# ON A PERTURBATION OF THE BENJAMIN ONO EQUATION 

RICARDO A. PASTRÁN R.<br>Universidad Nacional de Colombia, Bogotá

FIRST WORKSHOP ON NONLINEAR DISPERSIVE EQUATIONS

IMECC, UNICAMP
Campinas-SP, 31-Oct-2013

## INTRODUCTION

Let $X, Y$ be Banach spaces and let $F: Y \rightarrow X$ be a continuous function. We say that the Cauchy problem

$$
(E)\left\{\begin{aligned}
\partial_{t} u(t) & =F(u(t)) \in X \\
u(0) & =\phi \in Y
\end{aligned}\right.
$$

is locally well-posed in $\mathbf{Y}$ if

## INTRODUCTION

Let $X, Y$ be Banach spaces and let $F: Y \rightarrow X$ be a continuous function. We say that the Cauchy problem

$$
(E)\left\{\begin{aligned}
\partial_{t} u(t) & =F(u(t)) \in X \\
u(0) & =\phi \in Y
\end{aligned}\right.
$$

is locally well-posed in $\mathbf{Y}$ if
Existence: For each $\phi \in Y$ there are a real number $T>0$ and a function $u \in C([0, T] ; Y)$ satisfying $(E)$ for $t \in(0, T]$.

## INTRODUCTION

Let $X, Y$ be Banach spaces and let $F: Y \rightarrow X$ be a continuous function. We say that the Cauchy problem

$$
(E)\left\{\begin{aligned}
\partial_{t} u(t) & =F(u(t)) \in X \\
u(0) & =\phi \in Y
\end{aligned}\right.
$$

is locally well-posed in $\mathbf{Y}$ if
Existence: For each $\phi \in Y$ there are a real number $T>0$ and a function $u \in C([0, T] ; Y)$ satisfying $(E)$ for $t \in(0, T]$.

Uniqueness: Problem $(E)$ has at most one solution in $C([0, T] ; Y)$.

## INTRODUCTION

Let $X, Y$ be Banach spaces and let $F: Y \rightarrow X$ be a continuous function. We say that the Cauchy problem

$$
(E)\left\{\begin{aligned}
\partial_{t} u(t) & =F(u(t)) \in X, \\
u(0) & =\phi \in Y,
\end{aligned}\right.
$$

is locally well-posed in $\mathbf{Y}$ if
Existence: For each $\phi \in Y$ there are a real number $T>0$ and a function $u \in C([0, T] ; Y)$ satisfying $(E)$ for $t \in(0, T]$.

Uniqueness: Problem $(E)$ has at most one solution in $C([0, T] ; Y)$.
Continuous Dependence: The map $\phi \rightarrow u$ is continuous from $Y$ to $C([0, T] ; Y)$.

## INTRODUCTION

Let $X, Y$ be Banach spaces and let $F: Y \rightarrow X$ be a continuous function. We say that the Cauchy problem

$$
(E)\left\{\begin{aligned}
\partial_{t} u(t) & =F(u(t)) \in X, \\
u(0) & =\phi \in Y,
\end{aligned}\right.
$$

is locally well-posed in $\mathbf{Y}$ if
Existence: For each $\phi \in Y$ there are a real number $T>0$ and a function $u \in C([0, T] ; Y)$ satisfying $(E)$ for $t \in(0, T]$.

Uniqueness: Problem $(E)$ has at most one solution in $C([0, T] ; Y)$.
Continuous Dependence: The map $\phi \rightarrow u$ is continuous from $Y$ to $C([0, T] ; Y)$.

If $T$ can be taken arbitrarily large, the Caucy problem $(E)$ is globally well-posed in Y .

$$
(P B O)\left\{\begin{aligned}
u_{t}+u u_{x}+\beta \mathcal{H} u_{x x}+\eta\left(\mathcal{H} u_{x}-u_{x x}\right) & =0, \quad x \in \mathbb{R}, \quad t \geq 0, \\
u(x, 0) & =\phi(x),
\end{aligned}\right.
$$

where $\beta, \eta>0$ and $\mathcal{H}$ denotes the usual Hilbert transform given by

$$
\mathcal{H} f(x)=\frac{1}{\pi} p \cdot v . \int_{-\infty}^{\infty} \frac{f(y)}{y-x} d y,
$$

or equivalently, $\widehat{(\mathcal{H} f)}(\xi)=i \operatorname{sgn}(\xi) \widehat{f}(\xi)$ for $f \in \mathcal{S}(\mathbb{R})$.

## THE PROBLEM

$$
(P B O)\left\{\begin{aligned}
u_{t}+u u_{x}+\beta \mathcal{H} u_{x x}+\eta\left(\mathcal{H} u_{x}-u_{x x}\right) & =0, \quad x \in \mathbb{R}, \quad t \geq 0, \\
u(x, 0) & =\phi(x),
\end{aligned}\right.
$$

where $\beta, \eta>0$ and $\mathcal{H}$ denotes the usual Hilbert transform given by

$$
\mathcal{H} f(x)=\frac{1}{\pi} p . v . \int_{-\infty}^{\infty} \frac{f(y)}{y-x} d y,
$$

or equivalently, $\widehat{(\mathcal{H} f)}(\xi)=i \operatorname{sgn}(\xi) \widehat{f}(\xi)$ for $f \in \mathcal{S}(\mathbb{R})$.
This equation was introduced by H. H. Chen and Y. C. Lee (1982) to describe fluid and plasma turbulence.

The Benjamin-Ono-Burgers equation which was studied by M. Otani $(2005,06)$ as a particular case of the initial value problem for the generalized Benjamin-Ono-Burgers (gBOB) equations when $a=0$ and $\alpha=1$. That Cauchy problem is

$$
\left\{\begin{aligned}
u_{t}+u u_{x}-\partial_{x}\left|D_{x}\right|^{1+a} u+\left|D_{x}\right|^{2 \alpha} u & =0 \quad x \in \mathbb{R}, \quad t \geq 0, \\
u(x, 0) & =u_{0}(x),
\end{aligned}\right.
$$

where $\left|D_{x}\right|^{k}$ is the Fourier multiplier operator with symbol $|\xi|^{k}$.

The Benjamin-Ono-Burgers equation which was studied by M. Otani $(2005,06)$ as a particular case of the initial value problem for the generalized Benjamin-Ono-Burgers (gBOB) equations when $a=0$ and $\alpha=1$. That Cauchy problem is

$$
\left\{\begin{aligned}
u_{t}+u u_{x}-\partial_{x}\left|D_{x}\right|^{1+a} u+\left|D_{x}\right|^{2 \alpha} u & =0 \quad x \in \mathbb{R}, \quad t \geq 0, \\
u(x, 0) & =u_{0}(x),
\end{aligned}\right.
$$

where $\left|D_{x}\right|^{k}$ is the Fourier multiplier operator with symbol $|\xi|^{k}$.
Otani proved that these equations are globally well-posed in Sobolev spaces $H^{s}(\mathbb{R})$ for $s>-(a+2 \alpha-1) / 2$, with $a+2 \alpha \leq 3$ and $\alpha>(3-a) / 4 \geq 1 / 2$.

The Cauchy problem for the Dissipative Benjamin-Ono equations studied by S. Vento (2008)

$$
\left\{\begin{aligned}
u_{t}+u u_{x}+\mathcal{H} u_{x x}+\left|D_{x}\right|^{\alpha} u & =0 \quad x \in \mathbb{R}, \quad t \geq 0, \quad 0 \leq \alpha \leq 2 \\
u(x, 0) & =u_{0}(x),
\end{aligned}\right.
$$

Vento proved, when $1<\alpha \leq 2$, the global well-posedness in $H^{s}(\mathbb{R})$, $s>-\alpha / 4$. This result is sharp.

The Cauchy problem for the Dissipative Benjamin-Ono equations studied by S. Vento (2008)

$$
\left\{\begin{aligned}
u_{t}+u u_{x}+\mathcal{H} u_{x x}+\left|D_{x}\right|^{\alpha} u & =0 \quad x \in \mathbb{R}, \quad t \geq 0, \quad 0 \leq \alpha \leq 2 \\
u(x, 0) & =u_{0}(x),
\end{aligned}\right.
$$

Vento proved, when $1<\alpha \leq 2$, the global well-posedness in $H^{s}(\mathbb{R})$, $s>-\alpha / 4$. This result is sharp.

When $1 \leq \alpha \leq 2$, and $s<-\alpha / 4$, there is not $T>0$ such that this problem admits a unique local solution defined on the interval $[0, T]$ and such that the flow map $u_{0} \mapsto u$ is of class $C^{3}$ in a neighborhood of the origin from $H^{s}(\mathbb{R})$ to $H^{s}(\mathbb{R})$.

## PRELIMINARIES

Since the linear symbol of equation PBO is

$$
i(\tau-q(\xi))+p(\xi)
$$

where $q(\xi)=\beta \xi|\xi|$ and $p(\xi)=\eta\left(\xi^{2}-|\xi|\right)$, we denote by

$$
\begin{aligned}
E(\xi, t) & =e^{i q(\xi) t-p(\xi) t}, \\
S(t) \phi & =e^{-\left(\beta \mathcal{H} \partial_{x}^{2}+\eta\left(\mathcal{H} \partial_{x}-\partial_{x}^{2}\right)\right) t} \phi=(E(\xi, t) \widehat{\phi})^{\vee},
\end{aligned}
$$

for every $\phi \in H^{s}(\mathbb{R}), s \in \mathbb{R}$ and $t \geq 0$.

## PRELIMINARIES

Since the linear symbol of equation PBO is

$$
i(\tau-q(\xi))+p(\xi)
$$

where $q(\xi)=\beta \xi|\xi|$ and $p(\xi)=\eta\left(\xi^{2}-|\xi|\right)$, we denote by

$$
\begin{aligned}
E(\xi, t) & =e^{i q(\xi) t-p(\xi) t}, \\
S(t) \phi & =e^{-\left(\beta \mathcal{H} \partial_{x}^{2}+\eta\left(\mathcal{H} \partial_{x}-\partial_{x}^{2}\right)\right) t} \phi=(E(\xi, t) \widehat{\phi})^{\vee},
\end{aligned}
$$

for every $\phi \in H^{s}(\mathbb{R}), s \in \mathbb{R}$ and $t \geq 0$.

## Proposition

Let $\phi \in H^{s}(\mathbb{R})$. Then, $u(t)=S(t) \phi \in C\left([0, \infty), H^{s}(\mathbb{R})\right)$ is the unique solution of the linear problem. Moreover, $u \in C\left((0, \infty), H^{\infty}(\mathbb{R})\right)$.

## PRELIMINARIES

We denote by $U$ the unitary group in $H^{s}(\mathbb{R})$,

$$
U(t)=e^{i q\left(\partial_{x}\right) t}, \quad U(t) \phi=\left(e^{i q(\xi) t} \widehat{\phi}\right)^{\vee}
$$

with $\phi \in H^{s}(\mathbb{R}), t \in \mathbb{R}$.

## PRELIMINARIES

We denote by $U$ the unitary group in $H^{s}(\mathbb{R})$,

$$
U(t)=e^{i q\left(\partial_{x}\right) t}, \quad U(t) \phi=\left(e^{i q(\xi) t} \widehat{\phi}\right)^{\vee},
$$

with $\phi \in H^{s}(\mathbb{R}), t \in \mathbb{R}$.
Next, for given $s, b \in \mathbb{R}$ we introduce the function space $X_{\tau=q(\xi)}^{s, b}$ to be the completion of the Schwartz space $\mathcal{S}\left(\mathbb{R}^{2}\right)$ on $\mathbb{R}^{2}$ endowed with

$$
\begin{equation*}
\|u\|_{X_{\tau=q(\xi)}^{s, b}}=\left\|\langle\xi\rangle^{s}\langle\tau-q(\xi)\rangle^{b} \widehat{u}(\xi, \tau)\right\|_{L_{\xi}^{2} L_{\tau}^{2}} . \tag{1}
\end{equation*}
$$

## PRELIMINARIES

We denote by $U$ the unitary group in $H^{s}(\mathbb{R})$,

$$
U(t)=e^{i q\left(\partial_{x}\right) t}, \quad U(t) \phi=\left(e^{i q(\xi) t} \widehat{\phi}\right)^{\vee},
$$

with $\phi \in H^{s}(\mathbb{R}), t \in \mathbb{R}$.
Next, for given $s, b \in \mathbb{R}$ we introduce the function space $X_{\tau=q(\xi)}^{s, b}$ to be the completion of the Schwartz space $\mathcal{S}\left(\mathbb{R}^{2}\right)$ on $\mathbb{R}^{2}$ endowed with

$$
\begin{equation*}
\|u\|_{X_{\tau=q(\xi)}^{s, b}}=\left\|\langle\xi\rangle^{s}\langle\tau-q(\xi)\rangle^{b} \widehat{u}(\xi, \tau)\right\|_{L_{\xi}^{2} L_{\tau}^{2}} . \tag{1}
\end{equation*}
$$

By the identity,

$$
\begin{equation*}
(U(-t) u)^{\wedge}(\xi, \tau)=\widehat{u}(\xi, \tau+q(\xi)) \tag{2}
\end{equation*}
$$

the norm $X_{\tau=q(\xi)}^{s, b}$ is written equivalently as

$$
\begin{aligned}
& \|u\|_{X_{\tau=q(\xi)}^{s, b}}=\|U(-t) u\|_{H^{s, b}}, \quad s, b \in \mathbb{R}, \\
& \|u\|_{H^{s, b}}^{2}=\int_{\mathbb{R}^{2}}\langle\tau\rangle^{2 b}\langle\xi\rangle^{2 s}|\widehat{u}(\xi, \tau)|^{2} d \xi d \tau .
\end{aligned}
$$

## PRELIMINARIES

Lemma $\left(X_{\tau=q(\xi)}^{s, b} \hookrightarrow L_{t}^{\infty} H_{x}^{s}\right)$
Let $s \in \mathbb{R}, b>1 / 2$. There exists $C>0$, depending only on $b$, such that

$$
\|u\|_{H_{x}^{s}} \leq C\|u\|_{X_{\tau=q}^{s, b}(\xi)} .
$$

## PRELIMINARIES

Lemma $\left(X_{\tau=q(\xi)}^{s, b} \hookrightarrow L_{t}^{\infty} H_{x}^{s}\right)$
Let $s \in \mathbb{R}, b>1 / 2$. There exists $C>0$, depending only on $b$, such that

$$
\|u\|_{H_{X}^{s}} \leq C\|u\|_{X_{\tau=q(\xi)}^{s, b}} .
$$

By analogy with (1), we define the space $X^{s, b}$ provided with the norm

$$
\|u\|_{X^{s, b}}=\left\|\langle\xi\rangle^{s}\langle i(\tau-q(\xi))+p(\xi)\rangle^{b} \widehat{u}(\xi, \tau)\right\|_{L_{\xi}^{2} L_{\tau}^{2}}
$$

## PRELIMINARIES

## Lemma $\left(X_{\tau=q(\xi)}^{s, b} \hookrightarrow L_{t}^{\infty} H_{x}^{s}\right)$

Let $s \in \mathbb{R}, b>1 / 2$. There exists $C>0$, depending only on $b$, such that

$$
\|u\|_{H_{X}^{s}} \leq C\|u\|_{X_{\tau=q(\xi)}^{s, b}} .
$$

By analogy with (1), we define the space $X^{s, b}$ provided with the norm

$$
\|u\|_{X^{s, b}}=\left\|\langle\xi\rangle^{s}\langle i(\tau-q(\xi))+p(\xi)\rangle^{b} \widehat{u}(\xi, \tau)\right\|_{L_{\xi}^{2} L_{\tau}^{2}}
$$

From (2), we can rewrite the norm of $X^{s, b}$ as

$$
\begin{aligned}
\|u\|_{X^{s, b}} & =\left\|\langle\xi\rangle^{s}\langle i \tau+p(\xi)\rangle^{b}(U(-t) u)^{\wedge}(\xi, \tau)\right\|_{L_{\xi}^{2} L_{\tau}^{2}} \\
& \sim\|U(-t) u\|_{H^{s, b}}+\left\|\langle\xi\rangle^{s}\langle p(\xi)\rangle^{b} \widehat{u}(\xi, t)\right\|_{L_{\xi}^{2} L_{t}^{2}}
\end{aligned}
$$

and this shows that $X^{s, b} \hookrightarrow X_{\tau=q(\xi)}^{s, b}$.

## PRELIMINARIES

We extended $S(t)$ to all $t \in \mathbb{R}$ by setting

$$
S(t) \phi=\left(e^{i q(\xi) t-p(\xi)|t|} \widehat{\phi}\right)^{\vee} \quad \text { for } \quad \phi \in H^{s}(\mathbb{R}), t \in \mathbb{R} .
$$

## PRELIMINARIES

We extended $S(t)$ to all $t \in \mathbb{R}$ by setting

$$
S(t) \phi=\left(e^{i q(\xi) t-p(\xi)|t|} \widehat{\phi}\right)^{\vee} \quad \text { for } \quad \phi \in H^{s}(\mathbb{R}), t \in \mathbb{R} .
$$

For $T>0$, we define $X_{T}^{s, b}$ to be the restriction of $X^{s, b}$ on $\mathbb{R} \times[0, T]$, i.e., $X_{T}^{s, b}$ consists of functions $u: \mathbb{R} \times[0, T] \rightarrow \mathbb{R}$ such that there exists $v \in X^{s, b}$ such that $\left.v\right|_{\mathbb{R} \times[0, T]}=u$, with the norm

$$
\|u\|_{X_{T}^{s, b}}=\inf \left\{\|v\|_{X^{s, b}}: v \in X^{s, b},\left.v\right|_{\mathbb{R} \times[0, T]}=u\right\}
$$

## PRELIMINARIES

We extended $S(t)$ to all $t \in \mathbb{R}$ by setting

$$
S(t) \phi=\left(e^{i q(\xi) t-p(\xi)|t|} \widehat{\phi}\right)^{\vee} \quad \text { for } \quad \phi \in H^{s}(\mathbb{R}), t \in \mathbb{R} .
$$

For $T>0$, we define $X_{T}^{s, b}$ to be the restriction of $X^{s, b}$ on $\mathbb{R} \times[0, T]$, i.e., $X_{T}^{s, b}$ consists of functions $u: \mathbb{R} \times[0, T] \rightarrow \mathbb{R}$ such that there exists $v \in X^{s, b}$ such that $\left.v\right|_{\mathbb{R} \times[0, T]}=u$, with the norm

$$
\|u\|_{X_{T}^{s, b}}=\inf \left\{\|v\|_{X^{s, b}}: v \in X^{s, b},\left.v\right|_{\mathbb{R} \times[0, T]}=u\right\}
$$

We will mainly work on the integral formulation of the equation PBO,

$$
\begin{equation*}
u(t)=S(t) \phi-\int_{0}^{t} S\left(t-t^{\prime}\right)\left[u\left(t^{\prime}\right) u_{x}\left(t^{\prime}\right)\right] d t^{\prime} \quad t \geq 0 \tag{3}
\end{equation*}
$$

## PRELIMINARIES

We extended $S(t)$ to all $t \in \mathbb{R}$ by setting

$$
S(t) \phi=\left(e^{i q(\xi) t-p(\xi)|t|} \widehat{\phi}\right)^{\vee} \quad \text { for } \quad \phi \in H^{s}(\mathbb{R}), t \in \mathbb{R}
$$

For $T>0$, we define $X_{T}^{s, b}$ to be the restriction of $X^{s, b}$ on $\mathbb{R} \times[0, T]$, i.e., $X_{T}^{s, b}$ consists of functions $u: \mathbb{R} \times[0, T] \rightarrow \mathbb{R}$ such that there exists $v \in X^{s, b}$ such that $\left.v\right|_{\mathbb{R} \times[0, T]}=u$, with the norm

$$
\|u\|_{X_{T}^{s, b}}=\inf \left\{\|v\|_{X^{s, b}}: v \in X^{s, b},\left.v\right|_{\mathbb{R} \times[0, T]}=u\right\}
$$

We will mainly work on the integral formulation of the equation PBO,

$$
\begin{equation*}
u(t)=S(t) \phi-\int_{0}^{t} S\left(t-t^{\prime}\right)\left[u\left(t^{\prime}\right) u_{x}\left(t^{\prime}\right)\right] d t^{\prime} \quad t \geq 0 \tag{3}
\end{equation*}
$$

We will apply a fixed point argument to the following truncated version:

$$
\begin{equation*}
u(t)=\Psi(t)\left[S(t) \phi-\frac{\chi_{\mathbb{R}^{+}}(t)}{2} \int_{0}^{t} S\left(t-t^{\prime}\right) \partial_{x}\left(\Psi_{T}^{2}\left(t^{\prime}\right) u^{2}\left(t^{\prime}\right)\right) d t^{\prime}\right] \tag{4}
\end{equation*}
$$

## LINEAR ESTIMATE FOR THE FREE TERM

## Proposition

Let $s \in \mathbb{R}$ and $b \in[1 / 2,1]$. There exist $C>0$ such that

$$
\|\Psi(t) S(t) \phi\|_{X^{s, b}} \leq C\|\phi\|_{H^{s+2\left(b-\frac{1}{2}\right)}(\mathbb{R})}, \quad \forall \phi \in H^{s+2\left(b-\frac{1}{2}\right)}(\mathbb{R}) .
$$

## Proposition

Let $s \in \mathbb{R}, \frac{1}{2}<b \leq 1$. Then,
(a.) There exists $C>0$ such that, for all $\nu \in \mathcal{S}\left(\mathbb{R}^{2}\right)$,

$$
\left\|\chi_{\mathbb{R}^{+}}(t) \Psi(t) \int_{0}^{t} S\left(t-t^{\prime}\right) \nu\left(t^{\prime}\right) d t^{\prime}\right\|_{X^{s, b}} \leq
$$

$$
C\left[\|\nu\|_{X^{s, b-1}}+\left(\int_{\mathbb{R}}\langle\xi\rangle^{2 s}|p(\xi)|^{2 b-1}\left(\int_{\mathbb{R}} \frac{\left|(U(-t) \nu)^{\wedge}(\xi, \tau)\right|}{\langle i \tau+p(\xi)\rangle} d \tau\right)^{2} d \xi\right)^{1 / 2}\right]
$$

(b.) For any $0<\delta<1 / 2$ there exists $C_{\delta}$ such that, for all $\nu \in X^{s, b-1+\delta}$,

$$
\left\|\chi_{\mathbb{R}^{+}}(t) \Psi(t) \int_{0}^{t} S\left(t-t^{\prime}\right) \nu\left(t^{\prime}\right) d t^{\prime}\right\|_{X^{s, b}} \leq C_{\delta}\|\nu\|_{X^{s, b-1+\delta}} .
$$

## Proposition

Let $s \in \mathbb{R}, 0<\delta<\frac{1}{2}$ and $\frac{1}{2} \leq b \leq 1-\delta$. Then, for all $f \in X^{s, b-1+\delta}$,

$$
t \longmapsto \int_{0}^{t} S\left(t-t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime} \in C\left(\mathbb{R}^{+}, H^{s+2 \delta}(\mathbb{R})\right)
$$

Moreover,

$$
\left\|\chi_{\mathbb{R}^{+}}(t) \Psi(t) \int_{0}^{t} S\left(t-t^{\prime}\right) f\left(t^{\prime}\right) d t^{t^{\prime}}\right\|_{L^{\infty}\left(\mathbb{R}^{+}, H^{s+2 \delta}\right)} \leq C\|f\|_{X^{s, b-1+\delta}} .
$$

## BILINEAR ESTIMATE

## Theorem

Let $s>-\frac{1}{2}$. There exists $b>\frac{1}{2}, \theta>0$ and $\delta>0$ such that for any $u, v \in X^{s, b}$ with compact support in $[-T, T]$, we have

$$
\left\|(u v)_{x}\right\|_{X^{s, b-1+\delta}} \leq C T^{\theta}\|u\|_{X^{s, b}}\|v\|_{X^{s, b}} .
$$

## Theorem

Let $s>-\frac{1}{2}$. There exists $b>\frac{1}{2}, \theta>0$ and $\delta>0$ such that for any $u, v \in X^{s, b}$ with compact support in $[-T, T]$, we have

$$
\left\|(u v)_{x}\right\|_{X^{s, b-1+\delta}} \leq C T^{\theta}\|u\|_{X^{s, b}}\|v\|_{X^{s, b}}
$$

## Sketch of the proof:

The bilinear estimate is equivalent to show that $\forall w \in X^{-s, 1-b-\delta}$

$$
\begin{equation*}
\left|\left\langle(u v)_{X}, w\right\rangle\right| \leq C T^{\theta}\|u\|_{X^{s, b}}\|v\|_{X^{s, b}}\|w\|_{X^{-s, 1-b-\delta}} . \tag{5}
\end{equation*}
$$

## Theorem

Let $s>-\frac{1}{2}$. There exists $b>\frac{1}{2}, \theta>0$ and $\delta>0$ such that for any $u, v \in X^{s, b}$ with compact support in $[-T, T]$, we have

$$
\left\|(u v)_{x}\right\|_{X^{s, b-1+\delta}} \leq C T^{\theta}\|u\|_{X^{s, b}}\|v\|_{X^{s, b}}
$$

## Sketch of the proof:

The bilinear estimate is equivalent to show that $\forall w \in X^{-s, 1-b-\delta}$

$$
\begin{equation*}
\left|\left\langle(u v)_{X}, w\right\rangle\right| \leq C T^{\theta}\|u\|_{X^{s, b}}\|v\|_{X^{s, b}}\|w\|_{X^{-s, 1-b-\delta}} . \tag{5}
\end{equation*}
$$

Setting $\tau_{2}=\tau-\tau_{1}, \xi_{2}=\xi-\xi_{1}$,

$$
\begin{aligned}
\sigma & =\tau-\beta \xi|\xi| \\
\sigma_{1} & =\tau_{1}-\beta \xi_{1}\left|\xi_{1}\right| \\
\sigma_{2} & =\tau_{2}-\beta \xi_{2}\left|\xi_{2}\right|
\end{aligned}
$$

## BILINEAR ESTIMATE

$$
\begin{aligned}
\widehat{f}\left(\xi_{2}, \tau_{2}\right) & =\left\langle\xi_{2}\right\rangle^{s}\left\langle i \sigma_{2}+p\left(\xi_{2}\right)\right\rangle^{b} \widehat{u}\left(\xi_{2}, \tau_{2}\right) \\
\widehat{g}\left(\xi_{1}, \tau_{1}\right) & =\left\langle\xi_{1}\right\rangle^{s}\left\langle i \sigma_{1}+p\left(\xi_{1}\right)\right\rangle^{b} \widehat{v}\left(\xi_{1}, \tau_{1}\right) \\
\widehat{h}(\xi, \tau) & =\langle\xi\rangle^{-s}\langle i \sigma+p(\xi)\rangle^{1-b-\delta} \widehat{w}(\xi, \tau)
\end{aligned}
$$

We see that (5) is equivalent to

$$
|I| \leq C T^{\theta}\|f\|_{L_{\xi}^{2} L_{T}^{2}}\|g\|_{L_{\xi}^{2} L_{T}^{2}}\|h\|_{L_{\xi}^{2} L_{T}^{2}},
$$

where

$$
\begin{aligned}
I & =\left\langle(u v)_{x}, w\right\rangle=C \int_{\mathbb{R}^{2}} \xi \widehat{u} * \widehat{v}(\xi, \tau) \overline{\hat{w}}(\xi, \tau) d \xi, d \tau \\
& =\int_{\mathbb{R}^{4}} \frac{\xi\langle\xi\rangle^{s} \overline{\hat{h}}(\xi, \tau)}{\langle i \sigma+p(\xi)\rangle^{1-b-\delta}} \frac{\left\langle\xi_{1}\right\rangle^{-s} \widehat{g}\left(\xi_{1}, \tau_{1}\right)}{\left\langle i \sigma_{1}+p\left(\xi_{1}\right)\right\rangle^{b}} \frac{\left\langle\xi_{2}\right\rangle^{-s} \widehat{f}\left(\xi_{2}, \tau_{2}\right)}{\left\langle i \sigma_{2}+p\left(\xi_{2}\right)\right\rangle^{b}} d \xi d \tau d \xi_{1} d \tau_{1} .
\end{aligned}
$$

## BILINEAR ESTIMATE

$$
\begin{aligned}
\widehat{f}\left(\xi_{2}, \tau_{2}\right) & =\left\langle\xi_{2}\right\rangle^{s}\left\langle i \sigma_{2}+p\left(\xi_{2}\right)\right\rangle^{b} \widehat{u}\left(\xi_{2}, \tau_{2}\right), \\
\widehat{g}\left(\xi_{1}, \tau_{1}\right) & =\left\langle\xi_{1}\right\rangle^{s}\left\langle i \sigma_{1}+p\left(\xi_{1}\right)\right\rangle^{b} \widehat{v}\left(\xi_{1}, \tau_{1}\right), \\
\widehat{h}(\xi, \tau) & =\langle\xi\rangle^{-s}\langle i \sigma+p(\xi)\rangle^{1-b-\delta} \widehat{w}(\xi, \tau) .
\end{aligned}
$$

We see that (5) is equivalent to

$$
|I| \leq C T^{\theta}\|f\|_{L_{\xi}^{2} L_{T}^{2}}\|g\|_{L_{\xi}^{2} L_{T}^{2}}\|h\|_{L_{\xi}^{2} L_{T}^{2}},
$$

where

$$
\begin{aligned}
I & =\left\langle(u v)_{x}, w\right\rangle=C \int_{\mathbb{R}^{2}} \xi \widehat{u} * \widehat{v}(\xi, \tau) \overline{\hat{w}}(\xi, \tau) d \xi, d \tau \\
& =\int_{\mathbb{R}^{4}} \frac{\xi\langle\xi\rangle^{s} \overline{\hat{h}}(\xi, \tau)}{\langle i \sigma+p(\xi)\rangle^{1-b-\delta}} \frac{\left\langle\xi_{1}\right\rangle^{-s} \widehat{g}\left(\xi_{1}, \tau_{1}\right)}{\left\langle i \sigma_{1}+p\left(\xi_{1}\right)\right\rangle^{b}} \frac{\left\langle\xi_{2}\right\rangle^{-s} \widehat{f}\left(\xi_{2}, \tau_{2}\right)}{\left\langle i \sigma_{2}+p\left(\xi_{2}\right)\right\rangle^{b}} d \xi d \tau d \xi_{1} d \tau_{1} .
\end{aligned}
$$

## BILINEAR ESTIMATE

For $0<\epsilon \ll 1$, take $\delta=\frac{\epsilon}{2}$ and $b=\frac{1}{2}+\epsilon$, we rewritten $/$ as

$$
I=\int_{\mathbb{R}^{4}} \frac{\xi\langle\xi\rangle^{\bar{s}} \overline{\hat{h}}(\xi, \tau)}{\langle i \sigma+p(\xi)\rangle^{\frac{1}{2}-\frac{3}{2} \epsilon}} \frac{\left\langle\xi_{1}\right\rangle^{-s} \widehat{g}\left(\xi_{1}, \tau_{1}\right)}{\left\langle i \sigma_{1}+p\left(\xi_{1}\right)\right\rangle^{\frac{1}{2}+\epsilon}} \frac{\left\langle\xi_{2}\right\rangle^{-s} \widehat{f}\left(\xi_{2}, \tau_{2}\right)}{\left\langle i \sigma_{2}+p\left(\xi_{2}\right)\right\rangle^{\frac{1}{2}+\epsilon}} d \xi d \tau d \xi_{1} d \tau_{1} .
$$

## Theorem (Local well-posedness)

Let $s>-1 / 2$. Then for any $\phi \in H^{s}(\mathbb{R})$ there exist $T=T\left(\|\phi\|_{H^{s}}\right)>0$, $\frac{1}{2}<b<1$, and a unique solution $u$ of the Cauchy problem PBO satisfying

$$
\begin{aligned}
& u \in C\left([0, T], H^{s}(\mathbb{R})\right) \cap C\left((0, T), H^{\infty}(\mathbb{R})\right), \\
& u \in X^{s-2\left(b-\frac{1}{2}\right), b}, \\
& u u_{x} \in X^{s-2\left(b-\frac{1}{2}\right), b-1}, \\
& \partial_{t} u \in X^{s-2\left(b-\frac{1}{2}\right), b-1} .
\end{aligned}
$$

Moreover, the flow map $\phi \mapsto u(t)$ is locally Lipschitz from $H^{s}(\mathbb{R})$ to $C\left([0, T], H^{s}(\mathbb{R})\right) \cap C\left((0, T], H^{\infty}(\mathbb{R})\right) \cap X^{s-2\left(b-\frac{1}{2}\right), b}$.

## EXISTENCE

We assume $0<T<1$. Let $\phi \in H^{s}(\mathbb{R})$ with $s>-\frac{1}{2}$.
We take $0<\epsilon \ll 1: 0<3 \epsilon \leq s+\frac{1}{2}$, and $b>\frac{1}{2}$ satisfying $2 b-1=2 \epsilon$.

We assume $0<T<1$. Let $\phi \in H^{s}(\mathbb{R})$ with $s>-\frac{1}{2}$.
We take $0<\epsilon \ll 1: 0<3 \epsilon \leq s+\frac{1}{2}$, and $b>\frac{1}{2}$ satisfying $2 b-1=2 \epsilon$.
Define

$$
(\mathcal{A} u)(t)=\Psi(t) S(t) \phi-\frac{1}{2} \chi_{\mathbb{R}^{+}}(t) \Psi(t) \int_{0}^{t} S\left(t-t^{\prime}\right) \partial_{\chi}\left(\Psi_{T}\left(t^{\prime}\right) u\left(t^{\prime}\right)\right)^{2} d t^{\prime}
$$

We assume $0<T<1$. Let $\phi \in H^{s}(\mathbb{R})$ with $s>-\frac{1}{2}$.
We take $0<\epsilon \ll 1: 0<3 \epsilon \leq s+\frac{1}{2}$, and $b>\frac{1}{2}$ satisfying $2 b-1=2 \epsilon$.
Define

$$
(\mathcal{A} u)(t)=\Psi(t) S(t) \phi-\frac{1}{2} \chi_{\mathbb{R}^{+}}(t) \Psi(t) \int_{0}^{t} S\left(t-t^{\prime}\right) \partial_{x}\left(\Psi_{T}\left(t^{\prime}\right) u\left(t^{\prime}\right)\right)^{2} d t^{\prime}
$$

Suppose $u$ is in the ball

$$
\mathbf{B}_{R}=\left\{u \in X^{s-2\left(b-\frac{1}{2}\right), b}:\|u\|_{X^{s-2\left(b-\frac{1}{2}\right), b}} \leq R=2 C_{0}\|\phi\|_{H^{s}}\right\} .
$$

We assume $0<T<1$. Let $\phi \in H^{s}(\mathbb{R})$ with $s>-\frac{1}{2}$.
We take $0<\epsilon \ll 1: 0<3 \epsilon \leq s+\frac{1}{2}$, and $b>\frac{1}{2}$ satisfying $2 b-1=2 \epsilon$.
Define

$$
(\mathcal{A} u)(t)=\Psi(t) S(t) \phi-\frac{1}{2} \chi_{\mathbb{R}^{+}}(t) \Psi(t) \int_{0}^{t} S\left(t-t^{\prime}\right) \partial_{\chi}\left(\Psi_{T}\left(t^{\prime}\right) u\left(t^{\prime}\right)\right)^{2} d t^{\prime}
$$

Suppose $u$ is in the ball

$$
\mathbf{B}_{R}=\left\{u \in X^{s-2\left(b-\frac{1}{2}\right), b}:\|u\|_{X^{s-2\left(b-\frac{1}{2}\right), b}} \leq R=2 C_{0}\|\phi\|_{H^{s}}\right\} .
$$

## Lemma

Let $s \in \mathbb{R}$ and $b>\frac{1}{2}$. For any $T \in(0,1]$, we have

$$
\left\|\Psi_{T} u\right\|_{X^{s, b}} \leq C T^{\frac{1-2 b}{2}}\|u\|_{X^{s, b}}
$$

## EXISTENCE

Since $s-2\left(b-\frac{1}{2}\right) \geq-\frac{1}{2}+\epsilon>-\frac{1}{2}$, it follows that for $u \in \mathbf{B}_{R}$

Since $s-2\left(b-\frac{1}{2}\right) \geq-\frac{1}{2}+\epsilon>-\frac{1}{2}$, it follows that for $u \in \mathbf{B}_{R}$

$$
\begin{aligned}
& \|(\mathcal{A} u)(t)\|_{X^{s-2\left(b-\frac{1}{2}\right), b}} \leq \\
& \|\Psi(t) S(t) \phi\|_{X^{s-2 \epsilon, b}}+\left\|\chi_{\mathbb{R}^{+}}(t) \frac{\Psi(t)}{2} \int_{0}^{t} S\left(t-t^{\prime}\right) \partial_{\times}\left(\Psi_{T}\left(t^{\prime}\right) u\left(t^{\prime}\right)\right)^{2} d t^{\prime}\right\|_{X^{s-2 \epsilon, b}} \\
& \leq C_{0}\|\phi\|_{H^{s}}+C_{\delta}\left\|\partial_{x}\left(\Psi_{T}\left(t^{\prime}\right) u\left(t^{\prime}\right)\right)^{2}\right\|_{X^{s-2\left(b-\frac{1}{2}\right), b-1+\delta}} \\
& \leq C_{0}\|\phi\|_{H^{s}}+C_{\delta} T^{\theta}\left\|\Psi_{T} u\right\|_{X^{s-2\left(b-\frac{1}{2}\right), b}}^{2} \\
& \leq C_{0}\|\phi\|_{H^{s}}+C_{1} T^{\theta-2 \epsilon}\|u\|_{X^{s-2\left(b-\frac{1}{2}\right), b}}^{2} .
\end{aligned}
$$

Therefore, for $u \in \mathbf{B}_{R}$, we have

$$
\|\mathcal{A} u\|_{X^{s-2\left(b-\frac{1}{2}\right), b}} \leq \frac{R}{2}+C_{1} T^{\theta-2 \epsilon} R^{2}
$$

Hence it follows that for $0<T<\left(4 R C_{1}\right)^{-\frac{1}{\theta-2 \epsilon}}, \mathcal{A} u \in \mathbf{B}_{R}$.

Since $s-2\left(b-\frac{1}{2}\right) \geq-\frac{1}{2}+\epsilon>-\frac{1}{2}$, it follows that for $u \in \mathbf{B}_{R}$

$$
\begin{aligned}
& \|(\mathcal{A} u)(t)\|_{X^{s-2\left(b-\frac{1}{2}\right), b}} \leq \\
& \|\Psi(t) S(t) \phi\|_{X^{s-2 \epsilon, b}}+\left\|\chi_{\mathbb{R}^{+}}(t) \frac{\Psi(t)}{2} \int_{0}^{t} S\left(t-t^{\prime}\right) \partial_{x}\left(\Psi_{T}\left(t^{\prime}\right) u\left(t^{\prime}\right)\right)^{2} d t^{\prime}\right\|_{X^{s-2 \epsilon, b}} \\
& \leq C_{0}\|\phi\|_{H^{s}}+C_{\delta}\left\|\partial_{X}\left(\Psi_{T}\left(t^{\prime}\right) u\left(t^{\prime}\right)\right)^{2}\right\|_{X^{s-2\left(b-\frac{1}{2}\right), b-1+\delta}} \\
& \leq C_{0}\|\phi\|_{H^{s}}+C_{\delta} T^{\theta}\left\|\Psi_{T} u\right\|_{X^{s-2\left(b-\frac{1}{2}\right), b}}^{2} \\
& \leq C_{0}\|\phi\|_{H^{s}}+C_{1} T^{\theta-2 \epsilon}\|u\|_{X^{s-2\left(b-\frac{1}{2}\right), b}}^{2} .
\end{aligned}
$$

Since $s-2\left(b-\frac{1}{2}\right) \geq-\frac{1}{2}+\epsilon>-\frac{1}{2}$, it follows that for $u \in \mathbf{B}_{R}$

$$
\begin{aligned}
& \|(\mathcal{A} u)(t)\|_{X^{s-2\left(b-\frac{1}{2}\right), b}} \leq \\
& \|\Psi(t) S(t) \phi\|_{X^{s-2 \epsilon, b}}+\left\|\chi_{\mathbb{R}^{+}}(t) \frac{\Psi(t)}{2} \int_{0}^{t} S\left(t-t^{\prime}\right) \partial_{x}\left(\Psi_{T}\left(t^{\prime}\right) u\left(t^{\prime}\right)\right)^{2} d t^{\prime}\right\|_{X^{s-2 \epsilon, b}} \\
& \leq C_{0}\|\phi\|_{H^{s}}+C_{\delta}\left\|\partial_{x}\left(\Psi_{T}\left(t^{\prime}\right) u\left(t^{\prime}\right)\right)^{2}\right\|_{X^{s-2\left(b-\frac{1}{2}\right), b-1+\delta}} \\
& \leq C_{0}\|\phi\|_{H^{s}}+C_{\delta} T^{\theta}\left\|\Psi_{T} u\right\|_{X^{s-2\left(b-\frac{1}{2}\right), b}}^{2} \\
& \leq C_{0}\|\phi\|_{H^{s}}+C_{1} T^{\theta-2 \epsilon}\|u\|_{X^{s-2\left(b-\frac{1}{2}\right), b}}^{2} .
\end{aligned}
$$

Therefore, for $u \in \mathbf{B}_{R}$, we have

$$
\|\mathcal{A} u\|_{X^{s-2\left(b-\frac{1}{2}\right), b}} \leq \frac{R}{2}+C_{1} T^{\theta-2 \epsilon} R^{2}
$$

Hence it follows that for $0<T<\left(4 R C_{1}\right)^{-\frac{1}{\theta-2 \epsilon}}, \mathcal{A} u \in \mathbf{B}_{R}$.

## EXISTENCE

Similarly, it follows for $u, v \in \mathbf{B}_{R}$

$$
\begin{aligned}
\|\mathcal{A} u-\mathcal{A} v\|_{X^{s-2 \epsilon, b}} & \leq C_{1} T^{\theta-2 \epsilon}\left(\|u\|_{X^{s-2 \epsilon, b}}+\|v\|_{X^{s-2 \epsilon, b}}\right)\|u-v\|_{X^{s-2 \epsilon, b}} \\
& \leq 2 C_{1} R T^{\theta-2 \epsilon}\|u-v\|_{X^{s-2\left(b-\frac{1}{2}\right), b}} \\
& \leq \frac{1}{2}\|u-v\|_{X^{s-2\left(b-\frac{1}{2}\right), b}}
\end{aligned}
$$

from which $\mathcal{A}$ is a contraction on $\mathbf{B}_{R}$.

Similarly, it follows for $u, v \in \mathbf{B}_{R}$

$$
\begin{aligned}
\|\mathcal{A} u-\mathcal{A} v\|_{X^{s-2 \epsilon, b}} & \leq C_{1} T^{\theta-2 \epsilon}\left(\|u\|_{X^{s-2 \epsilon, b}}+\|v\|_{X^{s-2 \epsilon, b}}\right)\|u-v\|_{X^{s-2 \epsilon, b}} \\
& \leq 2 C_{1} R T^{\theta-2 \epsilon}\|u-v\|_{X^{s-2\left(b-\frac{1}{2}\right), b}} \\
& \leq \frac{1}{2}\|u-v\|_{X^{s-2\left(b-\frac{1}{2}\right), b}}
\end{aligned}
$$

from which $\mathcal{A}$ is a contraction on $\mathbf{B}_{R}$.
Therefore there exists a unique solution $u(t)$ in $\mathbf{B}_{R}$ for

$$
0<T<\left(4 R C_{1}\right)^{-\frac{1}{\theta-2 \epsilon}}
$$

satisfying

$$
u(t)=\Psi(t) S(t) \phi-\frac{1}{2} \chi_{\mathbb{R}^{+}}(t) \Psi(t) \int_{0}^{t} S\left(t-t^{\prime}\right) \partial_{x}\left(\Psi_{T}\left(t^{\prime}\right) u\left(t^{\prime}\right)\right)^{2} d t^{\prime}
$$

## EXISTENCE

It is known that

$$
S(\cdot) \phi \in C\left([0, \infty), H^{s}(\mathbb{R})\right) \cap C\left((0, \infty), H^{\infty}(\mathbb{R})\right)
$$

and

$$
t \longmapsto \int_{0}^{t} S\left(t-t^{\prime}\right) \partial_{x}\left(u^{2}\left(t^{\prime}\right)\right) d t^{\prime} \in C\left([0, T], H^{s+2 \delta}(\mathbb{R})\right)
$$

where $u \in X_{T}^{s-2\left(b-\frac{1}{2}\right), b}$ is the solution to (3) that we have already got.

It is known that

$$
S(\cdot) \phi \in C\left([0, \infty), H^{s}(\mathbb{R})\right) \cap C\left((0, \infty), H^{\infty}(\mathbb{R})\right)
$$

and

$$
t \longmapsto \int_{0}^{t} S\left(t-t^{\prime}\right) \partial_{x}\left(u^{2}\left(t^{\prime}\right)\right) d t^{\prime} \in C\left([0, T], H^{s+2 \delta}(\mathbb{R})\right)
$$

where $u \in X_{T}^{s-2\left(b-\frac{1}{2}\right), b}$ is the solution to (3) that we have already got.
So we conclude that

$$
u \in C\left([0, T], H^{s}(\mathbb{R})\right) \cap C\left((0, T], H^{s+2 \delta}(\mathbb{R})\right)
$$

We can deduce by induction that

$$
u \in C\left([0, T], H^{s}(\mathbb{R})\right) \cap C\left((0, T], H^{\infty}(\mathbb{R})\right)
$$

## GLOBAL RESULT

## Theorem (Global well-posedness)

Let $s \geq 0$ and $\phi \in H^{s}(\mathbb{R})$. Then the supremum of all $T>0$ for which all the assertions of Theorem above hold is infinity.

## GLOBAL RESULT

## Theorem (Global well-posedness)

Let $s \geq 0$ and $\phi \in H^{s}(\mathbb{R})$. Then the supremum of all $T>0$ for which all the assertions of Theorem above hold is infinity.

Let $s \geq 0$ and $\phi \in H^{s}(\mathbb{R})$. Define $T^{*}=T^{*}\left(\|\phi\|_{H^{s}}\right)$ by
$T^{*}=\sup \left\{T>0: \exists\right.$ ! solution of (3) in $\left.C\left([0, T], H^{s}(\mathbb{R})\right) \cap X_{T}^{s-2\left(b-\frac{1}{2}\right), b}\right\}$.
Let $u \in C\left(\left[0, T^{*}\right), H^{s}(\mathbb{R})\right) \cap C\left(\left(0, T^{*}\right), H^{\infty}(\mathbb{R})\right)$ be the local solution of (3) in the maximal time interval $\left[0, T^{*}\right)$.

## GLOBAL RESULT

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\|u\|_{L^{2}}^{2} & =\left(u, u_{t}\right)_{0} \\
& =-\left(u, u u_{x}\right)_{0}-\beta\left(u, \mathcal{H} u_{x x}\right)_{0}-\eta\left(u, \mathcal{H} u_{x}\right)_{0}-\eta\left(u, u_{x x}\right)_{0} \\
& =\eta \int_{\mathbb{R}}\left(|\xi|-\xi^{2}\right)|\hat{u}(\xi)|^{2} d \xi \\
& =\eta\left(\int_{|\xi| \leq 1}\left(|\xi|-\xi^{2}\right)|\hat{u}(\xi)|^{2} d \xi+\int_{|\xi|>1}\left(|\xi|-\xi^{2}\right)|\hat{u}(\xi)|^{2} d \xi\right) \\
& \leq \eta \int_{|\xi| \leq 1}\left(|\xi|-\xi^{2}\right)|\hat{u}(\xi)|^{2} d \xi \\
& \leq \eta \int_{|\xi| \leq 1}|\hat{u}(\xi)|^{2} d \xi \leq \eta\|u(t)\|_{L^{2}}^{2} .
\end{aligned}
$$

## GLOBAL RESULT

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\|u\|_{L^{2}}^{2} & =\left(u, u_{t}\right)_{0} \\
& =-\left(u, u u_{x}\right)_{0}-\beta\left(u, \mathcal{H} u_{x x}\right)_{0}-\eta\left(u, \mathcal{H} u_{x}\right)_{0}-\eta\left(u, u_{x x}\right)_{0} \\
& =\eta \int_{\mathbb{R}}\left(|\xi|-\xi^{2}\right)|\hat{u}(\xi)|^{2} d \xi \\
& =\eta\left(\int_{|\xi| \leq 1}\left(|\xi|-\xi^{2}\right)|\hat{u}(\xi)|^{2} d \xi+\int_{|\xi|>1}\left(|\xi|-\xi^{2}\right)|\hat{u}(\xi)|^{2} d \xi\right) \\
& \leq \eta \int_{|\xi| \leq 1}\left(|\xi|-\xi^{2}\right)|\hat{u}(\xi)|^{2} d \xi \\
& \leq \eta \int_{|\xi| \leq 1}|\hat{u}(\xi)|^{2} d \xi \leq \eta\|u(t)\|_{L^{2}}^{2} .
\end{aligned}
$$

Integrating the last relation between 0 and $t$ and using the Gronwall's inequality we obtain a priori estimate

$$
\|u(t)\|_{L^{2}} \leq\|\phi\|_{L^{2}} e^{\eta T^{*}} \equiv M, \quad \forall t \in\left(0, T^{*}\right)
$$

## Theorem

Fix $s<-1$. Then there does not exist a $T>0$ such that PBO admits a unique local solution defined on the interval $[0, T]$ and such that the flow-map data-solution

$$
\phi \longmapsto u(t), \quad t \in[0, T],
$$

for PBO is $C^{2}$ differentiable at zero from $H^{s}(\mathbb{R})$ to $H^{s}(\mathbb{R})$.

## ILL-POSEDNESS RESULT

## Theorem

Fix $s<-1$. Then there does not exist a $T>0$ such that PBO admits a unique local solution defined on the interval $[0, T]$ and such that the flow-map data-solution

$$
\phi \longmapsto u(t), \quad t \in[0, T],
$$

for PBO is $C^{2}$ differentiable at zero from $H^{s}(\mathbb{R})$ to $H^{s}(\mathbb{R})$.

## Corollary

The flow map in the existing results for the equation PBO is not $C^{2}$ from $H^{s}(\mathbb{R})$ to $H^{s}(\mathbb{R})$, if $s<-1$.

## ILL-POSEDNESS RESULT

## Lemma

Let $s<-1$ and $T>0$. Then there does not exist a space $X_{T}$ continuously embedded in $C\left([0, T], H^{s}(\mathbb{R})\right)$ such that there exists $C>0$ with

$$
\begin{equation*}
\|S(t) \phi\|_{X_{T}} \leq C\|\phi\|_{H^{s}(\mathbb{R})} ; \quad \phi \in H^{s}(\mathbb{R}) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\int_{0}^{t} S\left(t-t^{\prime}\right)\left[u\left(t^{\prime}\right) u_{x}\left(t^{\prime}\right)\right] d t^{\prime}\right\|_{X_{T}} \leq C\|u\|_{X_{T}}^{2} ; \quad u \in X_{T} \tag{7}
\end{equation*}
$$

## Lemma

Let $s<-1$ and $T>0$. Then there does not exist a space $X_{T}$ continuously embedded in $C\left([0, T], H^{s}(\mathbb{R})\right)$ such that there exists $C>0$ with

$$
\begin{equation*}
\|S(t) \phi\|_{X_{T}} \leq C\|\phi\|_{H^{s}(\mathbb{R})} ; \quad \phi \in H^{s}(\mathbb{R}) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\int_{0}^{t} S\left(t-t^{\prime}\right)\left[u\left(t^{\prime}\right) u_{x}\left(t^{\prime}\right)\right] d t^{\prime}\right\|_{X_{T}} \leq C\|u\|_{X_{T} ;}^{2} ; \quad u \in X_{T} \tag{7}
\end{equation*}
$$

Suppose that there exists a space $X_{T}$ such that (6) and (7) hold. Take $u=S(t) \phi$ in (7). Then

$$
\left\|\int_{0}^{t} S\left(t-t^{\prime}\right)\left[\left(S\left(t^{\prime}\right) \phi\right)\left(S\left(t^{\prime}\right) \phi_{x}\right)\right] d t^{\prime}\right\|_{X_{T}} \leq C\|S(t) \phi\|_{X_{T}}^{2}
$$

## ILL-POSEDNESS RESULT

Now using (6) and that $X_{T}$ is continuously embedded in $C\left([0, T], H^{s}(\mathbb{R})\right)$ we obtain for any $t \in[0, T]$ that

$$
\begin{equation*}
\left\|\int_{0}^{t} S\left(t-t^{\prime}\right)\left[\left(S\left(t^{\prime}\right) \phi\right)\left(S\left(t^{\prime}\right) \phi_{x}\right)\right] d t^{\prime}\right\|_{H^{s}(\mathbb{R})} \leq C\|\phi\|_{H^{s}(\mathbb{R})}^{2} . \tag{8}
\end{equation*}
$$

## ILL-POSEDNESS RESULT

Now using (6) and that $X_{T}$ is continuously embedded in $C\left([0, T], H^{s}(\mathbb{R})\right)$ we obtain for any $t \in[0, T]$ that

$$
\begin{equation*}
\left\|\int_{0}^{t} S\left(t-t^{\prime}\right)\left[\left(S\left(t^{\prime}\right) \phi\right)\left(S\left(t^{\prime}\right) \phi_{x}\right)\right] d t^{\prime}\right\|_{H^{s}(\mathbb{R})} \leq C\|\phi\|_{H^{s}(\mathbb{R})}^{2} . \tag{8}
\end{equation*}
$$

Take $\phi$ defined by its Fourier transform as

$$
\widehat{\phi}(\xi)=N^{-s} \gamma^{-1 / 2}\left(\chi_{I}(\xi)+\chi_{I}(-\xi)\right)
$$

where $I$ is the interval $[N, N+2 \gamma]$ and $\gamma \ll N$. Note that $\|\phi\|_{H^{s}} \sim 1$.

## ILL-POSEDNESS RESULT

Now using (6) and that $X_{T}$ is continuously embedded in $C\left([0, T], H^{s}(\mathbb{R})\right)$ we obtain for any $t \in[0, T]$ that

$$
\begin{equation*}
\left\|\int_{0}^{t} S\left(t-t^{\prime}\right)\left[\left(S\left(t^{\prime}\right) \phi\right)\left(S\left(t^{\prime}\right) \phi_{x}\right)\right] d t^{\prime}\right\|_{H^{s}(\mathbb{R})} \leq C\|\phi\|_{H^{s}(\mathbb{R})}^{2} . \tag{8}
\end{equation*}
$$

Take $\phi$ defined by its Fourier transform as

$$
\widehat{\phi}(\xi)=N^{-s} \gamma^{-1 / 2}\left(\chi_{I}(\xi)+\chi_{I}(-\xi)\right)
$$

where $I$ is the interval $[N, N+2 \gamma]$ and $\gamma \ll N$. Note that $\|\phi\|_{H^{s}} \sim 1$.
Taking $\gamma=O(1)$ it infers for $N \gg \gamma$ and any $T>0$ that

$$
\sup _{t \in[0, T]}\left\|\int_{0}^{t} S\left(t-t^{\prime}\right)\left[\left(S\left(t^{\prime}\right) \phi\right)\left(S\left(t^{\prime}\right) \phi_{x}\right)\right] d t^{\prime}\right\|_{H^{s}} \gtrsim N^{-2 s-2} .
$$

This contradicts (8) for $N$ large enough, since $\|\phi\|_{H^{s}} \sim 1$ and $-2 s-2>0$ when $s<-1$.

## DECAY PROPERTIES OF THE SOLUTION

Now, the purpose is to discuss the asymptotic behavior (as $|x| \rightarrow \infty$ ) of the solutions of the initial value problem PBO.

## DECAY PROPERTIES OF THE SOLUTION

Now, the purpose is to discuss the asymptotic behavior (as $|x| \rightarrow \infty$ ) of the solutions of the initial value problem PBO.

Asymptotic properties of the solutions will be obtained by solving the equation in weighted Sobolev spaces.

$$
\begin{align*}
\mathcal{F}_{s, r} & =H^{s}(\mathbb{R}) \cap L_{r}^{2}(\mathbb{R}), \quad s, r=0,1,2, \ldots \quad \text { and } \\
\|f\|_{\mathcal{F}_{s, r}}^{2} & =\|f\|_{H^{s}}^{2}+\|f\|_{L_{r}^{2}}^{2} . \tag{9}
\end{align*}
$$

## DECAY PROPERTIES OF THE SOLUTION

Now, the purpose is to discuss the asymptotic behavior (as $|x| \rightarrow \infty$ ) of the solutions of the initial value problem PBO.

Asymptotic properties of the solutions will be obtained by solving the equation in weighted Sobolev spaces.

$$
\begin{align*}
\mathcal{F}_{s, r} & =H^{s}(\mathbb{R}) \cap L_{r}^{2}(\mathbb{R}), \quad s, r=0,1,2, \ldots \quad \text { and } \\
\|f\|_{\mathcal{F}_{s, r}}^{2} & =\|f\|_{H^{s}}^{2}+\|f\|_{L_{r}^{2}}^{2} . \tag{9}
\end{align*}
$$

Here $L_{r}^{2}(\mathbb{R}), r \in \mathbb{R}$ is the collection of all measurable functions $f: \mathbb{R} \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
\|f\|_{L_{r}^{2}}^{2}=\int_{\mathbb{R}}\left(1+x^{2}\right)^{r}|f(x)|^{2} d x<\infty . \tag{10}
\end{equation*}
$$

## DECAY PROPERTIES OF THE SOLUTION

We prove certain properties of the semigroup associated to the problem PBO.

## Proposition

Let $\lambda \geq 0$ and $s \in \mathbb{R}$. Then,
(a.) $S(t) \in \mathbf{B}\left(H^{s}(\mathbb{R}), H^{s+\lambda}(\mathbb{R})\right)$ for all $t>0$ and satisfies,

$$
\begin{equation*}
\|S(t) \phi\|_{s+\lambda} \leq C_{\lambda}\left(e^{\eta t}+(\eta t)^{-\lambda / 2}\right)\|\phi\|_{s}, \tag{11}
\end{equation*}
$$

where $\phi \in H^{s}(\mathbb{R})$ and $C_{\lambda}$ is a constant depending only on $\lambda$. Moreover, the map $t \rightarrow S(t) \phi$ belongs to $C\left((0, \infty), H^{s+\lambda}(\mathbb{R})\right)$.

## DECAY PROPERTIES OF THE SOLUTION

We prove certain properties of the semigroup associated to the problem PBO.

## Proposition

Let $\lambda \geq 0$ and $s \in \mathbb{R}$. Then,
(a.) $S(t) \in \mathbf{B}\left(H^{s}(\mathbb{R}), H^{s+\lambda}(\mathbb{R})\right)$ for all $t>0$ and satisfies,

$$
\begin{equation*}
\|S(t) \phi\|_{s+\lambda} \leq C_{\lambda}\left(e^{\eta t}+(\eta t)^{-\lambda / 2}\right)\|\phi\|_{s}, \tag{11}
\end{equation*}
$$

where $\phi \in H^{s}(\mathbb{R})$ and $C_{\lambda}$ is a constant depending only on $\lambda$. Moreover, the map $t \rightarrow S(t) \phi$ belongs to $C\left((0, \infty), H^{s+\lambda}(\mathbb{R})\right)$.
(b.) $S:[0, \infty) \longrightarrow \mathbf{B}\left(H^{s}(\mathbb{R})\right)$ is a $C^{0}$-semigroup in $H^{s}(\mathbb{R})$. Moreover, for every $t \geq 0$,

$$
\begin{equation*}
\|S(t)\|_{\mathbf{B}\left(H^{s}\right)} \leq e^{\eta t} . \tag{12}
\end{equation*}
$$

## DECAY PROPERTIES OF THE SOLUTION

## Lemma

Let $E(\xi, t)=e^{i q(\xi) t-p(\xi) t}$ where $p(\xi)=\eta\left(\xi^{2}-|\xi|\right)$ and $q(\xi)=\beta \xi|\xi|$. Then,

$$
\begin{align*}
\partial_{\xi} E(\xi, t) & =t[(\eta+2 i \beta \xi) \operatorname{sgn}(\xi)-2 \eta \xi] E(\xi, t)  \tag{13}\\
\partial_{\xi}^{2} E(\xi, t) & =2 \eta t \delta+2 t[i \beta \operatorname{sgn}(\xi)-\eta] E(\xi, t)+ \\
& +t^{2}[(\eta+2 i \beta \xi) \operatorname{sgn}(\xi)-2 \eta \xi]^{2} E(\xi, t)  \tag{14}\\
\partial_{\xi}^{3} E(\xi, t) & =2 \eta t \delta^{\prime}+4 i \beta t \delta+3 t^{2}\left[\left(-2 \eta^{2}-8 i \beta \eta \xi\right) \operatorname{sgn}(\xi)+2 i \beta \eta+\right. \\
& \left.+4\left(\eta^{2}-\beta^{2}\right) \xi\right] E(\xi, t)+t^{3}[(\eta+2 i \beta \xi) \operatorname{sgn}(\xi)-2 \eta \xi]^{3} E(\xi, t) \tag{15}
\end{align*}
$$

## DECAY PROPERTIES OF THE SOLUTION

Moreover, for $j \geq 4$ we have that

$$
\begin{align*}
& \partial_{\xi}^{j} E(\xi, t)=2 \eta t \delta^{(j-2)}+4 i \beta t \delta^{(j-3)}+\sum_{k=0}^{j-4} p_{k}(t) \delta^{(k)}+ \\
& \quad+\sum_{k=0}^{j-1} t^{k}\left[r_{k}(\xi) \operatorname{sgn}(\xi)+s_{k}(\xi)\right] E(\xi, t)+t^{j}[(\eta+2 i \beta \xi) \operatorname{sgn}(\xi)-2 \eta \xi]^{j} E(\xi, t) \tag{16}
\end{align*}
$$

where $\delta$ is the Dirac delta function and $p_{k}(t), r_{k}(\xi)$ and $s_{k}(\xi)$ are polynomials satisfying $\operatorname{deg}\left(p_{k}(t)\right) \leq j-1, \operatorname{deg}\left(r_{k}(\xi)\right) \leq j-2$ and $\operatorname{deg}\left(s_{k}(\xi)\right) \leq j-2$.

## DECAY PROPERTIES OF THE SOLUTION

## Lemma

Suppose that $\eta>0, t>0$ and $\phi \in L_{j}^{2}$ or $S(t) \phi \in H^{j}$ as necessary, where $j \in \mathbb{N}$.

$$
\begin{gather*}
\left\|\partial_{\xi}^{j} \widehat{\phi}(\xi)\right\|_{0} \leq C_{j}\|\phi\|_{L_{j}^{2}}  \tag{17}\\
\left\|\xi^{j} E(\xi, t) \widehat{\phi}(\xi)\right\|_{0} \leq\|S(t) \phi\|_{H^{j}}  \tag{18}\\
\left\|\xi^{k} E(\xi, t) \partial_{\xi}^{j} \widehat{\phi}(\xi)\right\|_{0} \leq C_{k}\left(e^{\eta t}+(\eta t)^{-k / 2}\right)\|\phi\|_{L_{j}^{2}} ; \quad k \geq 0  \tag{19}\\
\left\|\partial_{\xi}^{k} E(\xi, t) \partial_{\xi}^{j} \widehat{\phi}(\xi)\right\|_{0} \leq\left(p_{k}(t) e^{\eta t}+\sum_{l=0}^{3 k-2} C_{l, \eta} t^{(I-k+2) / 2}\right)\|\phi\|_{L_{j}^{2}} \tag{20}
\end{gather*}
$$

$k \geq 2$ and $\left(\partial_{\xi}^{j} \widehat{\phi}\right)(0)=0$ for $j=0,1,2, \cdots$ it is a sufficient condition to obtain (20).

## DECAY PROPERTIES OF THE SOLUTION

## Proposition

Let $\eta>0$ and $\beta>0$ be fixed. Then, (a.) $S:[0,+\infty) \longrightarrow \mathbf{B}\left(\mathcal{F}_{r, r}\right), r=0,1$, is a $C^{0}$-semigroup and satisfies the estimate,

$$
\begin{equation*}
\|S(t) \phi\|_{\mathcal{F}_{r, r}} \leq\left(e^{\eta t} \Theta_{r}(t)+C_{\eta, \beta} t^{r / 2}\right)\|\phi\|_{\mathcal{F}_{r, r}} \tag{21}
\end{equation*}
$$

for all $\phi \in \mathcal{F}_{r, r}$, where $\Theta_{r}(t)$ is a polynomial of degree $r$ with positive coefficients that depend only on $\eta, \beta$ and $r$.

## DECAY PROPERTIES OF THE SOLUTION

## Proposition

Let $\eta>0$ and $\beta>0$ be fixed. Then,
(a.) $S:[0,+\infty) \longrightarrow \mathbf{B}\left(\mathcal{F}_{r, r}\right), r=0,1$, is a $C^{0}$-semigroup and satisfies the estimate,

$$
\begin{equation*}
\|S(t) \phi\|_{\mathcal{F}_{r, r}} \leq\left(e^{\eta t} \Theta_{r}(t)+C_{\eta, \beta} t^{r / 2}\right)\|\phi\|_{\mathcal{F}_{r, r}} \tag{21}
\end{equation*}
$$

for all $\phi \in \mathcal{F}_{r, r}$, where $\Theta_{r}(t)$ is a polynomial of degree $r$ with positive coefficients that depend only on $\eta, \beta$ and $r$.
(b.) If $r \geq 2$ and $\phi \in \mathcal{F}_{r, r}$, the function $S(t) \phi$ belongs to $C\left([0, \infty) ; \mathcal{F}_{r, r}\right)$ if, and only if,

$$
\begin{equation*}
\left(\partial_{\xi}^{j} \widehat{\phi}\right)(0)=0, \quad j=0,1,2, \cdots, r-2 \tag{22}
\end{equation*}
$$

In this case we have the next estimate

$$
\begin{equation*}
\|S(t) \phi\|_{\mathcal{F}_{r, r}} \leq\left(e^{\eta t} \Theta_{r}(t)+\sum_{l=0}^{3 r-2} C_{l, \eta, \beta} t^{(I-r+2) / 2}\right)\|\phi\|_{\mathcal{F}_{r, r}} \tag{23}
\end{equation*}
$$

## DECAY PROPERTIES OF THE SOLUTION

## Theorem

Let $\eta>0$ and $\beta>0$ fixed and $\phi \in \mathcal{F}_{s, r}$ with $s, r \in \mathbb{N}$ and $s \geq r$.

## DECAY PROPERTIES OF THE SOLUTION

## Theorem

Let $\eta>0$ and $\beta>0$ fixed and $\phi \in \mathcal{F}_{s, r}$ with $s, r \in \mathbb{N}$ and $s \geq r$. If $r=0,1$ the unique solution of the linear problem associated to PBO in $\mathcal{F}_{s, r}$ is given by $u(t)=S(t) \phi$.

## DECAY PROPERTIES OF THE SOLUTION

## Theorem

Let $\eta>0$ and $\beta>0$ fixed and $\phi \in \mathcal{F}_{s, r}$ with $s, r \in \mathbb{N}$ and $s \geq r$. If $r=0,1$ the unique solution of the linear problem associated to PBO in $\mathcal{F}_{s, r}$ is given by $u(t)=S(t) \phi$.
If $r \geq 2$, the linear problem associated to PBO has a solution in $\mathcal{F}_{s, r}$ if, and only if,

$$
\left(\partial_{\xi}^{j} \widehat{\phi}\right)(0)=0, \quad j=0,1,2, \cdots, r-2
$$

is satisfied. In this case the solution is unique and is again given by $u(t)=S(t) \phi$.

## DECAY PROPERTIES OF THE SOLUTION

Now let us enunciate a global result for the initial value problem PBO in $\mathcal{F}_{2,1}(\mathbb{R})$.

## Theorem

Let $\phi \in \mathcal{F}_{2,1}(R)$. Then there exists an unique solution of the problem PBO, $u \in C\left([0, \infty) ; \mathcal{F}_{2,1}(\mathbb{R})\right)$ such that $\partial_{t} u \in C\left(0, \infty ; \mathcal{F}_{0,1}(\mathbb{R})\right)$.

## DECAY PROPERTIES OF THE SOLUTION

## Theorem

Let $\beta, \eta>0$ be fixed and let $T>0$. Assume that $u \in C\left([0, T] ; \mathcal{F}_{2,2}(\mathbb{R})\right)$ is the solution of PBO. Then, $\widehat{u}(t, 0)=0$, for all $t \in[0, T]$.

## DECAY PROPERTIES OF THE SOLUTION

## Theorem

Let $\beta, \eta>0$ be fixed and let $T>0$. Assume that $u \in C\left([0, T] ; \mathcal{F}_{2,2}(\mathbb{R})\right)$ is the solution of PBO. Then, $\widehat{u}(t, 0)=0$, for all $t \in[0, T]$.

## Theorem

Let $\beta, \eta>0$ be fixed and let $T>0$. Assume that $u \in C\left([0, T] ; \mathcal{F}_{3,3}(\mathbb{R})\right)$ is the solution of PBO. Then, $u(t)=0$, for all $t \in[0, T]$.

## DECAY PROPERTIES OF THE SOLUTION

## Theorem

Let $\beta, \eta>0$ be fixed and let $T>0$. Assume that $u \in C\left([0, T] ; \mathcal{F}_{2,2}(\mathbb{R})\right)$ is the solution of PBO. Then, $\widehat{u}(t, 0)=0$, for all $t \in[0, T]$.

## Theorem

Let $\beta, \eta>0$ be fixed and let $T>0$. Assume that $u \in C\left([0, T] ; \mathcal{F}_{3,3}(\mathbb{R})\right)$ is the solution of PBO. Then, $u(t)=0$, for all $t \in[0, T]$.

We prove that if the solution $u(t)$ is sufficiently smooth $\left(u(t) \in H^{3}(\mathbb{R})\right)$ and falls off sufficiently fast as $|x| \rightarrow \infty\left(u(t) \in L_{3}^{2}(\mathbb{R})\right)$ for all $t \in[0, T]$, then $u(t)=0$, for all $t \in[0, T]$.

## BIBLIOGRAPHY

References
. B. Alvarez, On the Cauchy problem for a nonlocal perturbation of the KdV equation, Doctoral Thesis, IMPA, (2002).
. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolutons equations. II. The KdV-equations, Geom. Funct. Anal., 3 (1993), pp. 209-262.
H. H. Chen, Y. C. Lee, Nonlinear dynamical models of plasma turbulence, Phys. Scr. T1/2, 41 (1982).
R H. H. Chen, Y. C. Lee, S. Qian, A study of nonlinear dynamical models of plasma turbulence, Phys. Fluids B1, 1 (1989), pp. 87-98.

R H. H. Chen, Y. C. Lee, S. Qian, A turbulence model with stochastic soliton motion, J. Math. Phys., 31 (1990), pp. 506-516.

國 W. G. Chen, J. F. Li, On the low regularity of the Benney-Lin equation, J. Math. Anal. Appl., 339 (2008), pp. 1134-1147.

## BIBLIOGRAPHY

REFERENCES
國 R. J. Iório, Jr., On the Cauchy problem for the Benjamin-Ono Equation, Comm. PDE, 11, (1986), pp. 1031-1081.

R R. J. Iório, Jr., The Benjamin-Ono Equation in Weighted Sobolev Spaces, J. Math. Anal. Appl., Vol. 157, No. 2, (1991), pp. 577-590.
. C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KDV equation, J. Amer. Math. Soc., 92 (1996), pp. 573-603.
R- L. Molinet, F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers equation, Int. Math. Res. Not., 37 (2002), pp. 1979-2005.
國 L. Molinet, J. C. Saut, and N. Tzvetkov, III-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 334 (2001), pp. 982-988.

## BIBLIOGRAPHY

REFERENCES
R. M. Otani, Well-posedness of the generalized Benjamin-Ono-Burgers equations in Sobolev spaces of negative order, Osaka J. Math., 43 (2006), pp. 935-965.
S. Vento, Etude de quelques équations d'ondes en milieux dispersifs ou dispersifs-dissipatifs, Thèse, Université Paris-et, (2008).
國 X. Zhao, On Low Regularity of the Ostrovsky, Stepanyams and Tsimring Equation, To apper in J. Math. Anal. Appl., (2011).

## OBRIGADO A TODOS!

