflections of Z^d
- $D_u \subset \{x \in \mathbb{R}^d : \|x\|_1 \leq 1\}$ for all u
- ▶ it is straightforward to show that $D_u \to \{x \in \mathbb{R}^d : ||x||_1 \le 1\}$ as $u \to \infty$
- ► it would be interesting, however, to be able to say something about the behaviour of D_u when u → 0 (e.g., does the shape become close to the Euclidean ball, and what can be said about the size of D_u as u → 0?)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

San

Main tool: we prove that, for large enough C

$$\mathbb{P}_0^u$$
[for all $x, y \in S_n \cap \mathcal{I}^u, \rho^u(x, y) > Cn^2$] $< e^{-n^{\delta}}$

(in fact, this also implies that \mathcal{I}^u is connected *simultaneously* for all u)

イロト イボト イヨト イヨト 二日

DQC

Definition of the interlacement set \mathcal{I}^{u} Graph distance within the interlacement set



Černý, Popov

Internal distance in the interlacement set