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The Boussinesq system

J. L. Bona, M. Chen, J.-C. Saut - J. Nonlinear Sci. 12 (2002).{
ηt + wx + (ηw)x + awxxx − bηxxt = 0

wt + ηx + wwx + cηxxx − dwxxt = 0,
(1)

The model describes the motion of small-amplitude long waves on the

surface of an ideal fluid under the gravity force and in situations where

the motion is sensibly two dimensional.

η is the elevation of the fluid surface from the equilibrium position;

w = wθ is the horizontal velocity in the flow at height θh, where h is the

undisturbed depth of the liquid;

a, b, c, d , are parameters required to fulfill the relations

a + b =
1

2

(
θ2 − 1

3

)
, c + d =

1

2
(1− θ2) ≥ 0

where θ ∈ [0, 1].
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If

a + b =
1

2

(
θ2 − 1

3

)
, c + d =

1

2
(1− θ2) ≥ 0,

then

a + b + c + d =
1

3
.

If we assume that

a 6= 0, c 6= 0 and b = d = 0,

due to global well-posedness restrictions

a ≤ 0 and c ≤ 0 or a = c > 0.

Since a + c = 1
3 , this leads to

a = c =
1

6
, θ =

√
2

3
.
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A tank containing a fluid

The tanks is filled with liquid and should be be moved to different
steady-state workbenches as fast as possible.

Figure: Fluid in the 1-D tank
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L is the length of the tank and, for simplicity, we assume that
L = π;

η(t, x) is the elevation of the fluid surface at time t and at
the position x ∈ (0, π);

ω(t, x) is the horizontal fluid velocity (for some parameter
θ ∈ [0, 1]) in a referential attached to the tank at time t and
at the position x ∈ (0, π);

D = D(t) is the horizontal displacement of the tank;

s = s(t) is the horizontal velocity of the tank;

u = u(t) is the horizontal acceleration of the tank.

dD

dt
= s ,

ds

dt
= u and

d2D

dt2
= u.
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The full dynamics


ηt + ωx + aωxxx = 0
ωt + ηx + cηxxx = −u(t)
ds
dt = u
dD
dt = s,

where 0 < x < L and t > 0, with the boundary conditions
ηx(t, 0) = ηx(t, L) = −u(t)
ω(t, 0) = ω(t, L) = 0
ωxx(t, 0) = ωxx(t, L) = 0.

Since D̈(t) = u(t), we have the following initial conditions

η(0, x) = η0(x), ω(0, x) = ω0(x), D(0) = D0, Ḋ(t) = D1.
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A control problem

Can we move the tank, continuously, from any steady state to any
other steady state?

N. Petit and P. Rouchon, Dynamics and solutions to some
control problems for water-tank systems, IEEE Trans.
Automat. Control 47 (2002), 594–609.

F. Dubois, N. Petit and P. Rouchon, Motion planning and
nonlinear simulations for a tank containing a fluid, European
Control Conference, Karlsruhe, Germany (1999).
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Exact controllability

The system is exactly controllable in some appropriate Hilbert
space H when u(·) ∈ L2(0,T ).

More precisely, given T > 0, the initial state (η0, ω0,D0,D1) and
the terminal state (ηT , ωT ,D0,T ,D1,T ) in H, we can find a
control u ∈ L2(0,T ) such that the system admits a solution
satisfying (η(T ), ω(T ),D(T ), Ḋ(T )) = (ηT , ωT ,D0,T ,D1,T ).

A classical duality approach:

S. Dolecki, D. L. Russell, A general theory of observation and
control, SIAM J. Control Optimization 15 (1977), no. 2,
185–220.

J.-L. Lions, Contrôlabilité Exacte, Perturbations et
Stabilisation de Systèmes Distribués, Tome 1, Masson, Paris,
1988.
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⇒ Proof of an observability inequality for the solutions of the
adjoint system.

Fourier expansion of the solutions of the adjoint system.

Splitting into high/small frequencies.

Ingham’s inequality and

reduction to a spectral problem.
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Global well-posedness for the Boussinesq system

We first consider the following system

ηt + ωx + aωxxx = f ,
ωt + ηx + cηxxx = g ,
ηx(t, 0) = ηx(t, π) = 0,
ω(t, 0) = ω(t, π) = ωxx(t, 0) = ωxx(t, π) = 0,
η(0, x) = η0(x), ω(0, x) = ω0(x),

(2)

where 0 < x < π and t > 0. At least, formally,

(η, ω)(t, x) =
∑
k>1

(η̂k(t) cos(kx), ω̂k(t) sin(kx)),

where

(η̂k)t + kω̂k − ak3ω̂k = f̂k , 0 < t < T ,
(ω̂k)t − k η̂k + ck3η̂k = ĝk , 0 < t < T ,
η̂k(0) = η̂0k , ω̂k(0) = ω̂0

k .

(3)
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If we set

A(k) =

(
0 1− ak2

−1 + ck2 0

)
,

it is easy to see that (3) is equivalent to(
η̂k

ω̂k

)
t

+ kA(k)

(
η̂k

ω̂k

)
=

(
f̂k

ĝk

)
,

(
η̂k

ω̂k

)
(0) =

(
η̂0k

ω̂0
k

)
.

Note that the eigenvalues of the matrix A(k) are with

σ(k) = ±
√

(1− ak2)(−1 + ck2),

and that they are purely imaginary.

We introduce the notations

w1(k) = 1− ak2, w2(k) = 1− ck2.
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We introduce the space V s = Hs
even(0, π)× Hs

odd(0, π), where

Hs
odd(0, π) =

u =
∑
k≥1

ûk sin(kx); ‖u‖2Hs
odd (0,π)

:=
∑
k≥1

k2s |ûk |2 <∞


Hs
even(0, π) =

u =
∑
k≥1

ûk cos(kx); ‖u‖2Hs
even(0,π)

:=
∑
k≥1

k2s |ûk |2 <∞

 ,

endowed with the norm

‖(η, ω)‖2V s := ‖η‖2Hs
even

+ ‖Hω‖2Hs
odd
. (4)

The operator H that appears in (4) is defined in the following way:

H

∑
k>1

ω̂k sin(kx)

 =
∑
k>1

√
w1(k)

w2(k)
ω̂k sin(kx).
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Theorem

The family of linear operators {S(t)}t∈R defined by

S(t)(η0, ω0) =
∑
k>1

(η̂k(t) cos(kx), ω̂k(t) sin(kx)), (5)

where the Fourier coefficients of (η(t), ω(t)) are obtained from
those of (η0, ω0) by

η̂k(t) = cos(kλ(k)t)η̂0k −

√
w1(k)

w2(k)
sin(kλ(k)t)ω̂0

k ,

ω̂k(t) =

√
w2(k)

w1(k)
sin(kλ(k)t)η̂0k + cos(kλ(k)t)ω̂0

k ,

is a group of isometries in V s , for any s ∈ R.
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Theorem

The infinitesimal generator of the group {S(t)}t∈R is the
unbounded operator (D(A),A), where D(A) = V s+3 and

A(η, ω) = (−ωx − aωxxx ,−ηx − cηxxx) , ∀(η, ω) ∈ D(A).

Theorem

Let T > 0 and s ∈ R be given. If (η0, ω0) ∈ V s and
(f , g) ∈ C 1([0,T ],V s−3), then the problem admits a unique
solution (η, ω) ∈ C ([0,T ],V s) ∩ C 1([0,T ],V s−3).Moreover, there
exists a positive constant C > 0, such that

‖(η, ω)‖C([0,T ],V s) + ‖(η, ω)‖C1([0,T ],V s−3)

6 C
[
‖(f , g)‖C1([0,T ];V s−3) +

∥∥(η0, ω0)
∥∥
V s

]
.
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Global well-posedness for the tank problem

Now consider the following system
ηt + ωx + aωxxx = 0
ωt + ηx + cηxxx = −u(t)

D̈(t) = u(t),

where 0 < x < L and t > 0, with the boundary conditions
ηx(t, 0) = ηx(t, L) = −u(t)
ω(t, 0) = ω(t, L) = 0
ωxx(t, 0) = ωxx(t, L) = 0,

and the following initial conditions

η(0, x) = η0(x), ω(0, x) = ω0(x), D(0) = D0, Ḋ(t) = D1.
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The change of functions

(ϕ(t, x), ψ(t, x)) = (η(t, x), ω(t, x))− S(t)(η0, ω0) + (u(t)φ(x), 0)

transforms the previous system into

ϕt + ψx + aψxxx = f := u′(t)φ(x),

ψt + ϕx + cϕxxx = g := u(t)(−1 + φ′(x) + cφ′′′(x)),

D̈(t) = u(t),

ϕx(t, 0) = ϕx(t, π) = 0,

ψ(t, 0) = ψ(t, π) = 0,

ψxx(t, 0) = ψxx(t, π) = 0,

ϕ(0, x) = 0, ψ(0, x) = 0, D(0) = D0, Ḋ(0) = D1,

for a convenient φ = φ(x) and u ∈ C 2([0,T ],R); u(0) = 0.
A. Pazoto - Universidade Federal do Rio de Janeiro Controllability of a 1-D tank
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Exact controllability

For each s, we introduce the spaces

Ĥs
odd(0, π) = {u ∈ Hs

odd(0, π);
∑
n≥1
|cn|2n2s <∞ e cn = 0 for n ∈ 2Z};

Ĥs
even(0, π) = {u ∈ Hs

even(0, π);
∑
n≥1
|cn|2n2s <∞ e cn = 0 for n ∈ 2Z};

H = Ĥ1
even × Ĥ1

odd × R × R and H′ = Ĥ−1even × Ĥ−1odd × R × R.

Theorem

Let T > 0. Then, for any (η0, ω0,D0,D1) ∈ H′ and any
(ηT , ωT ,D0,T ,D1,T ) ∈ H′, there exists a control input
u ∈ L2(0,T ) such that the solution (η, ω,D) of the system
satisfies (η(T ), ω(T ),D(T ), Ḋ(T )) = (ηT , ωT ,D0,T ,D1,T ).
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Proof of the observability inequality

The adjoint system

We consider (p, q,E ), solution of
pt + qx + cqxxx = 0,

qt + px + apxxx = 0,

Ë (t) = 0,

satisfying the boundary conditions{
px(t, 0) = px(t, π) = 0,
q(t, 0) = q(t, π) = 0, qxx(t, 0) = qxx(t, π) = 0,

and initial conditions

p(T , x) = pT (x), q(T , x) = qT (x), E (T ) = E 0,T , Ė (T ) = E 1,T ,

where 0 < x < π and t > 0.

Observe that E (t) = βt + α, where α = E 0, β = E 1.
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Definition of the solution by transposition

Multiply the first equation of the system by p, the second one by q
and the third one by E (t). Integrating by parts over (0,T )× (0, π)
and assuming that the functions (η, ω,D) and (p, q,E ) are
sufficiently regular, we obtain

−
∫ T

0

∫ π

0
η(pt + qx + cqxxx)dxdt −

∫ T

0

∫ π

0
ω(qt + px + apxxx)dxdt

+

∫ π

0
{· · · · · · }T0 dx +

∫ T

0
{· · · · · · }π0 dt = −

∫ T

0

∫ π

0
u(t)qdxdt,[

Ḋ(t)E (t)
]T
0
−
[
D(t)Ė (t)

]T
0

+

∫ T

0
D(t)Ë (t)dt =

∫ T

0
u(t)E (t)dt.

If (p, q,E ) is a solution of (6), then we obtain
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∫ π

0
[ηp]T0 +

∫ π

0
[ωq]T0 − c

∫ T

0
[ηxqx ]π0 = −

∫ T

0

∫ π

0
u(t)qdxdt[

Ḋ(t)E (t)
]T
0
−
[
D(t)Ė (t)

]T
0

=

∫ T

0
u(t)E (t)dt.

Definition

A function (η, ω,D) ∈ H′ := Ĥ−1even × Ĥ−1odd × R × R, such that〈
(η(t), ω(t),−Ḋ(t),D(t)), (p(t), q(t),E (t), Ė (t))

〉
H′,H

= −
∫ t

0

u(τ)

{∫ π

0

(q + cqxx)dx + E (τ)

}
dτ

+
〈

(η0, ω0,−D1,D0), (p0, q0,E (0), Ė (0))
〉
H′,H

(6)

solution by transposition of the tank model.
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Proof of the observability inequality

Identity (6) defines (η(t), ω(t),−Ḋ(t),D(t)) ∈ H′ in a unique
way and (η, ω,−Ḋ,D) ∈ C ([0,T ];H′).

We can assume that D0 = D1 = 0 and η0 = ω0 = 0 . Then,
the following equivalent condition for the controllability holds:

−Ḋ(T )E 0,T + D(T )E 1,T +
〈
η(T ), pT

〉
Ĥ−1
even,Ĥ1

even

+
〈
ω(T ), qT

〉
Ĥ−1
odd ,Ĥ

1
odd

+

∫ T

0
u(t)

{∫ π

0
(q + cqxx)dx + E (t)

}
dt = 0.

Observability Inequality: For some C > 0,∣∣E 0,T
∣∣2 +

∣∣E 1,T
∣∣2 +

∥∥pT
∥∥2
1

+
∥∥qT

∥∥2
1
6

C

∫ T

0

∣∣∣∣∫ π

0
(q + cqxx)dx + E (t)

∣∣∣∣2 dt.
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The change of variables t → T − t and x → L− x give us the
following ”initial conditions”

p0(x) = pT (π−x), q0(x) = qT (π−x), E 0,= E 0,T , E 1 = −E 1,T .

Therefore, the above observability inequality is equivalent to the
following one:∣∣E 0

∣∣2 +
∣∣E 1
∣∣2 +

∥∥p0
∥∥2
1

+
∥∥q0
∥∥2
1
6

C

∫ T

0

∣∣∣∣∫ π

0
(q + cqxx)dx + E (t)

∣∣∣∣2 dt,

for some constant C > 0 and any (p0, q0,E 0,E 1) ∈ H
corresponding solution (p, q,E ) of the ”new” adjoint system.
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Proof of the observability inequality

First case: E ≡ 0:

There exists C > 0, such that∥∥p0
∥∥2
1

+
∥∥q0
∥∥2
1
6 C

∫ T

0

∣∣∣∣∫ π

0
(q + cqxx)dx

∣∣∣∣2 dt.

Observe that

(p, q) =
∑
k>1

(p̂k(t) cos(kx), q̂k(t) sin(kx)),

where

p̂k = cos[kλ(k)t]p̂0
k −

√
w̃1

w̃2
sin[kλ(k)t]q̂0

k

q̂k =

√
w̃2

w̃1
sin[kλ(k)t]p̂0

k + cos[kλ(k)t]q̂0
k

with w̃1(k) = 1− ck2 and w̃2(k) = 1− ak2.
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We have that∫ T

0

∣∣∣∣∫ π

0
(q + cqxx)dx

∣∣∣∣2 dt =

∫ T

0

∣∣∣∣ ∑
k∈Z
|k| odd

ake iµk t
∣∣∣∣2dt,

and ∥∥p0
∥∥2
1

+
∥∥q0
∥∥2
1
6
∑
k∈Z
|k| odd

|ak |2.

where ak and µk can be computed explicitly.
From Ingham’s inequality,

∑
k∈Z
|ak |2 6 CT

∫ T

0

∣∣∣∣∑
k∈Z

ake iµk t
∣∣∣∣2dt 6 DT

∑
k∈Z
|ak |2 ,

for some positive constants CT and DT .
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∥∥(p0, q0)
∥∥2
V 1 6 C

∑
k∈N
k odd

(1− ck2)2

k2

(
w̃2

w̃1

∣∣p̂0
k

∣∣2 +
∣∣q̂0

k

∣∣2)
6

∑
k∈Z
|k| odd

|ak |2

6 CCT

∫ T

0

∣∣∣∣ ∑
k∈Z
|k| odd

ake iµk t
∣∣∣∣2dt

6 CCT

∫ T

0

∣∣∣∣∫ π

0
(q + cqxx)dx

∣∣∣∣2 dt.
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Seconde case: Ë (t) = 0

E (t) = βt + α, where α = E 0 and β = E 1

Observability inequality: for some C > 0,∣∣E 0
∣∣2 +

∣∣E 1
∣∣2 +

∥∥p0
∥∥2
1

+
∥∥q0
∥∥2
1
6

C

∫ T

0

∣∣∣∣∫ π

0
(q + cqxx)dx + E (t)

∣∣∣∣2 dt.

Set f (t) =

∫ π

0
(q + cqxx)dx . Then,∫ T

0
|f (t) + E (t)|2 dt =∫ T

0
|f (t)|2 dt + 2

∫ T

0
f (t)E (t)dt +

∫ T

0
|E (t)|2 dt.
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Proof of the observability inequality

If the statement is false, then there exists a sequence

(p0
n, q

0
n,E

0
n ,E

1
n )n≥0 in H := Ĥ1

even × Ĥ1
odd × R× R,

satisfying ∥∥p0
n

∥∥2
1

+
∥∥q0

n

∥∥2
1

+ |E 0
n |2 + |E 1

n |2 = 1, ∀n ≥ 0,

and such that∫ T

0
|fn(t) + En(t)|2 dt → 0 as n→∞.
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Extracting a subsequence, still denoted (p0
n, q

0
n,E

0
n ,E

1
n )n≥0, we

have that

(p0
n, q

0
n,E

0
n ,E

1
n ) ⇀ (p0, q0,E 0,E 1) in H;

that is,

p0
n ⇀ p0 in Ĥ1

even(0, π),

q0
n ⇀ q0 in Ĥ1

odd(0, π),

E 0
n → E 0 in R,

E 1
n → E 1 in R.
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Since the embedding H1(0, π) ↪→ L2(0, π) is compact, we have for
a subsequence still denoted (p0

n, q
0
n,E

0
n ,E

1
n )n≥0

p0
n → p0 in L2(0, π),

q0
n → q0 in L2(0, π),

En(t) = E 1
n t + E 0

n → E (t) = E 1t + E 0 in L2(0,T ).

On the other hand,∥∥p0
n

∥∥2
1

+
∥∥q0

n

∥∥2
1

+ |E 0
n |2 + |E 1

n |2

6 CT

(∫ T

0
|fn(t) + En(t)|2 dt +

∥∥p0
n

∥∥2
0

+
∥∥q0

n

∥∥2
0

)
,

for all T > 0, i. e.,

(p0
n, q

0
n,E

0
n ,E

1
n )n≥0 is a Cauchy sequence in H := Ĥ1

even×Ĥ1
odd×R×R.
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We infer that (p0
n, q

0
n,E

0
n ,E

1
n )n≥0 is a Cauchy sequence in H,

which allows us to conclude that∥∥p0
∥∥2
1

+
∥∥q0
∥∥2
1

+ |E 0|2 + |E 1|2 = 1 (7)

and ∫ T

0

∣∣∣∣∫ π

0
(q + cqxx)dx + E (t)

∣∣∣∣2 dt = 0, (8)

where (p, q,E ) is a solution of the problem.

Claim. For T > 0, let NT denote the space of the (initial) states
(p0, q0,E 0,E 1) ∈ H such that the corresponding solution (p, q,E )

satisfies

∫ π

0
(q + cqxx)dx + E (t) = 0 in L2(0,T ). Then, NT = {0}

for all T > 0.
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Proof of the observability inequality

If NT 6= {0}, the map

(p0, q0,E 0,E 1) ∈ CNT → A(p0, q0,E 0,E 1) ∈ CNT

(where CNT denotes the complexification of NT ) has at least one
eigenvalue; that is, there exist λ ∈ C and an initial state
(p0, q0,E 0,E 1) ∈ CNT\ {(0, 0, 0, 0)}, such that

λp0 = −q0
x − cq0

xxx ,

λq0 = −p0
x − ap0

xxx ,

λE 0 = E 1,

λE 1 = 0,

p0
x(0) = p0

x(π) = 0,

q0(0) = q0(π) = q0
xx(0) = q0

xx(π) = 0,

and

∫ π

0
(q + cqxx)dx + E (t) = 0 in (0,T ).

We can prove that (p0, q0,E 0,E 1) = (0, 0, 0, 0).
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(where CNT denotes the complexification of NT ) has at least one
eigenvalue; that is, there exist λ ∈ C and an initial state
(p0, q0,E 0,E 1) ∈ CNT\ {(0, 0, 0, 0)}, such that

λp0 = −q0
x − cq0

xxx ,

λq0 = −p0
x − ap0

xxx ,

λE 0 = E 1,

λE 1 = 0,

p0
x(0) = p0

x(π) = 0,

q0(0) = q0(π) = q0
xx(0) = q0

xx(π) = 0,

and

∫ π

0
(q + cqxx)dx + E (t) = 0 in (0,T ).

We can prove that (p0, q0,E 0,E 1) = (0, 0, 0, 0).
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Final comments

S. Micu, J. H. Ortega, L. Rosier, B.-Y. Zhang, Control and
stabilization of a family of Boussinesq systems, Discrete and
Continuous Dynamical Systems 24 (2009), 273–313.

J.-M. Coron, Local Controllability of a 1-D tank containing a
fluid modeled by the shallow water equations, ESAIM Control
Optim. Calc. Var. 8 (2002), 513–554.

The motion of the fluid was described by the so-called shallow
water (or Saint-Venant) equations, obtained from the
Boussinesq system by letting a = b = c = d = 0.

It would be interesting to prove a similar result for the full
Boussinesq system (still with b = d = 0). This cannot be
done through a simple linearization argument, since
((ηω)x , ωωx) is not expected to belong to Ĥ r

even × Ĥ r
odd for

some r when (η, ω) ∈ Ĥs
even × Ĥs

odd for some s.
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