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Introduction

The Zakharov-Kuznetsov equation (ZK)

ut + ux + uux + ∆ux = 0 (1)

is a nonlinear dispersive PDE describing magneto-acoustic waves in
a cold plasma. It is a multi-dimensional version of KdV

ut + ux + uux + uxxx = 0. (2)

Energy does not increase:
1

2

d

dt
‖u‖2(t) ≤ 0.

Decay issues: whether, how, why, where?
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There are many analytical and numerical methods to study (1) and
(2). They are mainly concerned with problems posed on a whole
space R2 or R respectively. For numerical simulations, however,
there appears the issue of cutting-off the spatial domain (Bona
’09). This motivates the detail qualitative analysis of problems for
(1) and/or (2) in bounded regions.

Note that for the Cauchy problem (whole space) the linear term ux
can be easily scaled out, while for the initial-boundary value
problems posed on bounded domains this leads to changes in a
domain geometry.

Previous: Faminskii ’95, Saut-Temam ’10, Linares-Pastor ’11,
Larkin-Tronco ’13, among others.
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Introduction

One of the difficulties in this field is a “critical size”, i.e. the size
of a spatial domain for which solutions to a simplest homogeneous
problem may not decay. The well-known example is KdV: if, for
instance, L = 2πn, n ∈ N, then v(x) = 1− cos x solves

ut + ux + uxxx = 0 in (0, L)× (0,∞),
u (0, t) = u (L, t) = ux (L, t) = 0,
u (x , 0) = v(x), x ∈ (0, L) ,

and clearly v(x) 6→ 0 as t →∞. Despite the valuable resent
advances (Cerpa et al ’09) the question whether solutions of
undamped problems associated to nonlinear KdV decay as t →∞
for all finite L > 0 is open.
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Introduction

In the case of (linear) KdV, the controllability and exponential
decay are equivalent to the unique continuation, which means that
the corresponding eigenvalue problem has trivial solutions only.

This occurs (Rosier ’97) iff

L 6∈ N :=

{
2π√

3

√
k2 + kl + l2; k , l ∈ N

}
.

Note: once (2) is scaled to be ut + uux + uxxx = 0, N := ∅.
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Critical sizes

For L > 0, B > 0 consider linearized 2D ZK

ut + ux + uxxx + uxyy = 0, (3)

posed on a rectangle D = (0, L)× (0,B) ⊂ R2 with the simplest
homogeneous boundary data.
Critical set: decay of solutions fails if L > 0 and B > 0 solve(

2π

L
√

3

√
k2 + kl + l2

)2

+
(πn
B

)2
= 1; k , l , n ∈ N, (4)

i.e., if D is of a critical size, like in the case of KdV posed on an
interval. In other words, (4) is a 2D generalization of Rosier’s set.
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Problem 1: Let D = (0, L)× (−B,B), α = 1 or α = 0.

ut + (α + u)ux + uxxx + uxyy = 0, in D × (0,T ); (5)

u |y=−B= u |y=B= 0, x ∈ (0, L), t > 0; (6)

u |x=0,L= ux |x=L= 0, y ∈ (−B,B), t > 0; (7)

u(x , y , 0) = u0(x , y), (x , y) ∈ D. (8)

Theorem

Let α = 1 and π2
[

3
L2 + 1

4B2

]
> 1. If ‖u0‖ is sufficiently small,

then regular solutions to (5)-(8) satisfy the inequality

‖u‖2(t) ≤
(
(1 + x), u2

)
(t) ≤ e−

A2

1+L
t ((1 + x), u2

0

)
.
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Main result

Sketch of the proof:

Existence: parabolic regularization, a priori estimates independent of
ε > 0 (and B > 0).

Passage to the limit to obtain solutions:

u ∈ L∞(0,T ;H2(D)) ∩ L2(0,T ;H3(D));

∆ux ∈ L∞(0,T ; L2(D)) ∩ L2(0,T ;H1(D));

ut ∈ L∞(0,T ; L2(D)) ∩ L2(0,T ;H1(D))

Uniqueness and decay: straightly. Use of regularity and uxyy .

Rate: 2A2 = π2
[

3
L2 + 1

4B2

]
− 1.

Smallness of initial datum: ‖u0‖2 < 9A4L2B2

4π2(4B2+L2) .
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Theorem

Let α = 0 and L,B be arbitrary positive. If ‖u0‖ is sufficiently
small, then regular solutions to (5)-(8) satisfy the inequality

‖u‖2(t) ≤
(
(1 + x), u2

)
(t) ≤ e−σt

(
(1 + x), u2

0

)
Rate:

σ =
π2(12B2 + L2)

8B2L2(1 + L)
.

Smallness of initial function:

‖u0‖2 <
81π2(4B2 + L2)

L2B2
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Problem 2: Let S = (0, L)× R, α = 1 or α = 0.

ut + (α + u)ux + uxxx + uxyy = 0, in S × (0,T ); (9)

u |x=0,L= ux |x=L= 0, y ∈ R, t > 0; (10)

u(x , y , 0) = u0(x , y), (x , y) ∈ S. (11)

Theorem

Similar claims as for Problem 1: restrictions for L > 0 if α = 1 and
no restrictions if α = 0. Smallness of initial data required.
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Comparison between size restrictions for linear and nonlinear
models: taking k = l = n = 1, (4) becomes

4π2

L2
+

π2

4B2
= 1, (12)

and restrictions for nonlinear case read

3π2

L2
+

π2

4B2
> 1. (13)

Suppose L∗ > 0 and B∗ > 0 solve (12) and denote

D∗ = (0, L∗)× (−B∗,B∗) ⊂ R2.

Call this set to be a minimal critical rectangle. If D is located
inside the minimal critical rectangle, then a sufficiently small
solution to nonlinear problem (5)-(8) necessarily stabilizes.
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In this sense, “nonlinear” restrictions are stipulated by (12) and,
therefore, smallness conditions for L,B can be interpreted as not
only technical ones, but as close to be sharp. In particular,
stabilizability holds for all rectangles D either with the width
L < π

√
3, or with the height 2B < π.

Furthermore, a small solution for problems posed on a sufficiently
narrow strip S stabilizes as well. This partially responds an open
question by Saut and Temam ’10.

Observe also that (12) fits well with the stabilization result by
Larkin and Tronco ’13.
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