Blow-up on manifolds for the nonlinear Schrödinger equation

Nicolas Godet

October, 31 2013

University of Toulouse, France

Workshop on Nonlinear Dispersive Equations, Campinas

Euclidean *L*²-critical theory

Consider the one dimensional equation

$$i\partial_t u + \Delta u = -|u|^4 u, \quad t > 0, \quad x \in \mathbb{R}.$$

Local well-posedness: This equation is well-posed in H^1 : if $u_0 \in H^1(\mathbb{R})$, there exists a maximal time T > 0 and a solution $u \in \mathcal{C}([0, T), H^1(\mathbb{R})) \cap \mathcal{C}^1([0, T), H^{-1}(\mathbb{R}))$ with $u(0) = u_0$ and with the criteria

$$T < \infty$$
 implies $\|\nabla u(t)\|_{L^2} \to \infty$.

Goal

Blow up problematic:

- Estimate blow-up rate $\|\nabla u(t)\|_{L^2}$,
- Find singularities (points of concentration of mass),
- How much mass is concentrated?

H^1 known blow-up regimes

• Pseudo-conformal regime:

$$\|\nabla u(t)\|_{L^2(\mathbb{R})} \sim \frac{1}{T-t} \quad \text{as } t \to T,$$

• Log-log regime (Perelman, Merle-Raphaël):

$$\|
abla u(t)\|_{L^2(\mathbb{R})} \sim \left(rac{\log|\log(T-t)|}{T-t}
ight)^{1/2} \qquad ext{as } t o T.$$

Questions

Do these regimes persist in other geometries?

- lack of strong dispersion (losses in Strichartz estimates)
- no smoothing effect
- loss of symmetries (translation in space, scaling, $\ldots)$ and remarkable identity (Virial relation)

For the **pseudo-conformal regime**: Banica-Carles-Duyckaerts For the **log-log regime**: Planchon-Raphaël

Quintic Schrödinger equation on surfaces

$$i\partial_t u + \Delta u = -|u|^4 u, \qquad t > 0, \qquad x \in M,$$

where (M, g) is a two dimensional complete Riemannian manifold. Hamiltonian structure: L^2 and H^1 conservation laws:

$$M(u(t)) := \int_{M} |u(t)|^2 = M(u(0)),$$

$$E(u(t)) = \frac{1}{2} \int_{M} |\nabla u(t)|^2 - \frac{1}{6} \int_{M} |u(t)|^6 = E(u(0)).$$

Local well-posedness in H^1 (Burq-Gérard-Tzvetkov): if $u_0 \in H^1(M)$, there exists a maximal time T > 0 and a solution $u \in C([0, T), H^1(M)) \cap C^1([0, T), H^{-1}(M))$ with $u(0) = u_0$ and with the criteria

$$T < \infty$$
 implies $\|\nabla u(t)\|_{L^2} \to \infty$.

Log-log regime with radial symmetry

Theorem

Let (M, g) be a rotationally symmetric surface with $g = dr^2 + h^2(r)d\theta^2$, $0 < r < \rho \le \infty$. Assume in the non-compact case $(\rho = \infty) h'(r) \le Ch(r)$ for r large. Consider the equation on M (dim(M) = 2):

$$i\partial_t u + \Delta u = -|u|^4 u, \quad t > 0.$$

Then there exists an open set \mathcal{P} of $H^2_{rad}(M)$ such that if $u(0) \in \mathcal{P}$ then u blows up with the log log speed on a set $\{x \in M, r(x) = r_0\}$ for some $r_0 = r(pole) > 0$.

Prototypes. Compact: sphere Non-compact: hyperbolic space Euclidean space (treated in $H^1_{rad}(\mathbb{R}^2)$ by P. Raphaël).

Heuristic

In radial coordonates and for a radial solution, the equation becomes

$$i\partial_t u + \partial_r^2 u + \frac{h'(r)}{h(r)}\partial_r u = -|u|^4 u, \quad u(t,x) = u(t,r),$$

• Outside poles

$$\frac{h'(r)}{h(r)}\partial_r \ll \partial_r^2.$$

The equation is almost L^2 -critical outside poles: we prove a radial Sobolev embedding on M: for a radial function u on M:

$$\|u\|_{L^p(\varepsilon < r(x) < \rho - \varepsilon)} \le C(\varepsilon) \|u\|_{H^s(\varepsilon < r(x) < \rho - \varepsilon)}, \quad p \le p^* = \frac{2}{1 - 2s}.$$

• Near poles: we are outside the blow-up set \Rightarrow better estimates on *u*: "good" $H^{1/2}$ estimate.

Modulation

Splitting the dynamic: we choose u_0 such that $\|u_0\|_{L^2(M)} \sim \|Q\|_{L^2(\mathbb{R})}$ so that until a time $t_1 > 0$: $u(t,r) = \frac{1}{\sqrt{\lambda(t)}} \left(Q_{b(t)} \left(\frac{r - r(t)}{\lambda(t)} \right) + \varepsilon \left(t, \frac{r - r(t)}{\lambda(t)} \right) \right) e^{i\gamma(t)},$ with if $y = (r - r(t))/\lambda(t)$ and for k = 0, 1, 2: $\int |\partial_y^k \varepsilon(t)|^2 \mu(y) dy < \infty, \quad \mu(y) = h(\lambda(t)y + r(t)) \mathbb{1}_{\left\{ -\frac{r(t)}{\lambda(t)} \le y \le \frac{\rho - r(t)}{\lambda(t)} \right\}}(y),$

with orthogonality conditions:

$$\begin{split} \operatorname{Re}(\varepsilon(t), y^2 Q_{b(t)}) &= \operatorname{Re}(\varepsilon(t), y Q_{b(t)}) = 0, \\ \operatorname{Im}(\varepsilon(t), \Lambda Q_{b(t)}) &= \operatorname{Im}(\varepsilon(t), \Lambda^2 Q_{b(t)}) = 0. \end{split}$$

where $\Lambda = \frac{1}{2} + y \partial_y$. Q_b is a troncated version of refined profiles: $\partial_v^2 Q_b - Q_b + ib\Lambda Q_b + |Q_b|^4 Q_b = \mathcal{O}(e^{-\frac{\pi}{|b|}}) \ll 1.$

Control of the finite dimensional part

Modulation "equations": Time rescaling: $s = \int_0^t \frac{d\tau}{\lambda^2(\tau)}$. Then

$$\begin{split} \left| \frac{\lambda_s}{\lambda} + b \right| + \left| b_s \right| + \left| \frac{r_s}{\lambda} \right| &\leq \quad \mathcal{CE}(s) + \Gamma_b^{1-}, \\ \left| \gamma_s - 1 - \frac{\left(\operatorname{Re} \, \varepsilon, \, \mathcal{L}_+(\Lambda^2 Q) \right)}{\|\Lambda Q\|_{L^2}^2} \right| &\leq \quad \delta \mathcal{E}^{1/2}(s) + \Gamma_b^{1-}, \end{split}$$

where

$$\delta \ll 1, \qquad \Gamma_b \sim e^{-\frac{\pi}{|b|}}, \qquad \text{as } b \to 0,$$

 $\mathcal{E}(s) = \int |\partial_y \varepsilon(s, y)|^2 h(\lambda(s)y + r(s)) dy + \int_{|y| \leq \frac{10}{b(s)}} |\varepsilon(s, y)|^2 e^{-|y|} dy,$

and (L_+, L_-) is the linearized operator near Q:

$$L_{-} = -\partial_y^2 + 1 - 5Q^4, \qquad L_{+} = -\partial_y^2 + 1 - Q^4.$$

Extra terms due to $\frac{h'}{h}\partial_r$ are controled by the smallness of $\lambda(s)$: $\lambda \ll \Gamma_b$.

Control of the infinite dimensional part, I

Goal: use a virial type argument to control the rest ε **Heuristic:** *u* satisfies the approximation (at least outside poles):

$$i\partial_t u + \partial_{rr} u \sim -|u|^4 u.$$

For the 1D Euclidean equation

$$i\partial_t u + \Delta u = -|u|^4 u, \qquad x \in \mathbb{R},$$

we have the Virial relation: if $u \in \Sigma := \{u \in H^1, xu \in L^2\}$ then

$$\frac{d^2}{dt^2}\int |x|^2|u|^2dx=4\frac{d}{dt}\mathrm{Im}\left(\int x\cdot\nabla u\overline{u}\right)=16E(u_0).$$

Control of the infinite dimensional part, II

Thus, we expect:

$$\frac{d}{dt}\mathrm{Im}\left(\int\phi(r)r\partial_{r}u\overline{u}\right)\sim 4E_{0},$$

where ϕ is a cut-off function avoiding poles. We expand in term of ε and use three arguments:

• almost coercivity of the second order part (coercivity modulo negative direction)

- conservation laws (needs an $H^{1/2}$ control)
- orthogonality conditions

Conclusion. Virial estimate:

$$Db_s \geq \mathcal{E}(s) - \Gamma_b^{1-}.$$

Smallness of the critical norm near poles, I

To obtain a control from the conservation of energy, we need to prove:

$$\int |\tilde{u}|^6 \ll \int |\nabla \tilde{u}(t)|^2. \quad \tilde{u}(t,r) = \frac{1}{\sqrt{\lambda(t)}} e^{i\gamma(t)} \varepsilon\left(t, \frac{r-r(t)}{\lambda(t)}\right).$$

• Outside poles: this is the conservation of mass

• Near poles: $H^{1/2}$ control. Derivation of a pseudo-energy E_2 at level H^2 with

$$||u(t)||^2_{H^2(M)} \leq CE_2(u(t)),$$

and

$$\frac{d}{dt}E_2(u(t)) \leq C(\|u(t)\|_{H^{1/2}}, \|u(t)\|_{H^1}, \|u(t)\|_{H^{3/2}})E_2(u(t))^{1-\theta}, \ \theta \in (0,1)$$

Smallness of the critical norm near poles, II

This implies an H^2 estimate

$$\|u(t)\|_{H^2(M)}\leq rac{1}{\lambda(t)^{2+\eta}}, \qquad ext{for some } \eta>0.$$

Moreover, for all $0 < a_2 < a_1 < b_1 < b_2$, and t > 0,

$$\begin{split} \|D^{s}u\|_{L^{\infty}_{[0,t)}L^{2}(a_{1},b_{1})} &\leq C(\|D^{s}u(0)\|_{L^{2}(a_{2},b_{2})} + \|u\|_{L^{2}_{[0,t)}H^{\max(1,s+\frac{1}{2})}(a_{2},b_{2})} \\ &+ \|D^{s}(u|u|^{4})\|_{L^{1}_{[0,t)}L^{2}(a_{2},b_{2})}), \end{split}$$

we get

$$||u(t)||_{H^{1/2}(|r-1|>1/2)} \ll 1.$$

Integration of modulation equations

The integration of

$$b_{s} \sim e^{-rac{\pi}{b}}, \qquad rac{\lambda_{s}}{\lambda} \sim -b, \quad \left|rac{r_{s}}{\lambda}
ight| \ll 1,$$

gives with $s = \int_0^t \frac{d\tau}{\lambda^2(\tau)}$:

$$\lambda(t) \sim rac{1}{\|
abla u(t)\|_{L^2}} \sim C\left(rac{T-t}{\log|\log(T-t)|}
ight)^{1/2},$$

and r_t integrable thus $r(t) \not\rightarrow r(\text{poles})$.

Thank you !!

∃ → < ∃</p>