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I Zd , d ≥ 3, so that SRW is transient
I informally speaking, random interlacements = stationary

soup of doubly infinite SRW’s trajectories
I u is the “intensity” of the interlacement set, so Iu1 � Iu2 for

u1 > u2

I see the recent papers of Sznitman
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Construction of Iu on a finite set A ⊂ Zd :

I eA(x) := Px [SRW escapes from A]1A(x)

I cap(A) :=
∑
x∈A

eA(x)

I place Poisson(ueA(x)) particles to x , independently for
x ∈ A

I each particle performs a SRW
I (so that the total number of particles walking on A is

Poisson(u cap(A)))
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For example,
I A = Sn = {x ∈ Zd : ‖x‖ ≤ n}
I eSn (x) = O(n−1) for x ∈ ∂Sn

I total number of particles on ∂Sn is
Poisson(u cap(Sn)) = O(und−2)

I observe that Px [SRW hits y ] ' ‖x − y‖−(d−2)

I so, we have “just enough” particles (i.e.,
0 < Pu[0 ∈ Iu

Sn
] < 1 uniformly)

In fact, on the previous page we have the exact definition of Iu

on any given finite set (i.e., no need to take the limit n→∞
here)!

In particular, Pu[0 /∈ Iu
Sn

] = exp(− u
g(0,0))
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x y
ρu(x, y) = 7

Iu
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I let Pu
0 = P[ · |0 ∈ Iu] be the conditional law given that

0 ∈ Iu

I for x , y ∈ Iu we define ρu(x , y) to be the internal distance
between x and y within the interlacement set Iu

I let Λu(n) = {y ∈ Iu : ρu(0, y) ≤ n} be the ball of radius n in
the internal distance

Theorem
For every u > 0 and d ≥ 3 there exists Du ⊂ Rd such that for
any ε > 0 (

(1− ε)nDu ∩ Iu) ⊂ Λu(n) ⊂ (1 + ε)nDu

eventually.
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I the set Du is symmetric under rotations and reflections
of Zd

I Du ⊂ {x ∈ Rd : ‖x‖1 ≤ 1} for all u
I it is straightforward to show that Du → {x ∈ Rd : ‖x‖1 ≤ 1}

as u →∞
I it would be interesting, however, to be able to say

something about the behaviour of Du when u → 0 (e.g.,
does the shape become close to the Euclidean ball, and
what can be said about the size of Du as u → 0?)
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Main tool: we prove that, for large enough C

Pu
0[for all x , y ∈ Sn ∩ Iu, ρu(x , y) > Cn2] < e−nδ

(in fact, this also implies that Iu is connected simultaneously for
all u)
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Sketch of the proof (for d = 4):

B(n)

1
2

2

2

3

3

3
3
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