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1 Introduction: the setup.

Our goal is to describe the properties of the real valued solutions

of the 1Cauchy Problem (or initial value problem) associated to

certain evolution equations. More precisely, consider

∂tu = F (t, u) ∈ Y,

u = u (t) ∈ X, t ∈ [0, T0] , T0 > 0, (1)

u (0) = φ ∈ X,
∗This is an ongoing work
1In general real valued solutions of the equtions that appear below. For instance, in the case if the

Schrödinger equations, complex solutions cannot be avoided.
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where X and Y are Banach spaces (of functions in general), where

Y ↪→ X 2 (such as Hs (Rn) , the usual Sobolev Spaces of L2type, which

arise in many practical applications),

F : [0, T0]× Y −→ X (2)

where T0 ≥ 0, F is Lipschtz in some sense (which will be defined

when needed), with the additional restriction that it is non-local.

We say that F is local if supp(F (v)) ⊆ supp(v). Otherwise F is

non-local. Note that convolution operators, that is, operators of

the form

(Tf (g)) (x) =

∫
Rn

f (x− y) g (y) dy, (3)

are non-local in general3.

One important subclass of such equations is that of the Benjamin-

Ono type, that is, those of the form

∂tu (t) + σLu (t) +G (u (t)) = 0, (4)

or

∂t (u (t) + σLu (t)) +G (u (t)) = 0, 4 (5)

where L is a, possibly unbounded linear operator, G is, in general,

a nonlinear function of its arguments and σ denotes the Hilbert

2The symbol ↪→ indicates that the injection is continuous and dense.
3Sometimes, they have to be defined using principal values, as in the case of the Hilbert transform, but

even so they are still non-local.
4Please observe where the pharenthesis following ∂t are placed. That makes all the difference.
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transform

(σf) (x) = pv
1

π

∫
R

f (y)

y − x
dy. (6)

This operator is responsible for non-locality in (4) and (5). In the

case of (4), with L = ∂2
x and G (u) = u∂xu, we obtain the original

Benjamin-Ono equation (BO), while, with the same nonlinearity,

and L = ∂x, we have a BO type version of the Benjamin-Bona-

Mahony equation (BBM).

Before proceeding, it is important to understand what we mean

by a solution of (1)5. We will say that (1) is locally well posed

if there exists a T ∈ [0, T0] and a unique u ∈ C ([0, T ] , Y ) such that

u (0) = φ,and the derivative with respect to time (the variable t 6),

is taken with respect to the topology of X, that is,

lim
h−→0

∥∥∥∥u (t+ h)− u (t)

h
− F (t, u (t))

∥∥∥∥
X

= 0. (7)

Moreover, the solution must depend continuously on the initial

data (and on any other relevant parameters occurring in the equa-

tion), in appropriate topologies. In what follows we will consider

only the initial data. Then what we what mean by continuous de-

pendence is: assume that u
(j)
0 ∈ Y , j = 1, 2, 3, ...,∞ , let u(j) be the

corresponding solutions. Suppose that

lim
j→∞

∥∥∥u(j)
0 − u

(∞)
0

∥∥∥
s

= 0. (8)

5The following definition has nothing to do with non-locality.
6Which sometimes is not really time, but represents some other variable that, unfortunaly, apears in the

equations as a first derivative.
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Then, for all T ′ ∈ (0, T ) we have,

lim
j→∞

sup
t∈[0,T ′]

∥∥∥u(j) (t)− u(∞) (t)
∥∥∥
s

= 0. (9)

In case the preceding properties are valid for all T > 0, we say

that the problem is globally well-posed. Otherwise it is ill-posed. It

deserves notice, that this definition is a refinement of the definition

of well-posednesss due to Hadamard, because it contains the notion

of persistence(7): the solution lives in the same space as does the

initial condition. Below we will be concerned with this question.

2 Some examples.

• The Simplest Equation of BO Type.

Consider, {
∂tu (t) + σu (t) = 0,

u (0) = φ ∈ L2 (R) .
(10)

7Which, as far as I know, was introduced some time ago by Tosio Kato. The point is that this is a non

trivial condition, as we shall see in what follows.
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Recall, if f ∈ L2 (R),

(σf)∧ (ξ) = isgn (ξ) f̂ (ξ) , ξ − a.e., (11)

where,

sgn (ξ) =


−1 se ξ < 0,

0 se ξ = 0,

1 se ξ > 0

(12)

and ĝ denotes the Fourier transform of the tempered distribution

g. In case g belongs to L1 (R), our definition is

ĝ (ξ) =

(
1

2π

)1/2 ∫
R
g (x) exp (−iξx) dx. (13)

In particular, σ is a unitary operator in L2 (R) (and in any Hs (R) ,s ∈

R). Moreover,

σ2 = −1. (14)

It is easy to verify that the unique solution of (10), with X =

Y = L2 (R) is given by the unitary group

u (t) = exp (−σt)φ = (cos t− σ sin t)φ, φ ∈ L2 (R) . (15)

Now consider the problem

{
∂tu (t) + σu (t) = 0,

u (0) = φ ∈ L2
1 (R) ,

(16)
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where

L2
s (Rn) = (Hs (Rn))∧ . (17)

Thus φ and xφ ∈ L2 (R) . In particular, u (t) ∈ L2 (R) for all t ∈ R.
Next, we consider persistence. We must verify if xu (t) ∈ L2 (R) .

Take t0 6= 0,such that sin t0 6= 0 (which is not difficult to do). Then

look at

xu (t0) = (cos t0)xφ− (sin t0)xσφ. (18)

Thus

xu (t0) ∈ L2 (R)⇐⇒ xσφ ∈ L2 (R) . (19)

However

x (σφ) (x) = pv
1

π

∫
R

x− y
y − x

φ (y) dy + pv
1

π

∫
R

yφ (y)

y − x
dy (20)

= −1

π

∫
R
φ (y) dy + σ (yφ) .

(Note that φ ∈ L1 (R) .) Combining (18), (19) and (20) we conclude

xu (t0) ∈ L2 (R)⇐⇒ φ̂ (0 = 0) . (21)

Note this this apparently harmless equation, shows that we may

expect trouble with persistence whenever the Hilbert transform

and weighted spaces are involved in the problem. Finally, it is easy

to see that problem (16) is globally well posed if and only L2
1 (R) is

replaced by

F1 (R) =
{
φ ∈ L2

1 (R)
∣∣∣φ̂ (0 = 0)

}
. (22)
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This does not bode well in the case of the Benjamin-Ono equation

in weighed Sobolev spaces.

• The Benjamin-Bona-Mahony Equation (BBM).

Consider the equation,

∂tu+ u∂xu+ ∂txxu = 0 (23)

This is an alternate model for the KdV equation. Note that it

can be rewritten as (
1− ∂2

x

)
∂tu = −1

2
∂x
(
u2
)
. (24)

However, since the operator
(
1− ∂2

x

)
is invertible in general (for in-

stance, in the Sobolev Spaces Hs (R) , s ∈ R), we obtain

∂tu = −1

2

(
1− ∂2

x

)−1
∂x
(
u2
)
. (25)

Due to the presence of the (infinitely) smoothing operator((
1− ∂2

x

)−1
f
)

(x) =
1

2

∫ ∞
−∞

(exp |x− y|) f (y) dy, (26)

it is easy to prove global well-posedness in Hs (R) ,s ∈ Z+ = {1, 2, ...} ,and

then apply nonlinear interpolation to obtain the result for all s ≥ 1.

For details see [4], [5] and [6]. Moreover it is also easy to show that

the Cauchy problem is locally well-posed in L2 (R). Global well-

posedness, in this space, is more difficult. It was proved by Bona
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and Tzvetkov [7]. It deserves remark that their work also suggests

that the problem may ill-posed (even locally) for s < 0. This was

confirmed by M. Panthee ([18]).

==================================================================================

• The Hirota-Satsuma.

This equation is also a model for the phenomena described by

K-dV and has some similarity with BBM, because it also contains

the resolvent of a Schrödinger operator. This operator, however,

is more difficult to handle, because it is not a free operator, as in

BBM, but a full Schrödinger operator whose potential happens to

be the solution we are seeking.

============================================================================================

3 Total ReKall or the Benjamin-Ono

(BO) Equation.

The title of this example may surprise you, but to tell the truth

this is one of the most fascinating equations that I have ever en-

countered in my life and while writing I am recalling our trajectory

together. Of course, many other authors have worked with it. Back

in 1985, I returned to Berkeley, to work with Tosio Kato who had

been my thesis advisor. As usual, he told me to look for a problem.

8



He always wanted his students or pos-docs to find their own prob-

lems (and so do I, having been his student). Thus, I found BO in a

book by Ablowitz et al [1], thought it seemed to be interesting and

showed it to Kato. He said go ahead, work on it. The equation is

∂tu+ u∂xu+ σ∂2
xu = 0, (27)

which is very similar to KdV

∂tu+ u∂xu+ ∂3
xu = 0, (28)

but is full of surprises. Recall that σ denotes the Hilbert transform

as defined in (11). The reason for the title above is that I have

worked on this equation, on and off, for many years, and as I write

this, I recall the trajectory of this ”magical” equation in my life.

Back in 2001, I was able to prove a remarkable result8. A bit later,

my friends Fonseca, Linares and Ponce [9] proved that, what I

had shown, could be extended in terms of function spaces, but not

in terms of the fundamental assumptions on the equation. Three

assumption were needed and only three. No more9. For this proof,

I thank them, because, they showed that, in terms of assumptions

on the equation, my results are sharp. In what follows I will try to

explain what this is all about.

==========================================================================================
8”If nobody praises you, do, praise yourself”. This is a translation of a passage In The Praise to Folly,

by Erasmus of Rotterdan (1509). The interested reader may consult the Internet. Besides, Kato would

have critized me for what I wrote. He told me once that only mathematicians, such as Gauss, could praise

themselves.
9Herein lies a mistery, because in the case of K-dV only two such asumptions are needed.
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4 The Brinkman Flow.

Finally we turn to the properties of the real valued solutions of the

Cauchy Problem associated to the Brinkman Flow ([8]), namely
φ∂ρ∂t +∇ · (ρv) = F (t, ρ) ,

(−µeff∆ + µ
k )v = −∇P (ρ),

(ρ(0), v(0)) = (ρ0, v0),

(29)

which models fluid flow in certain types of porous media10. Here

ρ = ρ (t, x) , v = v (t, x) , t ≥ 0, x ∈ Ω ⊆ Rn, (30)

where Ω is a domain with a sufficiently smooth boundary, µ , k, and

µeff denote the fluid viscosity, the porous media permeability and

the pure fluid viscosity, respectively, while ρ is the fluid’s density,

v its velocity, P is the pressure, F is an external mass flow rate,

and φ is the porosity of the medium. It should be observed that

the second equation in (29), is a linear combination of Darcy’s law

and Stokes’ law for fluid flows.

In what follows, for the sake of simplicity, we will be concerned

(mostly) with the case Ω = R . Moreover, to simplify the notation,

we will choose all the coefficients in (29) to be equal to 1. At the

moment we are interested only in the mathematical structure of

the system. At a later stage, if one desires, the constants can be
10One may, and must, sometimes, add boundary condititions (BC’s). This makes the problem more

difficult, because the BC’s must be incorporateted into the differential operators involved, order to define

them as bona fide operators in Banach spaces.
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put back in, and various limiting cases can be studied. Thus our

problem becomes: 
∂ρ

∂t
+ ∂x(ρv) = F (t, ρ) ,

(−∂2
x + 1)v = −∂xP (ρ),

(ρ(0), v(0)) = (ρ0, v0)

(31)

where x ∈ R and t > 0.

To handle (31), we compute v (t, x) using the second equation,

(usually referred to as Brinkman’s condition) to get

v = −
(
1− ∂2

x

)−1
∂xP (ρ) (32)

and substitute it into the first one (which describes the variation

of mass) to obtain the Cauchy Problem ∂tρ = ∂x

(
ρ
(
1− ∂2

x

)−1
∂xP (ρ)

)
ρ (0) = ρ0.

(33)

Then we solve (33), and compute v using (32). Of course the fol-

lowing compatibility condition must be satisfied:

v0 = −
(
1− ∂2

x

)−1
∂xP (ρ0) (34)

There is a number of ways of proving that (33) is locally well posed.

We will mention two of them,

• Kato’s theory of quasi-linear equations and
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• Parabolic Regularization.

We start with Kato’s method, which is the most convenient in

terms of local well-posedness because it provides continuous de-

pendence automatically11. No such result exists in the context of

parabolic regularization. We will indicate how to use Kato’s quasi-

linear theory to prove that (33) is locally well-posed in Hs (R) for all

s > 3/2. Before proceeding, it is convenient to make a few remarks

about Kato’s theory. Its aim is to establish sufficient conditions to

ensure the local well-posedness for problems of the form{
∂tu+ A (t, u)u = f (t, u) ∈ X

u (0) = φ ∈ Y
(35)

here X and Y are Banach spaces, with Y continuously and densely

embedded in X and A (t, u) is bounded from Y into X and is the

(negative) generator of a C0 semigroup for each (t, u) ∈ [0.T ] ×W,

W open in Y . In its most general formulation, X and Y may be

non-reflexive12 Since we will deal exclusively with reflexive spaces,

we will employ a simpler version, which can be found in ([14]). (See

also ([15]) and ([10]).) The essential assumption of the theory is

the existence of an isomorphism S from Y onto X such that

SA (t, u)S−1 = A (t, u) +B (t, u) (36)

11In fact a combination of the two methods seems to be the best weapon to prove global well-posedness.

Another option is to use the Bona-Smith approximations to prove continuous dependence (see [?] and [11]).
12This is rather important, since it allows one to show that continuous dependence can be reduced to a

question of existence and uniqueness in non-reflexive Banach spaces. See [13] and the references therein.
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where B (t, u) ∈ B (X) . This is, in fact, a condition on the commu-

tator [S,A (t, u)] because (33) can be rewritten as

[S,A (t, u)]S−1 = B (t, u) . (37)

There are also lesser requirements, involving Lipschitz conditions

on the operators in question. For example, A (t, u) must satisfy

‖A (t, w)− A (t, w̃)‖B(Y,X) ≤ µ ‖w − w̃‖X . (38)

for all pairs (t, w) , (t, w̃) in [0.T ] ×W. Both B (t, u) and f (t, u) must

satisfy similar conditions. We are now in position to state the main

result of this section.

Theorem 1

Let

A (ρ) f = −∂x
(
f
(
1− ∂2

x

)−1
∂xP (ρ)

)
+ F (t, ρ) , (39)

so that the PDE in (33) can be written as

∂tρ+ A (ρ) ρ = F (t, ρ) . (40)

Let ρ0 ∈ Hs (R) , s > 3/2 and assume that P and F satisfy the follow-

ing assumptions.

(a) P maps Hs (R) into itself, P (0) = 0 and is Lipchitz in the follow-

ing sense:

‖P (ρ)− P (ρ̃)‖s ≤ Ls (‖ρ‖s , ‖ρ̃‖s) ‖ρ− ρ̃‖s (41)
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where Ls : [0,∞)× [0,∞) → [0,∞) is continuous and monotone non-

decreasing with respect to each of its arguments.

(b) F : [0, T0]×Hs (R) −→ Hs (R) , F (t, 0) = 0 and satisfies the following

Lipschtz condition:

‖F (t, ρ)− F (t, ρ̃)‖s ≤Ms (‖ρ‖s , ‖ρ̃‖s) ‖ρ− ρ̃‖s . (42)

Then (33) is locally well-posed in the sense described in Section 1.

The proof of this result has appeared in several works and we

refrain from presenting it here. (See [10], [2]and [3].) It should

be noted, however, that the previous result holds in Hs (Rn), with

n > n
2 + 1 and the obvious changes needed to accommodate the

general case. It is also true when Hs
0 (Ω) , Ω ⊂ Rn is a domain with a

smooth boundary, and also in Hs
(
S1
)
. This is due to the fact that

all the crucial estimates used in the proof of the theorem are also

true in the situations we have just mentioned. (See Lemma A4 of

[17] and Appendix B of [11].)

From now on, to simplify our lives even further, we will assume

that F = 0. One might as well ask, why use such a ”complicated

method” 13, instead of simply (33) into an equivalent integral equa-

tion, applying Banach’s Fixed Point Theorem and Gromwal’s in-

equality to solve the problem locally. The answer is : you can’t.

Well, why not? Assume that ρ ∈ H2 (R) and, P maps H2 (R) into

13Which, in view of the difficulty of the problem, is actually very simple.
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itself even and look at

∂tρ = ∂x

ρ (1− ∂2
x

)−1
∂xP (ρ)︸ ︷︷ ︸

H1


︸ ︷︷ ︸

H2

(43)

so if we start out with ρ ∈ H2 (R), ∂tρ must belong to H1 (R)14. Thus

the integral equation obtained naively by integrating (33) cannot

be used to solve the problem. Thus we regularize the equation.

Consider  ∂tρ
(µ) = ∂x

(
ρ(µ)

(
1− ∂2

x

)−1
∂xP (ρµ)

)
+ µ∂2

xρ
(µ)

ρµ (0) = ρ0.
(44)

which is equivalent to

ρ(µ) (t) = Uµ (t) ρ0 +

∫ t

0

Uµ (t− t′)
[
A
(
ρ(µ) (t′)

)
ρ(µ) (t′)

]
dt′. (45)

Then we can show that (see [2] and [3])

Theorem 2 Assume that µ > 0 and that P satisfy (42) for all s >

1/2. Then (33) is locally well-posed in Hs (R). Moreover, if (0, Tµ]

is an interval of existence, then ρ(µ) ∈ C ((0, Tµc ;H∞ (R)), where

H∞ (R) = ∩
s∈R

Hs (R) provided with its natural Frechet space topology.

14This shows clearly why we really need at least two Banach spaces to begin with.
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It should be noted that the proof (even in Rn) depends heavily

on the inequality

‖Uµ (t)φ‖r+λ ≤ Kλ

[
1 +

(
1

2µt

)λ]1/2

‖φ‖r (46)

where Kλ > 0 depends only on λ and holds for all φ ∈ Hr (Rn) , r ∈ R,

λ ≥ 0, and µ, t > 0.(See [11], [12], [2] and [3] for example.) An easy

bootstrapping argument combining (45) and (46), (with λ fixed in

the interval (1, 2) , so that the RHS of (??) is locally integrable near

t = 0), implies the last statement of 2.

Next, the, usual limiting process involved in the method of

parabolic regularization (see [11] and [12]) we are able to show exis-

tence and uniqueness of solutions in AC
(
[0, T ] ;Hs−1 (R)

)
∩L∞ ([0, T ] ;Hs).

Due to technical reasons (lack of invariance under certain changes of

variables, see [12] and [17] ), so far we were unable to prove that the

solution we obtained in this way actually belongs to C ([0, T ] ;Hs (R))∩
C1
(
[0, T ] ;Hs−1 (R)

)
, s > 1/2 as we would have liked. However, com-

bining what we already have, with the results in Theorem 1, proved

using Kato´s theory when s > 3/2, we see that the solutions must

coincide, due to uniqueness, if s > 3/2. Now, parabolic regular-

ization is useful in establishing the a priori estimates that imply

global well-posedness, because we can differentiate all the Sobolev

norms with respect to time, obtain the desired global estimates (if

we are lucky) and then repeat the limiting process in each interval
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[0, T ]. We will illustrate this by means of a funny inequality. To

simplify the notation we write ρ(µ) = ρ.

∂t ‖ρ (t)‖2
0 = 2 (ρ (t) |∂tρ (t))0 = (47)

= 2µ
(
ρ (t)

∣∣∂2
xρ (t)

)
0

+ 2
(
ρ (t)

∣∣∣∂x (ρ (t)
(
1− ∂2

x

)−1
∂xP (ρ)

))
0
.

Integration by parts shows that µ
(
ρ (t)

∣∣∂2
xρ (t)

)
≤ µ ‖∂xρ (t)‖2

0 ≤ 0, so

that we can discard the first term in the third member of (47). But

then,because
∥∥∥(1− ∂2

x

)−1
P (ρ (t))

∥∥∥
0
≤ ‖P (ρ (t))‖0 we obtain,

∂t ‖ρ (t)‖2
0 ≤ 2

(
ρ (t)

∣∣∣∂x (ρ (t)
(
1− ∂2

x

)−1
∂xP (ρ (t))

))
0

= −
(
ρ (t) ∂xρ (t)

∣∣∣(1− ∂2
x

)−1
∂2
xP (ρ (t))

)
0

= +
(
ρ (t)2

∣∣∣(1− ∂2
x

)−1 (
∂2
x − 1 + 1

)
P (ρ (t))

)
0

(48a)

= −
(
ρ (t)2 |P (ρ (t))

)
+
(
ρ (t)2

∣∣∣(1− ∂2
x

)−1
P (ρ (t))

)
≤ −

(
ρ (t)2 |P (ρ (t))

)
0

+
∥∥∥ρ (t)2

∥∥∥
0
‖P (ρ (t))‖0

≤ −
(
ρ (t)2 |P (ρ (t))

)
0

+

∥∥∥ρ (t)2
∥∥∥2

0
+ ‖P (ρ (t))‖2

0

2
= 2

∥∥∥ρ (t)2 − P (ρ (t))
∥∥∥2

0

Thus,

∂t ‖ρ (t)‖2
0 ≤ 2

∥∥∥ρ (t)2 − P (ρ (t))
∥∥∥2

0
. (49)

So, if P (ρ) = ρ2, it follows that ∂t ‖ρ (t)‖2
0 ≤ 0 which, in turn implies

that ‖ρ (t)‖2
0 ≤ ‖ρ0‖2

0. This argument shows that P (ρ) = ρ2 is a
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natural choice for the function P (ρ)15.Thus we that we might be

able to show global well posedness with P (ρ) = ρ2 or with luck even

in case P (ρ) = ρ2k, k = 1, 2, 3...Well, this is true, but we still lack

some information. Recall that in the case of Hamiltonian systems,

with enough conserved quantities we obtain a priori estimates for

the derivatives of the solutions using these quantities. Here we

to use another device, known as Comparison Principle, which we

state in Rn.

Theorem 3 (Comparison Principle). Let (ρ, ~v) and (η, ~w) be solu-

tions of (31) with P (ρ) = ρ2k, P (η) = η2k, k = 1, 2, 3....; and initial

values (ρ0, ~v0) and (η0, ~w0) respectively. Then

0 ≤ η0(x) ≤ ρ0(x) inRn ⇒ 0 ≤ η(x, t) ≤ ρ(x, t) inRn × [0, T0] (50)

Theorem 4 (Global Solution). Let s > n
2 + 1, P (ρ) = ρ2k, F ≡ 0

and ρ0 ∈ Hs(Rn) with 0 ≤ ρ0(x) ≤ 1 in Rn. Then (31) is globally

well-posed in the sense described in Chapter 1 and satisfies 0 ≤
ρ(x, t) ≤ 1, ∀t ≥ 0.

I will not submit you to gruesome torture that the proofs of

the theorems may cause. In the final version they will appear

15Note that so far we requireded very little about P (ρ)!
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in appendices. To the talk, I should remark that we solved the

problem with bore-like data and we will submit it for publication

as soon as we have checked it completely. Finally the next steps

consists in studying what happens when we introduce boundaries,

for example in

Ω =
{

(x, y) ∈ R2 |y > 0
}
,

and

Ω =
{

(x, y) ∈ R2 |0 < y < a, a > 0
}
.
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ysis and Partial differential Equations, Cambridge Studies in

Advanced Mathematics, Cambridge University Press (2001).

20



[12] R. J. Iorio, Jr., KdV, BO and Friends in Weighted Sobolev

Spaces, Functional Analytic Methods for Partial Differential

Equations, H. Fujita, T. Ikebe, S. T. Kuroda (Eds.), Lecture

Notes in Mathematics 1450, Springer-Verlag (1990), 104-121.

[13] T. Kato, Abstract Evolution Equations, Linear and Quasilin-

ear, Revisited, Lecture Notes in Mathematics 1540, Springer-

Verlag (1992), 103-127.

[14] T. Kato, Quasilinear Equations of Evolution, with Appli-

cations to Partial Differential Equations, Lecture Notes in

Mathematics 448, Springer (1975), 25-70.

[15] T. Kato, Linear and Quasilinear Evolution Equations of Hy-

perbolic Type, Hyperbolicity (1976), 125-191 CIME, II Ciclo,

Cortona.and

[16] T. Kato, Perturbation Theory for Linear Operators, 3rd,

Springer-Verlag (1995).

[17] T. Kato, On the Cauchy Problem for the (Generalized) KdV

equation, Studies in Applied Mathematics, in Mathematics

Supplementary Studies, vol. 8, Academic Press (1983), 93-12.

[18] M. Panthee, On the Ill-Posedness Result for the BBM Equa-

tion, Discrete and Continuous Dynamical Systems Volume 30,

Number 1, May 2011.

21



[19] M. Reeed and B. Simon, Methods of Modern Mathemati-

cal Physics II: Fourier Analysis, Self-Adjointness, Academic

Press, (1975).

22


