
Introduction
Global well-posedness in H1(RN )

Blow-up solutions in H1(RN )
Bibliography

A sharp condition for global well-posedness of the
Inhomogeneous Nonlinear Schrödinger Equation

Luiz Gustavo Farah.

ICEx-UFMG.

First Workshop on Nonlinear Dispersive Equations,
October 2013.

Luiz Gustavo Farah. Generalized KdV Equation



Introduction
Global well-posedness in H1(RN )

Blow-up solutions in H1(RN )
Bibliography

The Inhomogeneous Nonlinear Schrödinger Equation (INLS)
Previous results
The Nonlinear Schrödinger Equation (NLS)

The Inhomogeneous Nonlinear Schrödinger Equation (INLS)

We consider the following Inhomogeneous Nonlinear Schrödinger
Equation (INLS){

i∂tu + ∆u + |x |−b|u|2σu = 0,
u(x , 0) = u0(x),

(1)

where (x , t) ∈ RN × [0,∞).

Remark

When b = 0 this is the well-known Nonlinear Schrödinger Equation
(NLS).
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Previous results

A more general form of this equation was considered by Merle
(AIHP 1996) and Raphaël and Szeftel (JAMS 2011)

i∂tu + ∆u + k(x)|u|2σu = 0,

where they study the problem of existence/nonexistence of minimal
mass solutions.

However, in this both papers, they assume that

k(x) is bounded.

Luiz Gustavo Farah. Generalized KdV Equation



Introduction
Global well-posedness in H1(RN )

Blow-up solutions in H1(RN )
Bibliography

The Inhomogeneous Nonlinear Schrödinger Equation (INLS)
Previous results
The Nonlinear Schrödinger Equation (NLS)

Previous results

The (INLS) i∂tu + ∆u + |x |−b|u|2σu = 0, was already studied by
Genoud (JAA 2012) in the case σ = 2−b

N (critical case). He proved
global well-posedness in H1(RN) assuming

‖u0‖L2(RN) < ‖Q‖L2(RN),

where Q is the unique non-negative, radially-symmetric, decreasing
solution of the equation

∆Q − Q + |x |−b|Q|
2(2−b)

N Q = 0. (2)

Remark

The existence and uniqueness of the ground state solution to (2)
was proved by Genoud (PhD Thesis 2008), Toland (PRSE 1984)
and Yanagida (ARMA 1991).
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The Nonlinear Schrödinger Equation (NLS)

{
i∂tu + ∆u + |u|2σu = 0,
u(x , 0) = u0(x),

(3)

where (x , t) ∈ RN × [0,∞).

Global well-posedness results in H1(RN)

Weinstein (CMP 83): If σ = 2/N we have global solution if

‖u0‖L2(RN) < ‖Q‖L2(RN),

where Q is the unique non-negative, radially-symmetric,
decreasing solution of (10) with b = 0.

Remark

Genoud’s result is a generalization of the above result.
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The Nonlinear Schrödinger Equation (NLS)

Holmer and Roudenko (CMP 2008): If 2
N < σ < 2

N−2 we have
global solution if

E [u0]sσM[u0]1−sσ < E [Q]sσM[Q]1−sσ , E [u0] ≥ 0. (4)

and

‖∇u0‖sσL2(RN)
‖u0‖1−sσ

L2(RN)
< ‖∇Q‖sσ

L2(RN)
‖Q‖1−sσ

L2(RN)
, (5)

where sσ = N
2 −

1
σ is the critical Sobolev index.

Remark

Note that if σ = 2/N conditions (11) and (12) are the same and
then we recover Weinstein’s result.
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Problem

Problem: Is it possible to prove a global well-posedness theorem
for the (INLS) similar to Holmer and Roudenko (CMP 2008) result
for the (NLS)?
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Critical Sobolev index

The Hs(RN) space: ‖f ‖2
Hs(RN)

≡
∫
RN (1 + |ξ|2)s |f̂ (ξ)|2dx .

Scaling: If u is a solution of (1) then, for all λ > 0,

uλ(x , t) = λ
2−b
2σ u(λx , λ2t)

is also a solution. Moreover,

‖uλ(·, 0)‖Ḣs = λs+
2−b
2σ

−N
2 ‖u0‖Ḣs .

Critical Sobolev index: sσ = N
2 −

2−b
2σ

Assumption: If 2−b
N < σ < 2−b

N−2 then 0 < sσ < 1

(L2-supercritical and H1-subcritical).
We also assume 0 < b < min{2,N}.
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Conservation laws

We have following conserved quantities for the (INLS) equation

M[u(t)] =

∫
RN

|u(x , t)|2 dx (6)

and

E [u(t)] =
1

2

∫
RN

|∇u(x , t)|2 dx− 1

2σ + 2

∫
RN

|x |−b|u(x , t)|2σ+2 dx .

(7)

We need to show that the quantity (7) is well-defined for
solutions in H1(R)
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Sharp Gagliardo-Nirenberg inequality

Theorem

Let k > 0, then the Gagliardo-Nirenberg inequality∫
RN

|x |−b|u(x)|2σ+2 dx ≤ Kopt ‖∇u‖Nσ+b
L2(RN)

‖u‖2σ+2−(Nσ+b)

L2(RN)
, (8)

holds, and the sharp constant Kopt > 0 is explicitly given by

Kopt =

(
Nσ + b

2σ + 2− (Nσ + b)

) 2−(Nσ+b)
2 2σ + 2

(Nσ + b)‖Q‖2σ
L2(RN)

, (9)

where Q is the unique non-negative, radially-symmetric, decreasing
solution of the equation

∆Q − Q + |x |−b|Q|2σQ = 0. (10)
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Comments

(i) If b = 0 (NLS) and σ = 2
N we recover the sharp

Gagliardo-Nirenberg inequality proved by Weinstein (CMP
83).

(ii) If 0 < b < min{2,N} (INLS) and σ = 2−b
N we recover the

sharp Gagliardo-Nirenberg inequality proved by Genoud (JAA
2012).
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Global well-posedness in H1(RN)

Theorem

Let 2−b
N < σ < 2−b

N−2 , 0 < b < min{2,N} and set sσ = N
2 −

2−b
2σ .

Suppose that u(t) be the solution of (1) with initial data
u0 ∈ H1(RN) satisfying

E [u0]sσM[u0]1−sσ < E [Q]sσM[Q]1−sσ , E [u0] ≥ 0. (11)

and
‖∇u0‖sσL2(RN)

‖u0‖1−sσ
L2(RN)

< ‖∇Q‖sσ
L2(RN)

‖Q‖1−sσ
L2(RN)

, (12)

where Q is unique positive even solution of the elliptic equation
(10), then u(t) is a global solution in H1(RN).
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Comments

(i) If b = 0 (NLS) and σ = 2
N we recover Weinstein (CMP 83)

result.

(ii) If 0 < b < min{2,N} (INLS) and σ = 2−b
N we recover Genoud

(JAA 2012) result.

(ii) If b = 0 (NLS) and 2
N < σ < 2

N−2 we recover Holmer and
Roudenko (CMP 2008) result.
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Blow-up solutions in H1(RN)

Theorem

Let 2−b
N < σ < 2−b

N−2 , 0 < b < min{2,N} and set sσ = N
2 −

2−b
2σ .

Suppose that u(t) be the solution of (1) with initial data

u0 ∈ H1(RN) ∩ {u : |x |u ∈ L2(RN)}

satisfying

E [u0]sσM[u0]1−sσ < E [Q]sσM[Q]1−sσ , E [u0] ≥ 0 or E [u0] < 0.
(13)

and
‖∇u0‖sσL2(RN)

‖u0‖1−sσ
L2(RN)

> ‖∇Q‖sσ
L2(RN)

‖Q‖1−sσ
L2(RN)

, (14)

then the maximum existence time is finite and blow-up in H1(RN)
must occour.
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Virial type estimates for (INLS)

Proposition

Let u(x , t) be a solution of (INLS) equation then

d

dt

∫
RN

|x |2|u(x , t)|2dx = 4Im

∫
RN

ū(x , t)(∇u(x , t) · x)dx (15)

and

d2

dt2

∫
RN

|x |2|u(x , t)|2dx = 8(Nσ+b)E [u0]−4(Nσ+b−2)‖∇u(t)‖2L2(RN).

(16)

Remark

If b = 0 (NLS) and σ = 2
N this is the Virial estimates obtained by

Merle (AIHP 1996).
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Energy trapping

(see also Kenig and Merle (IM 2006) and Cazenave, Fang and Xie
(Sci. China Math 2011))

Proposition

Let u0 ∈ H1(RN) such that

‖∇u0‖sσL2(RN)
‖u0‖1−sσ

L2(RN)
> ‖∇Q‖sσ

L2(RN)
‖Q‖1−sσ

L2(RN)
.

(a) If E [u0] ≤ 0 then

‖∇u(t)‖sσ
L2(RN)

‖u(t)‖1−sσ
L2(RN)

> cσ,b,N‖∇Q‖sσL2(RN)
‖Q‖1−sσ

L2(RN)
,

where cσ,b,N =

(
Nσ + b

2

)1/Nσ+b−2

.
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Energy trapping

Proposition

(b) If E [u0] > 0 and E [u0]sσM[u0]1−sσ < E [Q]sσM[Q]1−sσ then

‖∇u(t)‖sσ
L2(RN)

‖u(t)‖1−sσ
L2(RN)

> cσ,b,N‖∇Q‖sσL2(RN)
‖Q‖1−sσ

L2(RN)
,

where cσ,b,N,Q,u =1 +

((
Nσ + b

2

)1/Nσ+b−2

− 1

)(
1− E [u]M[u]

sσ
1−sσ

E [Q]M[Q]
sσ

1−sσ

)1/2
sσ

.

Remark

Note that cσ,b,N , cσ,b,N,Q,u > 1 since σ >
2− b

N
.
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Calculus fact

Lemma

Let f (x) = 1
2x

2 − axα, where a > 0 and α > 2. Define p(x) the
tangent parabola at the positive local maximum of f , namely
(xmax, f (xmax)), that pass through the positive root of f , namely
(0, c) with c > 0, then

f (x) ≥ p(x), for all x ∈ (xmax, c).
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Calculus fact

y = p(x)

y = f (x)

x

y
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Proof of Theorem 3

Suppose by contradiction that the solution u(t) of equation (1)
with initial data satisfying hypotheses (13)-(14) exists globaly.

Multiplying the Virial identity (16) by M[u]
sσ

1−sσ and using
Proposition 3.2 we have for all t > 0(

d2

dt2

∫
RN

|x |2|u(x , t)|2dx
)
M[u0]

sσ
1−sσ

< 8(Nσ + b)E [Q]M[Q]
sσ

1−sσ

− 4(Nσ + b − 2)A

(
‖∇Q‖L2(RN)‖Q‖

sσ
1−sσ

L2(RN)

)2

,

for some number A = A(σ, b,N,Q, u0) > 1, given by Proposition
3.2.
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Proof of Theorem 3

Since Q is a solution of (10)

8(Nσ+b)E [Q]M[Q]
sσ

1−sσ = 4(Nσ+b−2)

(
‖∇Q‖L2(RN)‖Q‖

sσ
1−sσ

L2(RN)

)2

Therefore (
d2

dt2

∫
RN

|x |2|u(x , t)|2dx
)
M[u0]

sσ
1−sσ

< −4(Nσ + b − 2)(A− 1)

(
‖∇Q‖L2(RN)‖Q‖

sσ
1−sσ

L2(RN)

)2

= −B,

(17)

for some number B = B(σ, b,N,Q, u0) > 0.

Finally, integrating (17) twice and taking t large we reach a
contradiction. �
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Obrigado!
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