On the Schrödinger equation with singular potentials

Lucas C. F. Ferreira

Department of Mathematics - Unicamp

Joint with Jaime Angulo Pava (IME-USP)

Schrödinger equation with singular potentials

We consider the Schrödinger equation

$$\begin{cases} i\partial_t u + \Delta u - \mu(x)u = F(u), \\ u(x,0) = u_0(x), \end{cases}$$
(1)

where $t \in \mathbb{R}$, $\lambda = \pm 1$, μ is a given potential, and:

- In the continuous case x ∈ ℝⁿ, F(u) = λ |u|^{ρ-1} u with ρ > 1, or F(u) = λu^ρ, with ρ ∈ ℕ;
- In the periodic case x ∈ Tⁿ, F(u) = λ |u|^{ρ-1} u with ρ ∈ N odd, or F(u) = λu^ρ with ρ ∈ N.

The potential μ

We are interested in two basic types of potentials. The first is delta-type potentials like:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The potential μ

- We are interested in two basic types of potentials. The first is delta-type potentials like:
- $\mu(x) = \sigma \delta$, $\mu(x) = \sigma(\delta(x a) + \delta(x + a))$ and $\mu(x) = \sigma \delta'$ with $\sigma \in \mathbb{R}$, where δ and δ' represent the delta function in the origin and its derivative.

The potential μ

- We are interested in two basic types of potentials. The first is delta-type potentials like:
- $\mu(x) = \sigma \delta$, $\mu(x) = \sigma(\delta(x a) + \delta(x + a))$ and $\mu(x) = \sigma \delta'$ with $\sigma \in \mathbb{R}$, where δ and δ' represent the delta function in the origin and its derivative.
- The second type is bounded potentials that do not decay to zero or go to zero very slowly at infinity.

(日) (同) (三) (三) (三) (○) (○)

Delta-type potentials

 Delta-type potentials arise in different areas of quantum field theory and are important for understanding some phenomena in condensed matter physics.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Delta-type potentials

- Delta-type potentials arise in different areas of quantum field theory and are important for understanding some phenomena in condensed matter physics.
- From an experimental viewpoint, nanoscale devises have caused an interest in point-like impurities (defects) that are associated to Delta-type potentials.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Delta-type potentials

- Delta-type potentials arise in different areas of quantum field theory and are important for understanding some phenomena in condensed matter physics.
- From an experimental viewpoint, nanoscale devises have caused an interest in point-like impurities (defects) that are associated to Delta-type potentials.
- We have the case repulsive ($\sigma > 0$) and attractive ($\sigma < 0$).

Results on fundamental solutions, global existence in H^s ($s \ge 0$), standing waves, and stability have been obtained in dimension n = 1 by several authors.

See e.g. Albeverio-Gestezy-Krohn-Holden (Texts Monog. Phys. '88), Albeverio-Brzezniak-Dabrowski(JFA 1995), Caudrelier-Mintchev-Ragoucy (J. Math. Phys '05), Hölmer-Marzuola-Zworski (CMP '07), Fukuizumi-Ohta-Ozawa (AIHP '08), Adami-Noja (CMP '09), Datchev-Hölmer (CPDE'09), Kovarik-Sacchetti (J.Phys.A '10), Adami-Noja-Visciglia (DCDS-B '13), among others.

As far as we know, there is a lack of results for n > 1. One of the reasons is that a "good formula" for the associated linear unitary group depending on the Schrödinger one $e^{i\Delta t}\phi$ is found explicitly only for n = 1.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

As far as we know, there is a lack of results for n > 1. One of the reasons is that a "good formula" for the associated linear unitary group depending on the Schrödinger one $e^{i\Delta t}\phi$ is found explicitly only for n = 1.

In $n \ge 4$, von Neumann-Krein theory of self-adjoint extensions of symmetric operators theory trivializes (see Albeverio-Gestezy-Krohn-Holden '88).

As far as we know, there is a lack of results for n > 1. One of the reasons is that a "good formula" for the associated linear unitary group depending on the Schrödinger one $e^{i\Delta t}\phi$ is found explicitly only for n = 1.

In $n \ge 4$, von Neumann-Krein theory of self-adjoint extensions of symmetric operators theory trivializes (see Albeverio-Gestezy-Krohn-Holden '88).

For n = 2, 3, the fundamental solution is well known (see Albeverio-Gestezy-Krohn-Holden '88), however there is no good formula depending explicitly on $e^{i\Delta t}\phi$.

In view of the singular potential, it is reasonable to investigate (1) outside L^2 -framework.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In view of the singular potential, it is reasonable to investigate (1) outside L^2 -framework.

On the other hand, for the sake of physical reasonability, one could desire that elements in the functional setting have finite local L^2 -norm;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In view of the singular potential, it is reasonable to investigate (1) outside L^2 -framework.

On the other hand, for the sake of physical reasonability, one could desire that elements in the functional setting have finite local L^2 -norm;

and so they could be realized in the physical space in any region with finite volume, though some of them may have infinite L^2 -norm.

For n = 1, we prove global existence and asymptotic stability in a time-weighted framework based on weak- L^p spaces.

For n = 1, we prove global existence and asymptotic stability in a time-weighted framework based on weak- L^p spaces.

Precisely, the Banach space $\mathcal{L}^{\infty}_{\vartheta}$ of all Bochner measurable functions $u: \mathbb{R} \to L^{(\rho+1,\infty)}$ endowed with the norm

$$\|u\|_{\mathcal{L}^\infty_artheta} = \sup_{-\infty < t < \infty} |t|^artheta \|u(t)\|_{(
ho+1,\infty)},$$

where $\vartheta = \frac{1}{\rho - 1} - \frac{1}{2(\rho + 1)}$.

For n = 1, we prove global existence and asymptotic stability in a time-weighted framework based on weak- L^p spaces.

Precisely, the Banach space $\mathcal{L}^{\infty}_{\vartheta}$ of all Bochner measurable functions $u: \mathbb{R} \to L^{(\rho+1,\infty)}$ endowed with the norm

$$\|u\|_{\mathcal{L}^\infty_artheta} = \sup_{-\infty < t < \infty} |t|^artheta \|u(t)\|_{(
ho+1,\infty)},$$

where $\vartheta = \frac{1}{\rho - 1} - \frac{1}{2(\rho + 1)}$.

Define also the initial data class \mathcal{E}_0 as the set of all $u \in \mathcal{S}'(\mathbb{R})$ such that the norm

$$\|u_0\|_{\mathcal{E}_0} = \sup_{-\infty < t < \infty} |t|^{\vartheta} \|G_{\sigma}(t)u_0\|_{(\rho+1,\infty)} < \infty,$$

where $G_{\sigma}(t)$ is the linear group associated to (1).

Based on L^p -spaces and time-decay estimates for the associated linear group, spaces like $\mathcal{L}^{\infty}_{\vartheta}$ were first used by Kato-Fujita ('62 and '84) and F. Weissler ('80) in the context of Navier-Stokes and semilinear parabolic equations.

Based on L^p -spaces and time-decay estimates for the associated linear group, spaces like $\mathcal{L}^{\infty}_{\vartheta}$ were first used by Kato-Fujita ('62 and '84) and F. Weissler ('80) in the context of Navier-Stokes and semilinear parabolic equations.

For dispersive equations, this type of space was first employed by Cazenave-Weissler (Math Z. '98) for (1) with $\mu = 0$ in L^{p} -spaces.

Based on L^p -spaces and time-decay estimates for the associated linear group, spaces like $\mathcal{L}^{\infty}_{\vartheta}$ were first used by Kato-Fujita ('62 and '84) and F. Weissler ('80) in the context of Navier-Stokes and semilinear parabolic equations.

For dispersive equations, this type of space was first employed by Cazenave-Weissler (Math Z. '98) for (1) with $\mu = 0$ in L^{p} -spaces.

Motivated by this work, Ferreira-Villamizar-Roa-Silva (PAMS '09) studied (1) with $\mu = 0$ in such type of framework based on weak- L^p spaces.

Based on L^p -spaces and time-decay estimates for the associated linear group, spaces like $\mathcal{L}^{\infty}_{\vartheta}$ were first used by Kato-Fujita ('62 and '84) and F. Weissler ('80) in the context of Navier-Stokes and semilinear parabolic equations.

For dispersive equations, this type of space was first employed by Cazenave-Weissler (Math Z. '98) for (1) with $\mu = 0$ in L^{p} -spaces.

Motivated by this work, Ferreira-Villamizar-Roa-Silva (PAMS '09) studied (1) with $\mu = 0$ in such type of framework based on weak- L^p spaces.

See also Cazenave-Vega-Vilela (CCM '01) for another approach in weak- L^p spaces via Strichartz type estimates.

Our results read as follows.

Theorem (A)

(Global-in-time existence) Let n = 1, $\sigma \ge 0$, $\rho_0 = \frac{3+\sqrt{17}}{2}$, and $\rho_0 < \rho < \infty$. There is $\varepsilon > 0$ such that if $||u_0||_{\mathcal{E}_0} \le \varepsilon$ then (1) has a unique global-in-time mild solution $u \in \mathcal{L}_n^\infty$ satisfying $||u||_{\mathcal{L}_n^\infty} \le 2\varepsilon$.

Our results read as follows.

Theorem (A)

(Global-in-time existence) Let n = 1, $\sigma \ge 0$, $\rho_0 = \frac{3+\sqrt{17}}{2}$, and $\rho_0 < \rho < \infty$. There is $\varepsilon > 0$ such that if $\|u_0\|_{\mathcal{E}_0} \le \varepsilon$ then (1) has a unique global-in-time mild solution $u \in \mathcal{L}^{\infty}_{\vartheta}$ satisfying $\|u\|_{\mathcal{L}^{\infty}_{\vartheta}} \le 2\varepsilon$.

Theorem (B)

(Asymptotic Stability) Let u and v be two solutions obtained from Theorem (A) with initial data u_0 and v_0 , respectively. We have that

$$\lim_{|t|\to\infty}|t|^{\vartheta} \|u(\cdot,t)-v(\cdot,t)\|_{(\rho+1,\infty)}=0$$

if only if $\lim_{|t|\to\infty} |t|^{\vartheta} \|G_{\sigma}(t)(u_0 - v_0)\|_{(\rho+1,\infty)} = 0$. This last condition holds, in particular, for $u_0 - v_0 \in L^{(\frac{\rho+1}{\rho},\infty)}$.

Some steps in the proof of Thm (A)

The IVP is formally converted to (mild solutions)

$$u(t) = G_{\sigma}(t)u_0 - i\lambda \int_0^t G_{\sigma}(t-s)[|u(s)|^{\rho-1}u(s)]ds.$$
 (2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some steps in the proof of Thm (A)

The IVP is formally converted to (mild solutions)

$$u(t) = G_{\sigma}(t)u_0 - i\lambda \int_0^t G_{\sigma}(t-s)[|u(s)|^{\rho-1}u(s)]ds.$$
 (2)

For $\mu = \sigma \delta$, $\sigma \ge 0$, and n = 1, Holmer-Marzuola-Zworski (CMP 2007) proved the formula (there are similar ones for the other potentials)

$$G_{\sigma}(t)\phi(x) = e^{it\Delta}(\phi * \tau_{\sigma})(x)\chi^{0}_{+} + \left[e^{it\Delta}\phi(x) + e^{it\Delta}(\phi * \rho_{\sigma})(-x)\right]\chi^{0}_{-}$$
(3)

Some steps in the proof of Thm (A)

The IVP is formally converted to (mild solutions)

$$u(t) = G_{\sigma}(t)u_0 - i\lambda \int_0^t G_{\sigma}(t-s)[|u(s)|^{\rho-1}u(s)]ds.$$
 (2)

For $\mu = \sigma \delta$, $\sigma \ge 0$, and n = 1, Holmer-Marzuola-Zworski (CMP 2007) proved the formula (there are similar ones for the other potentials)

$$G_{\sigma}(t)\phi(x) = e^{it\Delta}(\phi * \tau_{\sigma})(x)\chi_{+}^{0} + \left[e^{it\Delta}\phi(x) + e^{it\Delta}(\phi * \rho_{\sigma})(-x)\right]\chi_{-}^{0}$$
(3)

where

$$\rho_{\sigma}(x) = -\frac{\sigma}{2}e^{\frac{\sigma}{2}x}\chi_{-}^{0}, \quad \tau_{\sigma}(x) = \delta(x) + \rho_{\sigma}(x),$$

with χ^0_+ and χ^0_- the characteristic function of $[0, +\infty)$ and $(-\infty, 0]$, respectively.

From (3) and following Ferreira-VillamizarRoa-Silva (PAMS '09), one can obtain the dispersive estimate in Lorentz spaces

$$\|G_{\sigma}(t)f\|_{(p',d)} \le C|t|^{-\frac{1}{2}(\frac{2}{p}-1)} \|f\|_{(p,d)}.$$
(4)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From (3) and following Ferreira-VillamizarRoa-Silva (PAMS '09), one can obtain the dispersive estimate in Lorentz spaces

$$\|G_{\sigma}(t)f\|_{(p',d)} \le C|t|^{-\frac{1}{2}(\frac{2}{p}-1)} \|f\|_{(p,d)}.$$
(4)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From (4) and Hölder inequality in weak- L^p spaces, one can prove that the nonlinear part $\mathcal{N}(u)$ of (2) verifies

$$\|\mathcal{N}(u) - \mathcal{N}(v)\|_{\mathcal{L}^{\infty}_{\vartheta}} \leq K \|u - v\|_{\mathcal{L}^{\infty}_{\vartheta}} (\|u\|_{\mathcal{L}^{\infty}_{\vartheta}}^{\rho-1} + \|v\|_{\mathcal{L}^{\infty}_{\vartheta}}^{\rho-1}).$$
(5)

From (3) and following Ferreira-VillamizarRoa-Silva (PAMS '09), one can obtain the dispersive estimate in Lorentz spaces

$$\|G_{\sigma}(t)f\|_{(p',d)} \le C|t|^{-\frac{1}{2}(\frac{2}{p}-1)} \|f\|_{(p,d)}.$$
(4)

From (4) and Hölder inequality in weak- L^p spaces, one can prove that the nonlinear part $\mathcal{N}(u)$ of (2) verifies

$$\|\mathcal{N}(u) - \mathcal{N}(v)\|_{\mathcal{L}^{\infty}_{\vartheta}} \leq K \|u - v\|_{\mathcal{L}^{\infty}_{\vartheta}} (\|u\|_{\mathcal{L}^{\infty}_{\vartheta}}^{\rho-1} + \|v\|_{\mathcal{L}^{\infty}_{\vartheta}}^{\rho-1}).$$
(5)

Using (4) and (5), one proves that the map

$$\Psi(u) = G_{\sigma}(t)u_0 - i\lambda \int_0^t G_{\sigma}(t-s)[|u(s)|^{
ho-1}u(s)]ds$$

is a contraction on a small ball of $\mathcal{L}^{\infty}_{\vartheta}$.

Note that the distributions δ and δ' on ℝⁿ are homogeneous of degree −n and −n − 1, respectively.

- Note that the distributions δ and δ' on ℝⁿ are homogeneous of degree −n and −n − 1, respectively.
- ▶ The PDE (1) with $\mu = \delta$ and $\mu = \delta'$ has the scaling $u(x, t) = \lambda^{\frac{2}{p-1}} u(\lambda x, \lambda^2 t)$ when n = 2 and n = 1, respectively.

- Note that the distributions δ and δ' on ℝⁿ are homogeneous of degree −n and −n − 1, respectively.
- ▶ The PDE (1) with $\mu = \delta$ and $\mu = \delta'$ has the scaling $u(x, t) = \lambda^{\frac{2}{\rho-1}} u(\lambda x, \lambda^2 t)$ when n = 2 and n = 1, respectively.
- In the case μ = δ', if a homogeneous function of degree -²/_{ρ-1} belonged to 𝔅₀ then one could prove existence of self-similar solutions and asymptotic self-similar ones by means of Theorem (A) and (B).

- Note that the distributions δ and δ' on ℝⁿ are homogeneous of degree −n and −n − 1, respectively.
- ▶ The PDE (1) with $\mu = \delta$ and $\mu = \delta'$ has the scaling $u(x, t) = \lambda^{\frac{2}{\rho-1}} u(\lambda x, \lambda^2 t)$ when n = 2 and n = 1, respectively.
- In the case μ = δ', if a homogeneous function of degree -²/_{ρ-1} belonged to 𝔅₀ then one could prove existence of self-similar solutions and asymptotic self-similar ones by means of Theorem (A) and (B).
- The case μ = δ for n = 2 is more delicate. Here, besides needing homogeneous data in E₀, one would need the dispersive estimate (4) with n = 2 which is not known to be true.

(Local-in-time solutions) Let n = 1, $1 < \rho < \rho_0$, $d_0 = \frac{1}{2}(\frac{\rho-1}{\rho+1})$, and $d_0 < \zeta < \frac{1}{\rho}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(Local-in-time solutions) Let n = 1, $1 < \rho < \rho_0$, $d_0 = \frac{1}{2}(\frac{\rho-1}{\rho+1})$, and $d_0 < \zeta < \frac{1}{\rho}$.

For $0 < T < \infty$, consider the Banach space \mathcal{L}_{ζ}^{T} of all Bochner measurable functions $u : (-T, T) \to L^{(\rho+1,\infty)}$ endowed with the norm

$$\|u\|_{\mathcal{L}^{\mathcal{T}}_{\zeta}} = \sup_{-T < t < T} |t|^{\zeta} \|u(\cdot, t)\|_{(\rho+1,\infty)}.$$

(Local-in-time solutions) Let n = 1, $1 < \rho < \rho_0$, $d_0 = \frac{1}{2}(\frac{\rho-1}{\rho+1})$, and $d_0 < \zeta < \frac{1}{\rho}$.

For $0 < T < \infty$, consider the Banach space \mathcal{L}_{ζ}^{T} of all Bochner measurable functions $u : (-T, T) \to L^{(\rho+1,\infty)}$ endowed with the norm

$$\|u\|_{\mathcal{L}^{\mathcal{T}}_{\zeta}} = \sup_{-T < t < T} |t|^{\zeta} \|u(\cdot, t)\|_{(\rho+1,\infty)}.$$

A local-in-time existence result in \mathcal{L}_{ζ}^{T} can be proved for (1) by considering $u_{0} \in L^{(\frac{\rho+1}{\rho},\infty)}(\mathbb{R})$ and small T > 0.

For $n \ge 1$, we prove local existence in a framework outside L^2 for potentials μ nondecaying at infinity in \mathbb{R}^n , and also consider periodic solutions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For $n \ge 1$, we prove local existence in a framework outside L^2 for potentials μ nondecaying at infinity in \mathbb{R}^n , and also consider periodic solutions.

We consider the Banach space

$$\mathcal{I}=[\mathcal{M}(\mathbb{R}^n)]^{ee}=\{f\in\mathcal{S}'(\mathbb{R}^n):\widehat{f}\in\mathcal{M}(\mathbb{R}^n)\}\subset BC(\mathbb{R}^n),$$

with norm $\|f\|_{\mathcal{I}} = \|\widehat{f}\|_{\mathcal{M}}$,

For $n \ge 1$, we prove local existence in a framework outside L^2 for potentials μ nondecaying at infinity in \mathbb{R}^n , and also consider periodic solutions.

We consider the Banach space

$$\mathcal{I}=[\mathcal{M}(\mathbb{R}^n)]^{ee}=\{f\in\mathcal{S}'(\mathbb{R}^n):\widehat{f}\in\mathcal{M}(\mathbb{R}^n)\}\subset BC(\mathbb{R}^n),$$

with norm $\|f\|_{\mathcal{I}} = \|\widehat{f} ~\|_{\mathcal{M}}$, and its periodic version

$$\mathcal{I}_{per} = \{f \in \mathcal{D}'(\mathbb{T}^n) : \widehat{f} \in l^1(\mathbb{Z}^n)\}$$

with the norm $\|f\|_{\mathcal{I}_{per}} = \|\widehat{f}\|_{l^1(\mathbb{Z}^n)}$.

For $n \ge 1$, we prove local existence in a framework outside L^2 for potentials μ nondecaying at infinity in \mathbb{R}^n , and also consider periodic solutions.

We consider the Banach space

$$\mathcal{I}=[\mathcal{M}(\mathbb{R}^n)]^{ee}=\{f\in\mathcal{S}'(\mathbb{R}^n):\widehat{f}\in\mathcal{M}(\mathbb{R}^n)\}\subset BC(\mathbb{R}^n),$$

with norm $\|f\|_{\mathcal{I}} = \|\widehat{f} ~\|_{\mathcal{M}}$, and its periodic version

$$\mathcal{I}_{per} = \{ f \in \mathcal{D}'(\mathbb{T}^n) : \widehat{f} \in l^1(\mathbb{Z}^n) \}$$

with the norm $\|f\|_{\mathcal{I}_{per}} = \|\widehat{f}\|_{l^1(\mathbb{Z}^n)}$.

In general $u_0 \in \mathcal{I}$ may not belong to $L^p(\mathbb{R}^n)$, nor to $L^{p,\infty}(\mathbb{R}^n)$, with $p \neq \infty$. In particular, $u_0 \in \mathcal{I}$ may have infinite L^2 -mass. Also, $\mu \equiv 1$ then $\hat{\mu} = \delta \in \mathcal{M}(\mathbb{R}^n)$.

Our local-in-time well-posedness result in $\ensuremath{\mathcal{I}}$ reads as follows.

Theorem (C) (Periodic case) Let $1 \le \rho < \infty$, $u_0 \in \mathcal{I}_{per}$, and $\mu \in \mathcal{I}_{per}$. There is T > 0 such that the IVP (1) has a unique mild solution $u \in L^{\infty}((-T, T); \mathcal{I}_{per})$ satisfying

$$\sup_{t\in(-T,T)} \left\| u(\cdot,t) \right\|_{\mathcal{I}_{per}} \leq 2 \left\| u_0 \right\|_{\mathcal{I}_{per}}$$

Our local-in-time well-posedness result in $\ensuremath{\mathcal{I}}$ reads as follows.

Theorem (C) (Periodic case) Let $1 \le \rho < \infty$, $u_0 \in \mathcal{I}_{per}$, and $\mu \in \mathcal{I}_{per}$. There is T > 0 such that the IVP (1) has a unique mild solution $u \in L^{\infty}((-T, T); \mathcal{I}_{per})$ satisfying

$$\sup_{t\in(-T,T)}\|u(\cdot,t)\|_{\mathcal{I}_{per}}\leq 2\|u_0\|_{\mathcal{I}_{per}}$$

Moreover, the data-map solution $u_0 \rightarrow u$ is Lipschitz continuous from \mathcal{I}_{per} to $L^{\infty}((-T, T); \mathcal{I}_{per})$.

Our local-in-time well-posedness result in $\ensuremath{\mathcal{I}}$ reads as follows.

Theorem (C) (Periodic case) Let $1 \le \rho < \infty$, $u_0 \in \mathcal{I}_{per}$, and $\mu \in \mathcal{I}_{per}$. There is T > 0 such that the IVP (1) has a unique mild solution $u \in L^{\infty}((-T, T); \mathcal{I}_{per})$ satisfying

$$\sup_{t\in(-T,T)}\|u(\cdot,t)\|_{\mathcal{I}_{per}}\leq 2\|u_0\|_{\mathcal{I}_{per}}$$

Moreover, the data-map solution $u_0 \rightarrow u$ is Lipschitz continuous from \mathcal{I}_{per} to $L^{\infty}((-T, T); \mathcal{I}_{per})$.

(Nonperiodic case) Let $u_0 \in \mathcal{I}$ and $\mu \in \mathcal{I}$. The same conclusion of item (1) holds true by replacing \mathcal{I}_{per} by \mathcal{I} .

Some steps of the proof of Thm (C)

The IVP is formally converted to (mild solution)

$$u(t) = S_{per}(t)u_0 + B_{per}(u) + L_{\mu,per}(u),$$
(6)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some steps of the proof of Thm (C)

The IVP is formally converted to (mild solution)

$$u(t) = S_{per}(t)u_0 + B_{per}(u) + L_{\mu,per}(u),$$
(6)

where the operators are defined via Fourier transform in $\mathcal{D}'(\mathbb{T}^n)$:

$$S_{per}(t)u_0 = \sum_{m \in \mathbb{Z}^n} \widehat{u}_0(m) e^{-4\pi^2 i |m|^2 t} e^{2\pi i x \cdot m}, \tag{7}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\widehat{L_{\mu,per}(u)}(m,t) = -i \int_0^t e^{-4\pi^2 i |m|^2 (t-s)} (\widehat{\mu} * \widehat{u})(m,s) ds \quad (8)$$

and

Some steps of the proof of Thm (C)

The IVP is formally converted to (mild solution)

$$u(t) = S_{per}(t)u_0 + B_{per}(u) + L_{\mu,per}(u),$$
(6)

where the operators are defined via Fourier transform in $\mathcal{D}'(\mathbb{T}^n)$:

$$S_{per}(t)u_0 = \sum_{m \in \mathbb{Z}^n} \widehat{u}_0(m) e^{-4\pi^2 i |m|^2 t} e^{2\pi i \mathbf{x} \cdot \mathbf{m}},\tag{7}$$

$$\widehat{L_{\mu,per}(u)}(m,t) = -i \int_0^t e^{-4\pi^2 i |m|^2 (t-s)} (\widehat{\mu} * \widehat{u})(m,s) ds \quad (8)$$

and

$$\widehat{B_{per}(u)}(m,t) = -i\lambda \int_0^t e^{-4\pi^2 i|m|^2(t-s)} (\underbrace{\widehat{u} * \widehat{u} * \dots * \widehat{u}}_{\rho-times})(m,s) ds,$$
(9)

where the symbol * denotes the discrete convolution

$$\widehat{f} * \widehat{g}(m) = \sum_{\xi \in \mathbb{Z}^n} \widehat{f}(m-\xi) \widehat{g}(\xi).$$

A basic tool is the Young inequality for measures and discrete convolutions:

$$\|\mu * \nu\|_{\mathcal{M}} \le \|\mu\|_{\mathcal{M}} \|\nu\|_{\mathcal{M}}$$
(10)
 $\|f * g\|_{l^{1}} \le \|f\|_{l^{1}} \|g\|_{l^{1}}.$ (11)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A basic tool is the Young inequality for measures and discrete convolutions:

$$\|\mu * \nu\|_{\mathcal{M}} \le \|\mu\|_{\mathcal{M}} \|\nu\|_{\mathcal{M}}$$
(10)
 $\|f * g\|_{l^{1}} \le \|f\|_{l^{1}} \|g\|_{l^{1}}.$ (11)

The operator $L_{\mu,per}$ can be estimated as

$$\begin{split} \|L_{\mu,per}(u)\|_{\mathcal{I}_{per}} &= \left\|\widehat{L_{\mu,per}(u)}\right\|_{l^{1}(\mathbb{Z}^{n})} \\ &\leq \int_{0}^{t} \sum_{m \in \mathbb{Z}^{n}} |(\widehat{\mu} * \widehat{u})(m,s)| \, ds \\ &\leq \int_{0}^{t} \|\widehat{\mu}\|_{l^{1}(\mathbb{Z}^{n})} \|\widehat{u}(\cdot,s)\|_{l^{1}(\mathbb{Z}^{n})} \, ds \\ &\leq T \|\mu\|_{\mathcal{I}_{per}} \|u\|_{L^{\infty}(0,T;\mathcal{I}_{per})} \, . \end{split}$$

By elementary convolution properties and Young inequality,

$$\left\| \underbrace{\left(\widehat{u} * \widehat{u} * \dots * \widehat{u} \right)}_{\rho-\text{times}} - \underbrace{\left(\widehat{v} * \widehat{v} * \dots * \widehat{v} \right)}_{\rho-\text{times}} \right\|_{l^{1}(\mathbb{Z}^{n})}$$

$$\leq \left\| \left[(\widehat{u} - \widehat{v}) * \widehat{u} * \dots * \widehat{u} + \dots + \widehat{v} * \widehat{v} * \dots * (\widehat{u} - \widehat{v}) \right]_{l^{1}(\mathbb{Z}^{n})}$$

$$\leq \left\| (\widehat{u} - \widehat{v}) \right\|_{l^{1}} \left\| \widehat{u} \right\|_{l^{1}}^{\rho-1} + \left\| (\widehat{u} - \widehat{v}) \right\|_{l^{1}} \left\| \widehat{u} \right\|_{l^{1}}^{\rho-2} \left\| \widehat{v} \right\|_{l^{1}} + \dots$$

$$+ \left\| (\widehat{u} - \widehat{v}) \right\|_{l^{1}} \left\| \widehat{u} \right\|_{l^{1}} \left\| \widehat{v} \right\|_{l^{1}}^{\rho-2} + \left\| (\widehat{u} - \widehat{v}) \right\|_{l^{1}} \left\| \widehat{v} \right\|_{l^{1}}^{\rho-1}$$

$$\leq K \left\| (\widehat{u} - \widehat{v}) \right\|_{l^{1}} \left(\left\| \widehat{u} \right\|_{l^{1}}^{\rho-1} + \left\| \widehat{v} \right\|_{l^{1}}^{\rho-1} \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

It follows that

$$\begin{split} \|B_{per}(u)(t) - B_{per}(v)(t)\|_{\mathcal{I}_{per}} \\ &\leq \left\| \int_{0}^{t} e^{-4\pi^{2}i|\xi|^{2}(t-s)} \left[\underbrace{(\widehat{u} * \widehat{u} * ... * \widehat{u})}_{\rho-times} - \underbrace{(\widehat{v} * \widehat{v} * ... * \widehat{v})}_{\rho-times} \right] ds \right\|_{l^{1}} \\ &\leq K \int_{0}^{t} \|\widehat{u} - \widehat{v}\|_{l^{1}} \left(\|\widehat{u}\|_{l^{1}}^{\rho-1} + \|\widehat{v}\|_{l^{1}}^{\rho-1} \right) ds \\ &\leq KT \| u - v \|_{L^{\infty}(0,T;\mathcal{I}_{per})} \left(\|u\|_{L^{\infty}(0,T;\mathcal{I}_{per})}^{\rho-1} + \|v\|_{L^{\infty}(0,T;\mathcal{I}_{per})}^{\rho-1} \right). \end{split}$$

It follows that

$$\begin{split} \|B_{per}(u)(t) - B_{per}(v)(t)\|_{\mathcal{I}_{per}} \\ &\leq \left\| \int_{0}^{t} e^{-4\pi^{2}i|\xi|^{2}(t-s)} \left[\underbrace{(\widehat{u} * \widehat{u} * ... * \widehat{u})}_{\rho-times} - \underbrace{(\widehat{v} * \widehat{v} * ... * \widehat{v})}_{\rho-times} \right] ds \right\|_{l^{1}} \\ &\leq K \int_{0}^{t} \|\widehat{u} - \widehat{v}\|_{l^{1}} \left(\|\widehat{u}\|_{l^{1}}^{\rho-1} + \|\widehat{v}\|_{l^{1}}^{\rho-1} \right) ds \\ &\leq KT \|u - v\|_{L^{\infty}(0,T;\mathcal{I}_{per})} \left(\|u\|_{L^{\infty}(0,T;\mathcal{I}_{per})}^{\rho-1} + \|v\|_{L^{\infty}(0,T;\mathcal{I}_{per})}^{\rho-1} \right). \end{split}$$

Now one can show that

$$\Psi(u) = S_{per}(t)u_0 + B_{per}(u) + L_{\mu,per}(u)$$
(12)

has a fixed point in $L^{\infty}((-T, T); \mathcal{I}_{per})$ for T > 0 small enough.

・ロト・西ト・ヨト・ヨー もんぐ

► Let us denote by I₀ the subspace of I whose elements have Fourier transform with no point mass at the origin x = 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ► Let us denote by I₀ the subspace of I whose elements have Fourier transform with no point mass at the origin x = 0.
- ► Y. Giga at all (IMUJ '08 and Meth. Appl. Anal '05) showed local solvability for Coriolis-Navier-Stokes equations in I₀.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► Let us denote by I₀ the subspace of I whose elements have Fourier transform with no point mass at the origin x = 0.
- ► Y. Giga at all (IMUJ '08 and Meth. Appl. Anal '05) showed local solvability for Coriolis-Navier-Stokes equations in I₀.
- ► As far as we know, the analysis on spaces I and I_{per} seems to be new in the context of dispersive equations, and in particular for the nonlinear Schrödinger equation µ = 0.

In ℝⁿ, Theorem (C) provides a framework for NLS type equations that contains functions with high oscillation and infinite L²-mass (but with finite local one).

- In ℝⁿ, Theorem (C) provides a framework for NLS type equations that contains functions with high oscillation and infinite L²-mass (but with finite local one).
- ► For instance, $f(x) = \sum_{j=1}^{\infty} a_j e^{2\pi i x \cdot b_j}$ where $x \in \mathbb{R}^n$, $\sum_{j=1}^{\infty} |a_j| < \infty$ and $(b_j)_{j \in \mathbb{N}} \subset \mathbb{R}^n$ can grow arbitrarily fast as $j \to \infty$. These functions are called almost periodic.

- In ℝⁿ, Theorem (C) provides a framework for NLS type equations that contains functions with high oscillation and infinite L²-mass (but with finite local one).
- ► For instance, $f(x) = \sum_{j=1}^{\infty} a_j e^{2\pi i x \cdot b_j}$ where $x \in \mathbb{R}^n$, $\sum_{j=1}^{\infty} |a_j| < \infty$ and $(b_j)_{j \in \mathbb{N}} \subset \mathbb{R}^n$ can grow arbitrarily fast as $j \to \infty$. These functions are called almost periodic.
- ► The approach used by us could be employed to treat (1) with |u|^{ρ-1} u and ρ odd, instead of u^ρ. For that, it would be enough to write |u|^{ρ-1} u as

$$\left[\left(\left|u\right|^{2}\right)^{\frac{\rho-1}{2}}u\right]^{\wedge} = \left(\underbrace{\widehat{u}\ast\widehat{u}\ast\ldots\ast\widehat{u}}_{\frac{\rho-1}{2}-times}\ast\left(\underbrace{\widehat{\overline{u}}\ast\widehat{\overline{u}}\ast\ldots\ast\widehat{\overline{u}}}_{\frac{\rho-1}{2}-times}\right)\ast u$$

and to note that $\overline{\widehat{u}}(\xi) = \overline{\widehat{u}}(-\xi)$ and $\|\overline{u}(\xi)\|_{\mathcal{I}_{per}} = \|u(\xi)\|_{\mathcal{I}_{per}}$.

In n = 1, Grünrock (IRMN '05) and Grünrock-Herr (SIAM '08) proved that the cubic NLS and DNLS equations are LWP in a space based on Fourier transform in the continuous and periodic cases, respectively.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- In n = 1, Grünrock (IRMN '05) and Grünrock-Herr (SIAM '08) proved that the cubic NLS and DNLS equations are LWP in a space based on Fourier transform in the continuous and periodic cases, respectively.
- ► For DNLS, they used the norms $\|\langle \xi \rangle^s \widehat{u}(\xi) \|_{L^p(\mathbb{R})}$ with $2 \le p < \infty$ and $\|\langle \xi \rangle^s \widehat{u}(\xi) \|_{l^p}$ with $2 , where <math>s \ge \frac{1}{2}$.

- In n = 1, Grünrock (IRMN '05) and Grünrock-Herr (SIAM '08) proved that the cubic NLS and DNLS equations are LWP in a space based on Fourier transform in the continuous and periodic cases, respectively.
- ► For DNLS, they used the norms $\|\langle \xi \rangle^s \widehat{u}(\xi) \|_{L^p(\mathbb{R})}$ with $2 \le p < \infty$ and $\|\langle \xi \rangle^s \widehat{u}(\xi) \|_{L^p}$ with $2 , where <math>s \ge \frac{1}{2}$.
- For NLS (continuous case), Grünrock (IRMN '05) used the norm ||⟨ξ⟩^s û(ξ)||_{L^p(ℝ)} with 1
- ► Comparing with the continuous case for NLS in n = 1, the space I is not contained in the above ones, and in fact

$$\|\widehat{u}\|_{\mathcal{I}} \leq C \|\langle \xi \rangle^{s} \widehat{u}(\xi)\|_{L^{p}(\mathbb{R})},$$

くしゃ (雪) (雪) (雪) (雪) (雪) (

for $1 and <math>s > 1 - \frac{1}{p}$.

Thank you for your attention

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?