Existence of minimal blowup solutions for the nonlinear $\dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}$ wave equation

Javier Ramos Maravall

IMPA

Consider the nonlinear wave equation in \mathbb{R}^{d+1},

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u+\gamma u|u|^{p}=0 \\
u(0)=u_{0} \in \dot{H}^{s}\left(\mathbb{R}^{d}\right), u_{t}(0)=u_{1} \in \dot{H}^{s-1}\left(\mathbb{R}^{d}\right)
\end{array}\right.
$$

with $\gamma \in\{1,-1\}$.
The equation is invariant under the scaling

$$
u_{r}(x, t)=r^{\frac{2}{P}} u(r x, r t)
$$

This invariance determines the critical Sobolev space for the initial data $\left(u_{0}, u_{1}\right)$. We want

$$
\left\|u_{r}(0)\right\|_{\dot{H}^{s}}=\|u(0)\|_{\dot{H}^{s}}, \quad\left\|\partial_{t} u_{r}(0)\right\|_{\dot{H}^{s-1}}=\left\|\partial_{t} u(0)\right\|_{\dot{H}^{s-1}} .
$$

A calculation shows that the critical regularity corresponds to the case where

$$
s_{c}=\frac{d}{2}-\frac{2}{p}
$$

Therefore our problem is critical if the initial data is in $\left(\dot{H}^{s_{c}} \times \dot{H}^{s_{c}-1}\right)$.

The energy $E(u)$ is conserved, where

$$
E(u)=\int_{\mathbb{R}^{d}} \frac{1}{2}\left|\partial_{t} u\right|^{2}+\frac{1}{2}|\nabla u|^{2}+\gamma \frac{1}{2}|u|^{p+2} d x
$$

Since this energy scales like $s=1$, we say that the equation is energy critical if $s=1$, energy subcritical if $s<1$ or energy supercritical if $s>1$.

Here, we consider the $\dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}$ critical, energy subcritical nonlinear wave equation

$$
\text { NLWE }\left\{\begin{array}{l}
u_{t t}-\Delta u+\gamma u|u|^{\frac{4}{d-1}}=0 \\
u(0)=u_{0} \in \dot{H}^{\frac{1}{2}}\left(\mathbb{R}^{d}\right), u_{t}(0)=u_{1} \in \dot{H}^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right),
\end{array}\right.
$$

for $\gamma \in\{1,-1\}$ and $d \geq 2$.
We notice that the we can not use the energy since our solution is not regular enough (energy subcritical).

Conjecture

Assume $u: \mathbb{R}^{d} \times I \rightarrow \mathbb{R}$ is a solution to NLWE with maximal interval of existence $I \subset \mathbb{R}$ which satisfies

$$
\begin{equation*}
\left(u, u_{t}\right) \in L_{t}^{\infty}\left(I ; \dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right)\right) \tag{1}
\end{equation*}
$$

Then u is global, and

$$
\|u\|_{L^{\frac{2(d+1)}{d-1}}\left(\mathbb{R}^{d} \times \mathbb{R}\right)} \leq C
$$

for some constant $C=C\left(\left\|\left(u, u_{t}\right)\right\|_{L_{t}^{\infty}\left(\mathbb{R} ; H^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right)\right.}\right)$. In particular, u scatters as $t \rightarrow \pm \infty$.

For the defocusing case, it is also conjectured that hypothesis (1) holds.

Conjecture

Assume $u: \mathbb{R}^{d} \times I \rightarrow \mathbb{R}$ is a solution to NLWE with maximal interval of existence $I \subset \mathbb{R}$ which satisfies

$$
\begin{equation*}
\left(u, u_{t}\right) \in L_{t}^{\infty}\left(I ; \dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right)\right) \tag{1}
\end{equation*}
$$

Then u is global, and

$$
\|u\|_{L^{\frac{2(d+1)}{d-1}}\left(\mathbb{R}^{d} \times \mathbb{R}\right)} \leq C
$$

for some constant $C=C\left(\left\|\left(u, u_{t}\right)\right\|_{L_{t}^{\infty}\left(\mathbb{R} ; H^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right)\right.}\right)$. In particular, u scatters as $t \rightarrow \pm \infty$.

For the defocusing case, it is also conjectured that hypothesis (1) holds.

Previous results

- For the energy critical:
- Defocusing: Struwe, Grillakis, Shatah-Struwe, Bahouri-Shatah, Kapitankski, Bahouri-Gérard, Ginibre-Velo, Rauch and others.
- Focusing: global well-posedness and scattering may not hold. Levine and Krieger-Schlag-Tataru. Kenig-Merle developp the concentration-compactness argument.
- For the energy subcritical and supercritical:
- Energy supercritical: Kenig-Merle, Duyckaerts-Kenig-Merle, Visan-Killip and Bulut.
- Energy subcritical: Shen proved global well-posedness and scattering in dimension $d=3$ for radial data for the $\dot{H}^{s} \times \dot{H}^{s-1}$ with $s>\frac{1}{2}$.

Idea of the proof.
By contradiction, assume the Conjecture fails.

- Proving the existence of a critical solution with especial properties.
- Proving that solution can not exist.

Idea of the proof.
By contradiction, assume the Conjecture fails.

- Proving the existence of a critical solution with especial properties.
- Proving that solution can not exist.

We define

$$
\begin{aligned}
& L(E):=\sup \left\{\|u\|_{L^{2} \frac{d+1}{d-1}\left(\mathbb{R}^{d} \times I\right)}: u\right. \text { is a solution of NLWE such that } \\
&\left.\sup _{t \in I}\left\|\left(u(t), \partial_{t} u(t)\right)\right\|_{\dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}} \leq E\right\} .
\end{aligned}
$$

By stability results, L is continuous non-decreasing function. Moreover by the small data theory $L(E) \leq E^{\frac{d+3}{d+1}}$ for enough small E.

Therefore, if Conjecture fails (i.e there are blow-up solutions), there exists a critical E_{c} such that $L(E)<\infty$ if $E<E_{c}$ and $L(E)=\infty$ for $E \geq E_{c}$.

We can find a sequence $u_{n}: \mathbb{R}^{d} \times I_{n} \rightarrow \mathbb{C}$ of solutions to NLWE with I_{n} compact such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sup _{t \in I_{n}}\left\|\left(u_{n}(t), \partial_{t} u_{n}(t)\right)\right\|_{\dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}}=E_{c} \\
& \\
& \quad \text { and } \lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L^{2} \frac{d+1}{d-1}\left(\mathbb{R}^{d} \times I_{n}\right)}=\infty
\end{aligned}
$$

Is that critical value attained for any blow-up solution? That is, can we find a solution $u: \mathbb{R}^{d} \times I \rightarrow \mathbb{C}$ to the NLWE such that

$$
\begin{aligned}
& \sup _{t \in I}\left\|\left(u(t), \partial_{t} u(t)\right)\right\|_{\dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}}=E_{c}, \\
& \\
& \quad \text { and }\|u\|_{L^{2} \frac{d+1}{d-1}\left(\mathbb{R}^{d} \times I\right)}=\infty .
\end{aligned}
$$

The wave equation $\partial_{t t} u=\Delta u$, in \mathbb{R}^{d+1}, with initial data $u(\cdot, 0)=u_{0}$, $\partial_{t} u(\cdot, 0)=u_{1}$, has solution which can be written as

$$
\begin{aligned}
u(\cdot, t) & =S\left(u_{0}, u_{1}\right)(\cdot, t) \\
& =\frac{1}{2}\left(e^{i t \sqrt{-\triangle}} u_{0}+\frac{1}{i} \frac{e^{i t \sqrt{-\triangle}} u_{1}}{\sqrt{-\triangle}}\right)+\frac{1}{2}\left(e^{-i t \sqrt{-\triangle}} u_{0}-\frac{1}{i} \frac{e^{-i t \sqrt{-\triangle}} u_{1}}{\sqrt{-\triangle}}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
e^{ \pm i t \sqrt{-\triangle}} u_{0}(x) & =\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{i(x \cdot \xi \pm t|\xi|)} \widehat{u_{0}}(\xi) d \xi \\
\frac{e^{ \pm i t \sqrt{-\triangle}} u_{1}}{\sqrt{-\triangle}}(x) & =\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{i(x \cdot \xi \pm t|\xi|)} \frac{\widehat{u_{1}}(\xi)}{|\xi|} d \xi
\end{aligned}
$$

Let $r \in(0, \infty), \alpha \in(-1,1), x_{0} \in \mathbb{R}^{d}$ and $\theta \in S O(d)$, we define the transformations $G_{r, \alpha, x_{0}, \theta}: \dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right) \rightarrow \dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right)$ by

$$
\begin{aligned}
& G_{r, \alpha, x_{0}, \theta}(f(x), g(x)) \\
& =r^{\frac{d-1}{2}}\left(S(f, g)\left(R_{\theta}^{-1} L^{\alpha} R_{\theta}\left(r\left(x-x_{0}\right), 0\right)\right), \partial_{t} S(f, g)\left(R_{\theta}^{-1} L^{\alpha} R_{\theta}\left(r\left(x-x_{0}\right), 0\right)\right),\right.
\end{aligned}
$$

where L^{α} is the Lorentz transform

$$
L^{\alpha}\left(x_{1}, \underline{x}, t\right)=\left(\frac{x_{1}+\alpha t}{\sqrt{1-\alpha^{2}}}, \underline{x}, \frac{t+\alpha x_{1}}{\sqrt{1-\alpha^{2}}}\right)
$$

and R_{θ} is the rotation by angle θ around the t-axis.

Definition

A solution u of NLWE with lifespan I is almost periodic modulo symmetries if and only if there exists $r: I \rightarrow \mathbb{R}^{+}, \alpha: I \rightarrow(-1,1), x_{0}: I \rightarrow \mathbb{R}^{d}$ and $\theta: I \rightarrow S O(d)$ such that the set

$$
K=\left\{\left(G_{r(t), \alpha(t), x_{0}(t), \theta(t)}\left(u(x, t), \partial_{t} u(x, t)\right), t \in I\right\}\right.
$$

has compact closure in $\dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right)$.

Another way to say the same: Let G be the collection of transformations $G_{r, \alpha, x_{0}, \theta}$, then the quotiented orbit $\left\{G\left(u(t), \partial_{t} u(t)\right): t \in I\right\}$ is a precompact subset of $\dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}$.

These transformations are the only responsible of the defect of compactness of $\left\{\left(u(t), \partial_{t} u(t)\right): t \in I\right\}$.

Theorem

Suppose that Conjecture fails, then there exists a maximal-lifespan blowup solution $u: \mathbb{R}^{d} \times I \rightarrow \mathbb{C}$, such that

$$
\sup _{t \in I}\left\|\left(u(t), \partial_{t} u(t)\right)\right\|_{\dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}} \leq \sup _{t \in J} \|\left(v(t), \partial_{t} v(t) \|_{\dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}}\right.
$$

for every maximal blowup solution $v: \mathbb{R}^{d} \times J \rightarrow \mathbb{C}$. Moreover, u is almost periodic modulo symmetries.

Main ingredients of the proof:

- Profile decomposition for the linear wave equation: captures the defect of compactness due to the symmetries of the equation.
- The proof relies on a refinement of the Strichartz inequality for the wave equation.
- Profile decomposition for the nonlinear wave equation.
- Stability result.
- Lorentz nonlinear profiles.

In 1977, Strichartz proved his fundamental inequality

$$
\left\|S\left(u_{0}, u_{1}\right)\right\|_{L^{\frac{d+1}{d-1}}\left(\mathbb{R}^{d+1}\right)} \leq C\left(\left\|u_{0}\right\|_{\dot{H}^{\frac{1}{2}}\left(\mathbb{R}^{d}\right)}^{2}+\left\|u_{1}\right\|_{\dot{H}^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right)}^{2}\right)^{\frac{1}{2}},
$$

where

$$
\|f\|_{\dot{H}^{s}}=\left(\sum_{k} 2^{2 k s}\left\|P_{k} f\right\|_{2}^{2}\right)^{\frac{1}{2}},
$$

with $\widehat{P_{k} f}=\chi_{\mathcal{A}_{k}} \widehat{f}$ and $\mathcal{A}_{k}=\left\{\xi \in \mathbb{R}^{d} ; 2^{k} \leq|\xi| \leq 2^{k+1}\right\}$.
where $q=2 \frac{d+1}{d-1}$ for $d \geq 3$, and $q=3$ for $d=2$.
Here $\dot{B}_{2, q}^{s}$ is defined by

In 1977, Strichartz proved his fundamental inequality

$$
\left\|S\left(u_{0}, u_{1}\right)\right\|_{L^{\frac{d}{d+1}}\left(\mathbb{R}^{d+1}\right)} \leq C\left(\left\|u_{0}\right\|_{\dot{H}^{\frac{1}{2}}\left(\mathbb{R}^{d}\right)}^{2}+\left\|u_{1}\right\|_{\dot{H}^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right)}^{2}\right)^{\frac{1}{2}},
$$

where

$$
\|f\|_{\dot{H}^{s}}=\left(\sum_{k} 2^{2 k s}\left\|P_{k} f\right\|_{2}^{2}\right)^{\frac{1}{2}}
$$

with $\widehat{P_{k} f}=\chi_{\mathcal{A}_{k}} \widehat{f}$ and $\mathcal{A}_{k}=\left\{\xi \in \mathbb{R}^{d} ; \quad 2^{k} \leq|\xi| \leq 2^{k+1}\right\}$.
We improve this inequality to

$$
\left\|S\left(u_{0}, u_{1}\right)\right\|_{L^{2} \frac{d+1}{d-1}\left(\mathbb{R}^{d+1}\right)} \leq C\left(\left\|u_{0}\right\|_{\dot{B}_{2, q}\left(\mathbb{R}^{d}\right)}^{2}+\left\|u_{1}\right\|_{\dot{B}_{2, q}^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right)}^{2}\right)^{\frac{1}{2}}
$$

where $q=2 \frac{d+1}{d-1}$ for $d \geq 3$, and $q=3$ for $d=2$.
Here $\dot{B}_{2, q}^{s}$ is defined by

$$
\|f\|_{\dot{B}_{2, q}^{s}}=\left(\sum_{k} 2^{q k s}\left\|P_{k} f\right\|_{2}^{q}\right)^{\frac{1}{q}}
$$

In 1977, Strichartz proved his fundamental inequality

$$
\left\|S\left(u_{0}, u_{1}\right)\right\|_{L^{\frac{d}{d+1}}\left(\mathbb{R}^{d+1}\right)} \leq C\left(\left\|u_{0}\right\|_{\dot{H}^{\frac{1}{2}}\left(\mathbb{R}^{d}\right)}^{2}+\left\|u_{1}\right\|_{\dot{H}^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right)}^{2}\right)^{\frac{1}{2}},
$$

where

$$
\|f\|_{\dot{H}^{s}}=\left(\sum_{k} 2^{2 k s}\left\|P_{k} f\right\|_{2}^{2}\right)^{\frac{1}{2}}
$$

with $\widehat{P_{k} f}=\chi_{\mathcal{A}_{k}} \widehat{f}$ and $\mathcal{A}_{k}=\left\{\xi \in \mathbb{R}^{d} ; 2^{k} \leq|\xi| \leq 2^{k+1}\right\}$.
We improve this inequality to

$$
\left\|S\left(u_{0}, u_{1}\right)\right\|_{L^{2} \frac{d+1}{d-1}\left(\mathbb{R}^{d+1}\right)} \leq C\left(\left\|u_{0}\right\|_{\dot{B}_{2, q}\left(\mathbb{R}^{d}\right)}^{2}+\left\|u_{1}\right\|_{\dot{B}_{2, q}^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right)}^{2}\right)^{\frac{1}{2}}
$$

where $q=2 \frac{d+1}{d-1}$ for $d \geq 3$, and $q=3$ for $d=2$.
Here $\dot{B}_{2, q}^{s}$ is defined by

$$
\|f\|_{\dot{B}_{2, q}^{s}}=\left(\sum_{k} 2^{q k s}\left\|P_{k} f\right\|_{2}^{q}\right)^{\frac{1}{q}} \quad\left(\|f\|_{\dot{B}_{2, q}^{s}} \leq\left(\sup _{k} 2^{k s(q-2)}\left\|P_{k} f\right\|_{2}^{q-2}\right)^{\frac{1}{q}}\|f\|_{\dot{H}^{s}}^{\frac{2}{q}}\right)
$$

Better refinement

Let $S=\left\{w_{m}\right\}_{m} \subset \mathbb{S}^{d-1}$ be maximally 2^{-j}-separated, and define $\tau_{m}^{j, k}$ by
$\tau_{m}^{j, k}:=\left\{\xi \in \mathcal{A}_{k}:\left|\frac{\xi}{|\xi|}-w_{m}\right| \leq\left|\frac{\xi}{|\xi|}-w_{m^{\prime}}\right|\right.$ for every $\left.w_{m^{\prime}} \in S, m^{\prime} \neq m\right\}$.

We also set $\widehat{P_{k} g_{m}^{j}}=\chi_{\tau_{m}^{j, k}} \widehat{g}$.
For our applications the following refinement will be of more use.
There exist $p<2$ and $q(1-\theta)>2$ such that

$$
\begin{aligned}
\left\|S\left(u_{0}, u_{1}\right)\right\|_{L^{\frac{d}{d-1}}\left(\mathbb{R}^{d+1}\right)} \leq & C\left(\sup _{j, k, m} 2^{k \frac{\theta}{2}}\left|\tau_{m}^{j, k}\right|^{\frac{\theta}{2} \frac{p-2}{\rho}}\left\|\widehat{P_{k}\left(u_{0}\right)_{m}^{j}}\right\|_{p}^{\theta}\left\|u_{0}\right\|_{B_{2, q(1-\theta)}^{1-\theta}}^{1-\theta}\right. \\
& \left.+\sup _{j, k, m} 2^{-k \frac{\theta}{2}}\left|\tau_{m}^{j, k}\right|^{\frac{\theta}{2} \frac{p-2}{p}}\left\|\widehat{P_{k}\left(u_{1}\right)_{m}^{j}}\right\|_{p}^{\theta}\left\|u_{1}\right\|_{B_{2, q(1-\theta)}^{1-\theta}}^{1-\frac{1}{2}}\right) .
\end{aligned}
$$

Previous Strichartz's refinements in the literature

- For the Schrödinger equation:
- Bourgain in 1989 in dimension $d=2$.
- Moyua-Vargas-Vega first in 1996 and then in 1999 improved that refinement.
- Begout-Vargas in 2007 extended the result to dimensions $d>2$ and Carles-Keraani in 2007 to dimension $d=1$.
- For other equations:
- Kenig-Ponce-Vega in 2000 for the Airy equation.
- Rogers-Vargas in 2006 for the nonelliptic Schrödinger equation.
- Chae-Hong-Lee in 2009 for higher order Schrödinger equations.
- Killip-Stovall-Visan in 2011 for the Klein-Gordon equation.
- Bilinear approach

Theorem (Tao 2001)

Let $\frac{d+3}{d+1} \leq r_{1} \leq 2$, and suppose that $\angle\left(w_{m}, w_{m^{\prime}}\right) \sim 1$. Then for all $\epsilon>0$,
$\left\|e^{i t \sqrt{-\triangle}} P_{0} g_{m}^{1} e^{i t \sqrt{-\triangle}} P_{\ell} g_{m^{\prime}}^{1}\right\|_{L^{r_{1}}\left(\mathbb{R}^{d+1}\right)} \lesssim 2^{\ell\left(\frac{1}{r_{1}}-\frac{1}{2}+\epsilon\right)}\left\|\widehat{P_{0} g_{m}^{1}}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}\left\|\widehat{P_{\ell} g_{m^{\prime}}^{1}}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}$

- Refined orthogonality.

$$
\left\|\sum_{k} f_{k}\right\|_{p} \lesssim C^{1-\frac{2}{p^{*}}}\left(\sum_{k}\left\|f_{k}\right\|_{p}^{p_{*}}\right)^{\frac{1}{p_{*}}}
$$

- Atomic decomposition.

Lemma

Let $q>2$, and $1<p<2$. Then

$$
\sum_{j}\left(\sum_{m}\left|\tau_{m}^{j, k}\right|^{\left.q^{\frac{p-2}{2 p}}\left\|\widehat{P_{k} g_{m}^{j}}\right\|_{p}^{q}\right)^{\frac{2}{q}} \lesssim\left\|P_{k} g\right\|_{2}^{2}}\right.
$$

THANK YOU !!

