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Motivating example

Let X be a Markov chain on the state space Σ = {0,1}, with
transition probabilities:

P[Xn+1 = k | Xn = k ] = 1− P[Xn+1 = 1− k | Xn = k ] = 1
2 (1 + ε)

for k = 0,1, where ε > 0 is small.

By symmetry, π = ( 1
2 ,

1
2 ) is the stationary distribution of this Markov

chain.

Next, let Y be a sequence of i.i.d. Bernoulli random variables with
success probability 1

2 .
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Introductory example

Consider in this case,

LZ
n (0) =

n∑

j=1

1{Zj =0}

for Z = X or Y . What can we say about dTV(LX
n (0),LY

n (0))?
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Introductory example

Well, the random variable LY
n (0) has the Binomial distribution with

parameters n and 1
2 , so it is approximately Normal with mean n

2 and
standard deviation

√
n

2 .

As for LX
n (0), it is approximately Normal with mean n

2 and standard
deviation

√
n
( 1

2 + O(ε)
)
.

It is not difficult obtain that the total variation distance between these
two Normals is O(ε), uniformly in n.

This suggests that the total variation distance between LX
n (0)

and LY
n (0) should be also of order ε uniformly in n.
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Why bother with local times?

Many quantities of interest that can be expressed in terms of local
times only, such as,

hitting time of a site x : τ(x) = min{n : Ln(x) > 0};
cover time: min{n : Ln(x) > 0 for all x ∈ Σ};
blanket time : min{n ≥ 1 : Ln(x) ≥ δnπ(x)}, where δ ∈ (0,1);
disconnection time;
the set of favorite (most visited) sites;
and so on...
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Main results

Let (Σ,d) be a compact metric space, with B(Σ) representing its
Borel σ-algebra.

Assumption (A1)

We assume that (Σ,d) is of polynomial class: there exist some β ≥ 0
and ϕ ≥ 1 such that for all r ∈ (0,1], the number of open balls of
radius r needed to cover Σ is smaller than or equal to ϕr−β .

Example: Σ finite, endowed with the discrete metric

d(x , y) = 1{x 6=y}, for x , y ∈ Σ.

We can choose β = 0 and ϕ = |Σ|.
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Main results

Consider a Markov chain X = (Xi )i≥1 with transition kernel P(x ,dy)
on (Σ,B(Σ)), and unique invariant probability measure π such that
P(x , ·)� π(·) for all x ∈ Σ.

Denote by p(x , ·) the density of P(x , ·) with respect to π: for x ∈ Σ,

P(x ,A) =

∫

A
p(x , y)π(dy), for all A ∈ B(Σ).

We also consider

Assumption (A2)

Assume that the density p(x , ·) is uniformly Hölder continuous, that is,
there exist constants κ > 0 and γ ∈ (0,1] such that for all x , z, z ′ ∈ Σ,

|p(x , z)− p(x , z ′)| ≤ κdγ(z, z ′).
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Main results

We assume that the chain X starts with some probability law
absolutely continuous with respect to π and we denote by ν its
density.

Assumption (A3)

There exists ε ∈ (0,1/2) such that

sup
x,y∈Σ

|p(x , y)− 1| ∨ sup
x∈Σ
|ν(x)− 1| ≤ ε.
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Main results

Let us denote also by Y = (Yn)n≥1 a sequence of i.i.d. random
variable with law π.

We have the following

Theorem 1
Under Assumptions 1-3, there exists a universal constant K > 0 such
that, for all n ≥ 1, it holds that

dTV(LX
n ,L

Y
n ) ≤ K ε

√
1 + ln(ϕ2β) +

β

γ
ln
(κ ∨ (2ε)

ε

)
.
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Main results

Case of a finite state space Σ, endowed with the discrete metric:

Choosing β = 0 and ϕ = |Σ|, Theorem 1 boils down to

dTV(LX
n ,L

Y
n ) ≤ K ε

√
1 + ln |Σ|,

for all n ≥ 1.

Recall motivating example!



Motivating example Main results Elements of proof of Theorem 1

Main results

We also have

Theorem 2
Under Assumptions 1-3, there exists a positive
constant K ′ = K ′(β, ϕ, κ, γ, ε), such that, for all n ≥ 1, it holds that

dTV(LX
n ,L

Y
n ) ≤ 1− K ′.
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Idea of the proof: the soft local times method

Σ

R+

G̃X
|Hc|

G̃X
n GY

n

G′
n =

∑n
i=1 ξ̃i

G̃X
n

V1V2 V3V4 V5 V ′
3V ′

1 V ′
4V ′

5 V ′
2

erase the points above the “dependent” part

resample, using the maximal coupling

näıve coupling
does not work well

use ξ̃1, . . . , ξ̃n
to construct ηY

until level G′
n
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Thanks!
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