# On uniform closeness of local times of Markov chains and i.i.d. sequences

Serguei Popov University of Campinas

Joint work with D.F. de Bernardini and C. Gallesco

June 13, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ









▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ









・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

## Motivating example

Let *X* be a Markov chain on the state space  $\Sigma = \{0, 1\}$ , with transition probabilities:

 $\mathbb{P}[X_{n+1} = k \mid X_n = k] = 1 - \mathbb{P}[X_{n+1} = 1 - k \mid X_n = k] = \frac{1}{2}(1 + \varepsilon)$ for k = 0, 1, where  $\varepsilon > 0$  is small.

By symmetry,  $\pi = (\frac{1}{2}, \frac{1}{2})$  is the stationary distribution of this Markov chain.

Next, let Y be a sequence of i.i.d. Bernoulli random variables with success probability  $\frac{1}{2}$ .

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

## Introductory example

Consider in this case,

$$L_n^Z(0) = \sum_{j=1}^n \mathbf{1}_{\{Z_j=0\}}$$

for Z = X or Y. What can we say about  $d_{TV}(L_n^X(0), L_n^Y(0))$ ?

## Introductory example

Well, the random variable  $L_n^{\gamma}(0)$  has the Binomial distribution with parameters *n* and  $\frac{1}{2}$ , so it is approximately Normal with mean  $\frac{n}{2}$  and standard deviation  $\frac{\sqrt{n}}{2}$ .

As for  $L_n^X(0)$ , it is approximately Normal with mean  $\frac{n}{2}$  and standard deviation  $\sqrt{n}(\frac{1}{2} + O(\varepsilon))$ .

It is not difficult obtain that the total variation distance between these two Normals is  $O(\varepsilon)$ , uniformly in *n*.

This *suggests* that the total variation distance between  $L_n^{\chi}(0)$  and  $L_n^{\gamma}(0)$  should be also of order  $\varepsilon$  uniformly in *n*.

Why bother with local times?

Many quantities of interest that can be expressed in terms of local times only, such as,

- hitting time of a site x:  $\tau(x) = \min\{n : L_n(x) > 0\};$
- cover time: min{ $n : L_n(x) > 0$  for all  $x \in \Sigma$ };
- blanket time : min{ $n \ge 1 : L_n(x) \ge \delta n\pi(x)$ }, where  $\delta \in (0, 1)$ ;
- disconnection time;
- the set of favorite (most visited) sites;
- and so on...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ









(日) (日) (日) (日) (日) (日) (日)

## Main results

Let  $(\Sigma, d)$  be a compact metric space, with  $\mathcal{B}(\Sigma)$  representing its Borel  $\sigma$ -algebra.

#### Assumption (A1)

We assume that  $(\Sigma, d)$  is of polynomial class: there exist some  $\beta \ge 0$ and  $\varphi \ge 1$  such that for all  $r \in (0, 1]$ , the number of open balls of radius r needed to cover  $\Sigma$  is smaller than or equal to  $\varphi r^{-\beta}$ .

Example:  $\Sigma$  finite, endowed with the discrete metric

$$d(x,y) = \mathbf{1}_{\{x \neq y\}}, \text{ for } x, y \in \Sigma.$$

We can choose  $\beta = 0$  and  $\varphi = |\Sigma|$ .

## Main results

Consider a Markov chain  $X = (X_i)_{i \ge 1}$  with transition kernel  $\mathfrak{P}(x, dy)$  on  $(\Sigma, \mathcal{B}(\Sigma))$ , and unique invariant probability measure  $\pi$  such that  $\mathfrak{P}(x, \cdot) \ll \pi(\cdot)$  for all  $x \in \Sigma$ .

Denote by  $p(x, \cdot)$  the *density* of  $\mathfrak{P}(x, \cdot)$  with respect to  $\pi$ : for  $x \in \Sigma$ ,

$$\mathfrak{P}(x,A) = \int_A p(x,y) \pi(dy), ext{ for all } A \in \mathcal{B}(\Sigma).$$

We also consider

#### Assumption (A2)

Assume that the density  $p(x, \cdot)$  is uniformly Hölder continuous, that is, there exist constants  $\kappa > 0$  and  $\gamma \in (0, 1]$  such that for all  $x, z, z' \in \Sigma$ ,

$$|p(x,z)-p(x,z')| \leq \kappa d^{\gamma}(z,z').$$

(日)

## Main results

We assume that the chain X starts with some probability law absolutely continuous with respect to  $\pi$  and we denote by  $\nu$  its density.

#### Assumption (A3)

There exists  $\varepsilon \in (0, 1/2)$  such that

$$\sup_{x,y\in\Sigma} |p(x,y)-1| \lor \sup_{x\in\Sigma} |\nu(x)-1| \le \varepsilon.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

## Main results

Let us denote also by  $Y = (Y_n)_{n \ge 1}$  a sequence of i.i.d. random variable with law  $\pi$ .

We have the following

#### Theorem 1

Under Assumptions 1-3, there exists a universal constant K > 0 such that, for all  $n \ge 1$ , it holds that

$$\mathsf{d}_{\mathsf{TV}}(L_n^X,L_n^Y) \leq \mathcal{K}\varepsilon \sqrt{1+\mathsf{ln}(\varphi 2^\beta)+\frac{\beta}{\gamma}\mathsf{ln}\left(\frac{\kappa \vee (2\varepsilon)}{\varepsilon}\right)}.$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

## Main results

### Case of a finite state space $\Sigma$ , endowed with the discrete metric: Choosing $\beta = 0$ and $\varphi = |\Sigma|$ , Theorem 1 boils down to

$$\mathsf{d}_{\mathsf{TV}}(L_n^X, L_n^Y) \leq \kappa \varepsilon \sqrt{1 + \ln |\Sigma|},$$

for all  $n \ge 1$ .

Recall motivating example!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

## Main results

We also have

#### Theorem 2

Under Assumptions 1-3, there exists a positive constant  $K' = K'(\beta, \varphi, \kappa, \gamma, \varepsilon)$ , such that, for all  $n \ge 1$ , it holds that

 $\mathsf{d}_{\mathsf{TV}}(L_n^X,L_n^Y) \leq 1-K'.$ 



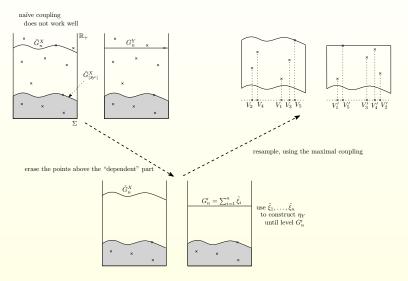








## Idea of the proof: the soft local times method



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ - □ - つくで

## Thanks!