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Introduction
Original motivation: Finite-time blowup for complex
Ginzburg-Landau eq.

e−iθut = ∆u + |u|αu, (1)

on RN , where α > 0, −π
2 ≤ θ ≤ π

2 .

θ = 0: the nonlinear heat equation ut −∆u = |u|αu.

θ = ±π/2: the nonlinear Schrödinger equation
±iut + ∆u + |u|αu = 0.

Thus (1) is “intermediate” between the nonlinear heat
and Schrödinger equations.

Goal: find a different argument for blowup.
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(1) is a particular case of the more general complex
Ginzburg-Landau equation

ut = e iθ∆u + e iφ|u|αu + γu. (2)

Local/global existence for (2) known under various
boundary conditions and assumptions on the parameters.
On the other hand, few blowup results when (2) is
neither NLH nor NLS.
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Snoussi & Tayachi: (Convexity argument) Blowup of
negative energy solutions of (1) with N = 1, 2, α = 2,
|θ| < π/4. Same argument yields blowup when N ≥ 1,
α > 0 and cos2 θ > 2

α+2 .

Masmoudi & Zaag: (Ansatz technique) Blowup occurs if
|θ|, |φ| < π/2 and tan2 φ + (α + 2) tan θ tanφ < α + 1.
(L∞ solutions, not necessarily finite-energy.) For (1), this
means tan2 θ < α+1

α+3 . (In particular, θ < π/4.)
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1 Finite-time blowup
Finite-time blowup
Behavior of the blowup time
GL with linear driving
Some open problems

2 Standing waves
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A complex Ginzburg-Landau equation
Consider the equation{

e−iθut = ∆u + |u|αu,

u(0, x) = u0(x),
(GL)

on RN , where α > 0 and π
2 < θ < π

2 . It is easy to show
LWP in C0(RN) and in C0(RN) ∩ H1(RN). We call
Tmax = Tmax(u0) the maximal existence time.
For the ODE e−iθz ′ = |z |αz , the solution with

z(0) = c 6= 0 is z(t) = c[1− tα|c |α cos θ]−
1
α (1+i tan θ). It

blows up at T = 1
α|c |α cos θ <∞. (No blowup for the

other sign.)
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The main feature of (GL), with respect to (2), is that its
solutions satisfy energy identities. More precisely,

1

2

d

dt

∫
RN

|u|2 = − cos θI (u(t)), (3)

d

dt
E (u(t)) = − cos θ

∫
RN

|ut |2, (4)

where

E (w) =
1

2

∫
RN

|∇w |2 − 1

α + 2

∫
RN

|w |α+2,

I (w) =

∫
RN

|∇w |2 −
∫
RN

|w |α+2.
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Finite-time blowup

Negative energy solutions blow up in finite time.

Theorem

Let u0 ∈ C0(RN) ∩ H1(RN). If E (u0) < 0, then
Tmax <∞, i.e. the corresponding solution u of (GL)
blows up in finite time. (Recall that |θ| < π/2.)

Using the energy identities, the result follows essentially
from Levine’s calculations.
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Behavior of the blowup time

Fix u0 ∈ C0(RN) ∩ H1(RN) such that E (u0) < 0. Given
|θ| < π/2, let uθ be the corresponding solution of (GL),
so that uθ blows up at the finite time T θ

max.

If α < 4/N , then the solution of NLS (i.e. (GL) for
θ = ±π/2) is global. Does T θ

max →∞ as θ → ±π/2?

If 4/N ≤ α < 4/(N − 2) and if u0 has finite variance,
then the corresponding solution of NLS blows up in finite
time. Does T θ

max remain bounded as θ → ±π/2?
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First question:

Theorem

If 0 < α < 4
N , then there exists c > 0 such that

T θ
max ≥ c

cos θ for all |θ| < π
2 .

Global existence for NLS is proved by using the energy
identities and Gagliardo-Nirenberg’s inequality. The
above theorem is proved by using the same tools. (The
proof of blowup shows T θ

max ≤ C
cos θ .)
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Second question:

Theorem

Suppose N ≥ 2 and 4
N ≤ α ≤ 4. Fix

u0 ∈ H1(RN) ∩ C0(RN), u0 radial, and let uθ denote the
corresponding maximal solution of (GL). If E (u0) < 0,
then ∃T <∞ s.t. T θ

max ≤ T for all |θ| < π
2 .

The proof follows the “truncated variance” method used
by Ogawa and Tsutsumi for NLS. The extra terms are
not too difficult to control. The “unnatural” assumptions
that α ≤ 4 and u0 is radial come from the same technical
reasons as in the paper of Ogawa and Tsutsumi.
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If one is willing to assume finite variance, then the
standard variance argument of NLS can be used.
However, the extra terms that appear involve∫

RN

{
−2|x |2|∇uθ|2 +

α + 4

α + 2
|x |2|uθ|α+2 + 2N |uθ|2

}
.

It seems the only way to control that term is by a
Caffarelli-Kohn-Nirenberg inequality. Interestingly, the
appropriate inequality requires the very same
assumptions α ≤ 4 and u0 is radial as in the previous
calculations.
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GL with linear driving

Consider (1) with a driving term, i.e.,

ut = e iθ[∆u + |u|αu] + γu, (5)

with γ ∈ R.
ODE: z ′ = e iθ|z |αz + γz , solution with z(0) = c is

z(t) = eγt
[

1− eαγt − 1

γ
|c |α cos θ

]− 1
α (1+i tan θ)

c .

If γ > 0, blowup for all c 6= 0.
If γ < 0, blowup if and only if |c | > −γ

cos θ .
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For equation (5):

If γ > 0, then E (u0) < 0 implies blowup by considering
v(t) = e−γtu(t). (Same as for NLH and NLS.)

If γ < 0, much more delicate. OK for NLH, difficult
for NLS if α > 4/N (Tsutsumi), with energy condition
depending on γ. Only partial results for (5), with
conditions on α and θ. (Joint work with J.P. Dias and
M. Figueira.)
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Some open problems

For the nonlinear heat equation (i.e., (GL) with θ = 0)
there is a Fujita critical exponent: If α ≤ 2/N , then
arbitrarily small initial values (in any reasonable norm)
may produce solutions that blow up in finite time. (In
fact, any nonzero, nonnegative initial value produces a
blowing-up solution.) If α > 2/N , then small initial
values (in appropriate norms) produce global solutions.
For NLS, there is no such exponent: small initial values
always produce global solutions.

Open Problem
Is there a Fujita critical exponent for equation (GL)?
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For equation (GL) with nonlinearity of other sign, i.e.
e−iθut = ∆u − |u|αu, the factor of |u|α+2 comes with a
positive sign in both I and E .
The energy identities (3) and (4) yield a control of
‖u(t)‖H1 + ‖u(t)‖Lα+2 for 0 ≤ t < Tmax.
Using a standard parabolic bootstrap argument, it
follows that if α < 4

N−2 (α <∞ if N = 1, 2), then
‖u(t)‖L∞ is also controlled, so that the solution is global
by BU alternative. Thus we see that all solutions with
initial value in C0(RN) ∩ H1(RN) are global if α < 4

N−2 .
(These estimates make use of the energies, so they are
not valid for initial values that are only in C0(RN).)
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In view of the above observations, we emphasize the
following open problems.

Open Problem

Consider the equation e−iθut = ∆u − |u|αu and suppose
N ≥ 3 and α ≥ 4/(N − 2). Given any
u0 ∈ C0(RN) ∩ H1(RN) let u be the corresponding
solution. Is u global?

Open Problem

Consider the equation e−iθut = ∆u − |u|αu with α > 0.
Given any u0 ∈ C0(RN) let u be the corresponding
solution. Is u global?
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Our calculations for BU are based on the energy
identities. There are no such identities for the general
case of equation (2), so we emphasize the following open
problem.

Open Problem
Is there a general sufficient condition for blowup for
equation (2) with θ 6= φ?
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Standing waves
Look for standing waves the general complex GL
equation (2) of the form u(t, x) = e iωtw(x). The
equation for w is

e iθ∆w + e iφ|w |αw + (γ − iω)w = 0. (6)

If θ = φ, then this is

∆w + |w |αw + e−iθ(γ − iω)w = 0.

OK if ω chosen so that e−iθ(γ − iω) ∈ R, i.e.
ω = −γ tan θ. Standard elliptic problem

∆w + |w |αw +
γ

cos θ
w = 0. (7)
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Nontrivial H1 solutions if γ < 0 and α subcritical or
γ = 0, α critical and N ≥ 5.

If θ 6= φ, not variational. Possible approaches:

– ODE method (shooting): Coupled system of two
(real-valued) second order ODEs (nonautonomous if
N ≥ 2).

– Perturbation: IFT using the solutions of (7). Requires
appropriate properties of the linearized operator. OK for
α subcritical, w ground state of (7) and φ close to θ.
(Cipolatti, Dickstein, Puel, in preparation.)
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Another perturbative approach: Play with α and try IFT
starting from a solution of
e iθ∆w + e iφw + (γ − iω)w = 0. This involves
eigenvectors of the Laplacian, so one must change the
boundary conditions.
For example: Dirichlet on a bounded domain and
periodic on RN (on TN).
On TN , already plenty of constant or, more generally,
plane wave solutions w(x) = ce iy ·x . Equation is
−|y |2e iθ + |c |αe iφ + γ = iω. OK if we choose
|y |2 cos θ > γ. (Possible, only restriction: yj ∈ 2πZ for
all j .) |c | is determined by |c |α cosφ = |y |2 cos θ − γ and
ω is given by ω = |c |α sinφ− |y |2 sin θ.
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For Dirichlet, the IFT method works and, given θ, φ, γ,
one obtains a branch of nontrivial solutions in H1

0 (Ω) for
small α, provided λ1 cos θ > γ. (w = w(α) and
ω = ω(α).)
Given θ, φ, γ, one can let Ω be a small cube, so that
λ1 cos θ > γ, and extend the solutions to RN by odd
(hence, periodic) extension. One obtains solutions on TN

(different from the trivial ones) for small α.

Open Problem

Nontrivial standing waves in H1(RN) (or in H1(TN)) for
general α, θ, φ?
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