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The model:
I In Zd , to any unordered pair of neighbors attach a positive

number ωx ,y (conductance between x and y ).
I P stands for the law of this field of conductances. We

assume that P is stationary and ergodic.
I Define πx =

∑
y∼x ωx ,y , and let the transition probabilities

be

qω(x , y) =

{ ωx,y
πx
, if y ∼ x ,

0, otherwise,

I Px
ω is the quenched law of the random walk starting from x ,

so that

Px
ω[X (0) = x ] = 1, Px

ω[X (k+1) = z | X (k) = y ] = qω(y , z).
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(many recent papers) =⇒ under mild conditions on the law of
ω-s, the Quenched Invariance Principle holds:

For almost every environment ω, suitably rescaled trajectories
of the random walk converge to the Brownian Motion (with
nonrandom diffusion constant σ) in a suitable sense.

Main method of the proof: the “corrector approach”, i.e., find a
“stationary deformation” of the lattice such that the random
walk becomes martingale.

The corrector is shown to exist, but usually no explicit formula is
known for it.
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Brownian Meander:

Let W be the Brownian Motion starting from 0, and define
τ1 = sup{s ∈ [0,1] : W (s) = 0} and ∆1 = 1− τ1.

Then, the Brownian Meander W+ is defined in this way:

W+(s) := ∆
−1/2
1 |W1(τ1 + s∆1)|, 0 ≤ s ≤ 1.

Informally, the Brownian Meander is the Brownian Motion
conditioned on staying positive on the time interval (0,1].

Example: simple random walk S, conditioned on
{S1 > 0, . . . ,Sn > 0}, after usual scaling converges to the
Brownian Meander.
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Let
Λn := {X1(k) > 0 for all k = 1, . . . ,n}

(X1 is the first coordinate of X ).

Consider the conditional quenched probability measure
Qn
ω[ · ] := Pω[ · | Λn].

Define the continuous map Z n(t), t ∈ [0,1]) as the natural
polygonal interpolation of the map k/n 7→ σ−1n−1/2X (k) (with σ
from the quenched CLT).

For each n, the random map Z n induces a probability measure
µn
ω on (C[0,1],B1): for any A ∈ B1,

µn
ω(A) := Qn

ω[Z n ∈ A].
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Condition E. There exists κ > 0 such that, P-a.s.,
κ < ω0,x < κ−1 for x ∼ 0.

Denote by PW+ ⊗ PW (d−1) the product law of Brownian meander
and (d − 1)-dimensional standard Brownian motion on the time
interval [0,1].

Now, we formulate our main result:

Theorem
Under Condition E, we have that, P-a.s., µn

ω (after suitable
linear transformation) tends weakly to PW+ ⊗ PW (d−1) as n→∞
(as probability measures on C[0,1]).
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Strategy of the proof: “go avay a little bit from the forbidden
area in a controlled way”

(we need to control the time and the vertical displacement), and
then use unconditional CLT.

0

X(t)

ε
√
n

t =time to go out

vertical displacement
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Open questions:
I other types of conditioning;
I Pω[Λn] ' ? (at least prove it is of order n−1/2).
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