ORBITAL STABILITY OF PERIODIC WAVES FOR THE KLEIN-GORDON TYPE EQUATIONS

F. NATALI

DMA-UEM

This is a joint work with E. Cardoso Jr. - UEM.

A BRIEF INTRODUCTION.

A BRIEF INTRODUCTION.

Periodic waves of conservative Hamiltonian systems arise as a special class of solutions of evolutions equations

$$
\begin{equation*}
\frac{d U}{d t}=J E^{\prime}(U) \tag{1}
\end{equation*}
$$

in a Hilbert space X.

A BRIEF INTRODUCTION.

Periodic waves of conservative Hamiltonian systems arise as a special class of solutions of evolutions equations

$$
\begin{equation*}
\frac{d U}{d t}=J E^{\prime}(U) \tag{1}
\end{equation*}
$$

in a Hilbert space X. The Hamiltonian system has two conserved quantities $E(U)$ and $F(U)$.

A BRIEF INTRODUCTION.

Periodic waves of conservative Hamiltonian systems arise as a special class of solutions of evolutions equations

$$
\begin{equation*}
\frac{d U}{d t}=J E^{\prime}(U) \tag{1}
\end{equation*}
$$

in a Hilbert space X. The Hamiltonian system has two conserved quantities $E(U)$ and $F(U)$. Then for any constant c, we may consider the conserved quantity (first integral) $E(U)-c F(U)$.

A BRIEF INTRODUCTION.

Periodic waves of conservative Hamiltonian systems arise as a special class of solutions of evolutions equations

$$
\begin{equation*}
\frac{d U}{d t}=J E^{\prime}(U) \tag{1}
\end{equation*}
$$

in a Hilbert space X. The Hamiltonian system has two conserved quantities $E(U)$ and $F(U)$. Then for any constant c, we may consider the conserved quantity (first integral) $E(U)-c F(U)$.

In our context, we named periodic traveling/standing waves as the critical points of $E(U)-c F(U)$, that is,

A BRIEF INTRODUCTION.

Periodic waves of conservative Hamiltonian systems arise as a special class of solutions of evolutions equations

$$
\begin{equation*}
\frac{d U}{d t}=J E^{\prime}(U) \tag{1}
\end{equation*}
$$

in a Hilbert space X. The Hamiltonian system has two conserved quantities $E(U)$ and $F(U)$. Then for any constant c, we may consider the conserved quantity (first integral) $E(U)-c F(U)$.

In our context, we named periodic traveling/standing waves as the critical points of $E(U)-c F(U)$, that is, solutions $\Phi=\Phi_{c}$ of the Euler-Lagrange equation

A BRIEF INTRODUCTION.

Periodic waves of conservative Hamiltonian systems arise as a special class of solutions of evolutions equations

$$
\begin{equation*}
\frac{d U}{d t}=J E^{\prime}(U) \tag{1}
\end{equation*}
$$

in a Hilbert space X. The Hamiltonian system has two conserved quantities $E(U)$ and $F(U)$. Then for any constant c, we may consider the conserved quantity (first integral) $E(U)-c F(U)$.

In our context, we named periodic traveling/standing waves as the critical points of $E(U)-c F(U)$, that is, solutions $\Phi=\Phi_{c}$ of the Euler-Lagrange equation

$$
\begin{equation*}
E^{\prime}(\Phi)-c F^{\prime}(\Phi)=0 \tag{2}
\end{equation*}
$$

As example, let us consider the Klein-Gordon equation with logarithm nonlinearity (log-KG henceforth),

As example, let us consider the Klein-Gordon equation with logarithm nonlinearity (log-KG henceforth),

$$
\begin{equation*}
u_{t t}-u_{x x}+u-\log \left(|u|^{2}\right) u=0 \tag{3}
\end{equation*}
$$

where $u: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{C}$ is a complex valued function.

As example, let us consider the Klein-Gordon equation with logarithm nonlinearity (log-KG henceforth),

$$
\begin{equation*}
u_{t t}-u_{x x}+u-\log \left(|u|^{2}\right) u=0 \tag{3}
\end{equation*}
$$

where $u: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{C}$ is a complex valued function. We assume that u is an L-periodic function, that is, $u(x+L, t)=u(x, t)$ for all $x, t \in \mathbb{R}$.

Equation (3) can be expressed as an abstract Hamiltonian

 system.Equation (3) can be expressed as an abstract Hamiltonian system. Indeed, by considering $U:=\left(\operatorname{Re} u, \operatorname{Im} u_{t}, \operatorname{Im} u, \operatorname{Re} u_{t}\right)$ we have

Equation (3) can be expressed as an abstract Hamiltonian system. Indeed, by considering $U:=\left(\operatorname{Re} u, \operatorname{Im} u_{t}, \operatorname{Im} u, \operatorname{Re} u_{t}\right)$ we have

$$
U_{t}=J E^{\prime}(U)
$$

Equation (3) can be expressed as an abstract Hamiltonian system. Indeed, by considering $U:=\left(\operatorname{Re} u, \operatorname{Im} u_{t}, \operatorname{Im} u, \operatorname{Re} u_{t}\right)$ we have

$$
U_{t}=J E^{\prime}(U)
$$

where

Equation (3) can be expressed as an abstract Hamiltonian system. Indeed, by considering $U:=\left(\operatorname{Re} u, \operatorname{Im} u_{t}, \operatorname{Im} u, \operatorname{Re} u_{t}\right)$ we have

$$
U_{t}=J E^{\prime}(U)
$$

where

$$
J=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

Equation (3) can be expressed as an abstract Hamiltonian system. Indeed, by considering $U:=\left(\operatorname{Re} u, \operatorname{Im} u_{t}, \operatorname{Im} u, \operatorname{Re} u_{t}\right)$ we have

$$
U_{t}=J E^{\prime}(U)
$$

where

$$
J=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

and

Equation (3) can be expressed as an abstract Hamiltonian system. Indeed, by considering $U:=\left(\operatorname{Re} u, \operatorname{Im} u_{t}, \operatorname{Im} u, \operatorname{Re} u_{t}\right)$ we have

$$
U_{t}=J E^{\prime}(U)
$$

where

$$
J=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

and

$$
\begin{equation*}
E(U)=\frac{1}{2} \int_{0}^{L}\left[\left|u_{x}\right|^{2}+\left|u_{t}\right|^{2}+|u|^{2}\left(2-\log \left(|u|^{2}\right)\right)\right] d x \tag{4}
\end{equation*}
$$

If one considers periodic waves solutions of the form $u(x, t)=e^{i c t} \phi_{c}(x), t>0, c \in(-1,1)$ and, ϕ_{c} is a smooth L-periodic function, the Euler-Lagrange equation becomes

If one considers periodic waves solutions of the form $u(x, t)=e^{i c t} \phi_{c}(x), t>0, c \in(-1,1)$ and, ϕ_{c} is a smooth L-periodic function, the Euler-Lagrange equation becomes

$$
\left(E^{\prime}-c F^{\prime}\right)(\Phi)=\left(\begin{array}{c}
-\phi_{c}^{\prime \prime}+\phi_{c}-\phi_{c} \log \left(\left|\phi_{c}\right|^{2}\right)-c^{2} \phi_{c} \\
c \phi_{c}-c \phi_{c} \\
0 \\
0
\end{array}\right)=\overrightarrow{0}
$$

where $\Phi:=\Phi_{c}=\left(\phi_{c}, i c \phi_{c}\right):=\left(\phi_{c}, c \phi_{c}, 0,0\right)$ and

If one considers periodic waves solutions of the form $u(x, t)=e^{i c t} \phi_{c}(x), t>0, c \in(-1,1)$ and, ϕ_{c} is a smooth L-periodic function, the Euler-Lagrange equation becomes

$$
\left(E^{\prime}-c F^{\prime}\right)(\Phi)=\left(\begin{array}{c}
-\phi_{c}^{\prime \prime}+\phi_{c}-\phi_{c} \log \left(\left|\phi_{c}\right|^{2}\right)-c^{2} \phi_{c} \\
c \phi_{c}-c \phi_{c} \\
0 \\
0
\end{array}\right)=\overrightarrow{0}
$$

where $\Phi:=\Phi_{c}=\left(\phi_{c}, i c \phi_{c}\right):=\left(\phi_{c}, c \phi_{c}, 0,0\right)$ and

$$
F(U)=\operatorname{Im} \int_{0}^{L} \bar{u} u_{t} d x=\int_{0}^{L}\left(\operatorname{Re} u \operatorname{Im} u_{t}-\operatorname{Im} u \operatorname{Re} u_{t}\right) d x
$$

An important qualitative aspect regarding the Hamiltonian systems (1) is the orbital stability.

DEFINITION OF STABILITY.

We assume that $E(U)$ and $F(U)$ are invariant under the action of groups $\mathbf{T}_{1}(s)$ and $\mathbf{T}_{2}(s), s \in \mathbb{R}$.

DEFINITION OF STABILITY.

We assume that $E(U)$ and $F(U)$ are invariant under the action of groups $\mathbf{T}_{1}(s)$ and $\mathbf{T}_{2}(s), s \in \mathbb{R}$. Roughly speaking, we say that the periodic wave Φ is orbitally stable, if the profile of an initial condition U_{0} for (1) is close to Φ, then the profile of the solution $U(t)$ of (1) with $U(0)=U_{0}$ remains close to Φ for all values of t.

DEFINITION OF STABILITY.

We assume that $E(U)$ and $F(U)$ are invariant under the action of groups $\mathbf{T}_{1}(s)$ and $\mathbf{T}_{2}(s), s \in \mathbb{R}$. Roughly speaking, we say that the periodic wave Φ is orbitally stable, if the profile of an initial condition U_{0} for (1) is close to Φ, then the profile of the solution $U(t)$ of (1) with $U(0)=U_{0}$ remains close to Φ for all values of t. More precisely Φ is orbitally stable with respect to (1) if, for all $\varepsilon>0$, there exists $\delta>0$ such that if $\left\|U_{0}-\Phi\right\|_{X}<\delta$ and $U(t)$ is the solution of (1) with $U(0)=U_{0}$, then

$$
\sup _{-\infty<t<\infty} \inf \left\{\left\|U(t)-\mathbf{T}_{1}\left(s_{1}\right) \mathbf{T}_{2}\left(s_{2}\right) \Phi\right\|_{x},-\infty<s_{1}, s_{2}<\infty\right\}<\varepsilon
$$

DEFINITION OF STABILITY.

We assume that $E(U)$ and $F(U)$ are invariant under the action of groups $\mathbf{T}_{1}(s)$ and $\mathbf{T}_{2}(s), s \in \mathbb{R}$. Roughly speaking, we say that the periodic wave Φ is orbitally stable, if the profile of an initial condition U_{0} for (1) is close to Φ, then the profile of the solution $U(t)$ of (1) with $U(0)=U_{0}$ remains close to Φ for all values of t. More precisely Φ is orbitally stable with respect to (1) if, for all $\varepsilon>0$, there exists $\delta>0$ such that if $\left\|U_{0}-\Phi\right\|_{X}<\delta$ and $U(t)$ is the solution of (1) with $U(0)=U_{0}$, then

$$
\sup _{-\infty<t<\infty} \inf \left\{\left\|U(t)-\mathbf{T}_{1}\left(s_{1}\right) \mathbf{T}_{2}\left(s_{2}\right) \Phi\right\| x,-\infty<s_{1}, s_{2}<\infty\right\}<\varepsilon
$$

Otherwise, we say that the periodic wave is orbitally unstable in X (or X-unstable).

STABILITY - SUFFICIENT CONDITIONS.

In a general setting, it is understood that the periodic wave Φ is stable if we can show that E has a local minimum at Φ for a given value of F.

STABILITY - SUFFICIENT CONDITIONS.

In a general setting, it is understood that the periodic wave Φ is stable if we can show that E has a local minimum at Φ for a given value of F. By using methods introduced by Albert, Bona, Henry, Grillakis, Shatah, Strauss and, Weinstein, to prove the stability of Φ, we must show that

STABILITY - SUFFICIENT CONDITIONS.

In a general setting, it is understood that the periodic wave Φ is stable if we can show that E has a local minimum at Φ for a given value of F. By using methods introduced by Albert, Bona, Henry, Grillakis, Shatah, Strauss and, Weinstein, to prove the stability of Φ, we must show that

- the existence of a differentiable family Φ of solutions of the Euler-Lagrange equation (2)

STABILITY - SUFFICIENT CONDITIONS.

In a general setting, it is understood that the periodic wave Φ is stable if we can show that E has a local minimum at Φ for a given value of F. By using methods introduced by Albert, Bona, Henry, Grillakis, Shatah, Strauss and, Weinstein, to prove the stability of Φ, we must show that

- the existence of a differentiable family Φ of solutions of the Euler-Lagrange equation (2)
- we define the function

In a general setting, it is understood that the periodic wave Φ is stable if we can show that E has a local minimum at Φ for a given value of F. By using methods introduced by Albert, Bona, Henry, Grillakis, Shatah, Strauss and, Weinstein, to prove the stability of Φ, we must show that

- the existence of a differentiable family Φ of solutions of the Euler-Lagrange equation (2)
- we define the function

$$
\begin{equation*}
d(c)=E\left(\Phi_{c}\right)-c F\left(\Phi_{c}\right) \tag{5}
\end{equation*}
$$

and the linearized operator for (2) at Φ_{c}

In a general setting, it is understood that the periodic wave Φ is stable if we can show that E has a local minimum at Φ for a given value of F. By using methods introduced by Albert, Bona, Henry, Grillakis, Shatah, Strauss and, Weinstein, to prove the stability of Φ, we must show that

- the existence of a differentiable family Φ of solutions of the Euler-Lagrange equation (2)
- we define the function

$$
\begin{equation*}
d(c)=E\left(\Phi_{c}\right)-c F\left(\Phi_{c}\right) \tag{5}
\end{equation*}
$$

and the linearized operator for (2) at Φ_{c}

$$
\begin{equation*}
\mathcal{L}_{c}=E^{\prime \prime}\left(\Phi_{c}\right)-c F^{\prime \prime}\left(\Phi_{c}\right) \tag{6}
\end{equation*}
$$

- Due to the invariance of the problem, it is expected that zero is always an eigenvalue of \mathcal{L}_{c}.
- Due to the invariance of the problem, it is expected that zero is always an eigenvalue of \mathcal{L}_{c}.
- For the case of the Klein-Gordon equation, the periodic wave Φ_{c} is X-stable if d is non-degenerate at c and:
- Due to the invariance of the problem, it is expected that zero is always an eigenvalue of \mathcal{L}_{c}.
- For the case of the Klein-Gordon equation, the periodic wave Φ_{c} is X-stable if d is non-degenerate at c and:
(1) $n^{-}\left(\mathcal{L}_{c}\right)=1$
- Due to the invariance of the problem, it is expected that zero is always an eigenvalue of \mathcal{L}_{c}.
- For the case of the Klein-Gordon equation, the periodic wave Φ_{c} is X-stable if d is non-degenerate at c and:
(1) $n^{-}\left(\mathcal{L}_{c}\right)=1$
(2) zero is a simple (or double) eigenvalue of $\mathcal{L}_{c}=\left(\begin{array}{cc}\mathcal{L}_{R} & 0 \\ 0 & \mathcal{L}_{I}\end{array}\right)$.
- Due to the invariance of the problem, it is expected that zero is always an eigenvalue of \mathcal{L}_{c}.
- For the case of the Klein-Gordon equation, the periodic wave Φ_{c} is X-stable if d is non-degenerate at c and:
(1) $n^{-}\left(\mathcal{L}_{c}\right)=1$
(2) zero is a simple (or double) eigenvalue of $\mathcal{L}_{c}=\left(\begin{array}{cc}\mathcal{L}_{R} & 0 \\ 0 & \mathcal{L}_{/}\end{array}\right)$.
(3) $d^{\prime \prime}(c)>0$, for all $c \in \mathcal{I}$.

In order to deduce the orbital stability of periodic waves, we need to determine (at least) existence and uniqueness of (weak) solutions.

We suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a real function and the Cauchy problem

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}+u-f\left(|u|^{2}\right) u=0 \tag{7}\\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{0}^{\prime}(x)
\end{array}\right.
$$

has a unique (local) solution

$$
u \in C\left([0, T] ; H_{p e r}^{1}([0, L])\right) \cap C^{1}\left([0, T] ; L_{p e r}^{2}([0, L])\right)
$$

We suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a real function and the Cauchy problem

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}+u-f\left(|u|^{2}\right) u=0 \tag{7}\\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{0}^{\prime}(x)
\end{array}\right.
$$

has a unique (local) solution

$$
u \in C\left([0, T] ; H_{p e r}^{1}([0, L])\right) \cap C^{1}\left([0, T] ; L_{p e r}^{2}([0, L])\right)
$$

In addition, we assume that problem (7) has two (convenient) conserved quantities E and F.

- Let us consider $f\left(|u|^{2}\right)=|u|^{2 p}, p \geq 1$, integer.
- Let us consider $f\left(|u|^{2}\right)=|u|^{2 p}, p \geq 1$, integer. We obtain that $|u|^{2 p} u$ is a C^{1}-function.
- Let us consider $f\left(|u|^{2}\right)=|u|^{2 p}, p \geq 1$, integer. We obtain that $|u|^{2 p} u$ is a C^{1}-function.
- The existence and uniqueness of local solutions is established by using standard arguments (fixed point theory).
- Let us consider $f\left(|u|^{2}\right)=|u|^{2 p}, p \geq 1$, integer. We obtain that $|u|^{2 p} u$ is a C^{1}-function.
- The existence and uniqueness of local solutions is established by using standard arguments (fixed point theory).
- If $f\left(|u|^{2}\right)=\log \left(|u|^{2}\right)$ the argument above does not work since $g(s)=s \log \left(|s|^{2}\right)$ is not differentiable at $s=0$.
- Let us consider $f\left(|u|^{2}\right)=|u|^{2 p}, p \geq 1$, integer. We obtain that $|u|^{2 p} u$ is a C^{1}-function.
- The existence and uniqueness of local solutions is established by using standard arguments (fixed point theory).
- If $f\left(|u|^{2}\right)=\log \left(|u|^{2}\right)$ the argument above does not work since $g(s)=s \log \left(|s|^{2}\right)$ is not differentiable at $s=0$.

Theorem 1.

Consider $\left(u_{0}, u_{0}^{\prime}\right) \in H_{p e r}^{1}([0, L]) \times L_{p e r}^{2}([0, L])$. The Cauchy Problem (7) has a unique (local) weak solution $u \in C\left([0, T] ; H_{p e r}^{1}([0, L])\right) \cap C^{1}\left([0, T] ; L_{p e r}^{2}([0, L])\right)$. In addition, we have the following conserved quantities

$$
E(U)=\frac{1}{2} \int_{0}^{L}\left[\left|u_{x}\right|^{2}+\left|u_{t}\right|^{2}+|u|^{2}\left(2-\log \left(|u|^{2}\right)\right)\right] d x
$$

and

$$
F(U)=\operatorname{Im} \int_{0}^{L} \bar{u} u_{t} d x
$$

INGREDIENTS OF THE PROOF:

INGREDIENTS OF THE PROOF:

- In order to prove Theorem 1 we need to follow the arguments in Cazenave and Haraux (1980).

INGREDIENTS OF THE PROOF:

- In order to prove Theorem 1 we need to follow the arguments in Cazenave and Haraux (1980).
- We use Galerkin's approximation + compact embedding of the space $H_{p e r}^{1} \hookrightarrow L_{p e r}^{2}$ to obtain the existence of (global) weak solutions.

INGREDIENTS OF THE PROOF:

- In order to prove Theorem 1 we need to follow the arguments in Cazenave and Haraux (1980).
- We use Galerkin's approximation + compact embedding of the space $H_{p e r}^{1} \hookrightarrow L_{p e r}^{2}$ to obtain the existence of (global) weak solutions.
- In addition, we need to use the logarithmic Sobolev inequality

INGREDIENTS OF THE PROOF:

- In order to prove Theorem 1 we need to follow the arguments in Cazenave and Haraux (1980).
- We use Galerkin's approximation + compact embedding of the space $H_{p e r}^{1} \hookrightarrow L_{p e r}^{2}$ to obtain the existence of (global) weak solutions.
- In addition, we need to use the logarithmic Sobolev inequality

$$
\begin{aligned}
\begin{aligned}
4 \pi^{2} \int_{0}^{L}|u|^{2} \log |u| d x & \leq \int_{0}^{L}\left|u_{x}\right|^{2} d x \\
& +2 \pi^{2} \int_{0}^{L}|u|^{2} \log \left(\frac{2 \pi}{L} \int_{0}^{L}|u|^{2} d x\right) d x
\end{aligned} \\
u \in H_{p e r}^{1}([0, L])
\end{aligned}
$$

- Uniqueness of solutions is a big problem!
- Uniqueness of solutions is a big problem!
- Let u and v be weak solutions of the problem (7).
- Uniqueness of solutions is a big problem!
- Let u and v be weak solutions of the problem (7). Thus, one can prove that $\varphi:=u-v$ is a weak solution of the problem
- Uniqueness of solutions is a big problem!
- Let u and v be weak solutions of the problem (7). Thus, one can prove that $\varphi:=u-v$ is a weak solution of the problem

$$
\left\{\begin{array}{l}
\varphi_{t t}-\varphi_{x x}+\varphi-u \log \left(|u|^{2}\right)+v \log \left(|v|^{2}\right)=0 \tag{8}\\
\varphi(x, 0)=0, \quad \varphi_{t}(x, 0)=0
\end{array}\right.
$$

- In addition, solution φ can be expressed as
- In addition, solution φ can be expressed as

$$
\begin{align*}
& \qquad(x, t)=\frac{1}{2} \int_{0}^{t} \int_{x-t+\tau}^{x+t-\tau}\left[u \log \left(|u|^{2}\right)-v \log \left(|v|^{2}\right)\right] d y d \tau, \tag{9}\\
& \text { for all }(x, t) \in \mathbb{R} \times[0, T] .
\end{align*}
$$

- In addition, solution φ can be expressed as

$$
\begin{equation*}
\varphi(x, t)=\frac{1}{2} \int_{0}^{t} \int_{x-t+\tau}^{x+t-\tau}\left[u \log \left(|u|^{2}\right)-v \log \left(|v|^{2}\right)\right] d y d \tau \tag{9}
\end{equation*}
$$

for all $(x, t) \in \mathbb{R} \times[0, T]$.

- To prove equality above we must consider $0<T<L / 4$.
- In addition, solution φ can be expressed as

$$
\begin{equation*}
\varphi(x, t)=\frac{1}{2} \int_{0}^{t} \int_{x-t+\tau}^{x+t-\tau}\left[u \log \left(|u|^{2}\right)-v \log \left(|v|^{2}\right)\right] d y d \tau \tag{9}
\end{equation*}
$$

for all $(x, t) \in \mathbb{R} \times[0, T]$.

- To prove equality above we must consider $0<T<L / 4$.
- Finally, to establish that $\varphi \equiv 0$ we need to use the logarithmic Gronwall inequality:
- In addition, solution φ can be expressed as

$$
\begin{equation*}
\varphi(x, t)=\frac{1}{2} \int_{0}^{t} \int_{x-t+\tau}^{x+t-\tau}\left[u \log \left(|u|^{2}\right)-v \log \left(|v|^{2}\right)\right] d y d \tau \tag{9}
\end{equation*}
$$

for all $(x, t) \in \mathbb{R} \times[0, T]$.

- To prove equality above we must consider $0<T<L / 4$.
- Finally, to establish that $\varphi \equiv 0$ we need to use the logarithmic Gronwall inequality:
- Consider $T>0, \alpha>0, \beta_{0} \in[0,1 / e]$ and $\beta \in L^{\infty}(0, T)$ with $\beta \geq 0$. If

$$
\beta(t) \leq \beta_{0}-\alpha \int_{0}^{t} \beta(s) \log \beta(s) d s
$$

a.e. $t \in[0, T]$.

- In addition, solution φ can be expressed as

$$
\begin{equation*}
\varphi(x, t)=\frac{1}{2} \int_{0}^{t} \int_{x-t+\tau}^{x+t-\tau}\left[u \log \left(|u|^{2}\right)-v \log \left(|v|^{2}\right)\right] d y d \tau \tag{9}
\end{equation*}
$$

for all $(x, t) \in \mathbb{R} \times[0, T]$.

- To prove equality above we must consider $0<T<L / 4$.
- Finally, to establish that $\varphi \equiv 0$ we need to use the logarithmic Gronwall inequality:
- Consider $T>0, \alpha>0, \beta_{0} \in[0,1 / e]$ and $\beta \in L^{\infty}(0, T)$ with $\beta \geq 0$. If

$$
\beta(t) \leq \beta_{0}-\alpha \int_{0}^{t} \beta(s) \log \beta(s) d s
$$

a.e. $t \in[0, T]$. Thus,

$$
\beta(t) \leq \beta_{0}^{e^{-\alpha t}}
$$

a.e. $t \in\left[0, T^{\star}\right]$.

ORBITAL STABILITY OF PERIODIC WAVES

In what follows, let us assume the following set of assumptions:

ORBITAL STABILITY OF PERIODIC WAVES

In what follows, let us assume the following set of assumptions:

- there is $c_{0} \in \mathbb{R}$ such that $\phi_{c_{0}}$ is an even positive and L_{0}-periodic solution associated with the equation

ORBITAL STABILITY OF PERIODIC WAVES

In what follows, let us assume the following set of assumptions:

- there is $c_{0} \in \mathbb{R}$ such that $\phi_{c_{0}}$ is an even positive and L_{0}-periodic solution associated with the equation

$$
-\phi_{c_{0}}^{\prime \prime}+\left(1-c_{0}^{2}\right) \phi_{c_{0}}-f\left(\phi_{c_{0}}^{2}\right) \phi_{c_{0}}=0
$$

ORBITAL STABILITY OF PERIODIC WAVES

In what follows, let us assume the following set of assumptions:

- there is $c_{0} \in \mathbb{R}$ such that $\phi_{c_{0}}$ is an even positive and L_{0}-periodic solution associated with the equation

$$
-\phi_{c_{0}}^{\prime \prime}+\left(1-c_{0}^{2}\right) \phi_{c_{0}}-f\left(\phi_{c_{0}}^{2}\right) \phi_{c_{0}}=0
$$

- The linearized operator $\mathcal{L}_{1}=-\partial_{x}^{2}+\left(1-c_{0}^{2}\right)-F\left(\phi_{c_{0}}\right)$ has zero as a simple eigenvalue whose eigenfunction is $\phi_{c_{0}}^{\prime}$ and $n^{-}\left(\mathcal{L}_{1}\right)=1$.

ORBITAL STABILITY OF PERIODIC WAVES

In what follows, let us assume the following set of assumptions:

- there is $c_{0} \in \mathbb{R}$ such that $\phi_{c_{0}}$ is an even positive and L_{0}-periodic solution associated with the equation

$$
-\phi_{c_{0}}^{\prime \prime}+\left(1-c_{0}^{2}\right) \phi_{c_{0}}-f\left(\phi_{c_{0}}^{2}\right) \phi_{c_{0}}=0
$$

- The linearized operator $\mathcal{L}_{1}=-\partial_{x}^{2}+\left(1-c_{0}^{2}\right)-F\left(\phi_{c_{0}}\right)$ has zero as a simple eigenvalue whose eigenfunction is $\phi_{c_{0}}^{\prime}$ and $n^{-}\left(\mathcal{L}_{1}\right)=1$. Here F is real function satisfying $\left(f\left(s^{2}\right) s\right)^{\prime}=F(s)$.

In a general framework, let us consider the nonlinear ODE

$$
\begin{equation*}
-\phi^{\prime \prime}+g(c, \phi)=0 \tag{10}
\end{equation*}
$$

In a general framework, let us consider the nonlinear ODE

$$
\begin{equation*}
-\phi^{\prime \prime}+g(c, \phi)=0 \tag{10}
\end{equation*}
$$

where $g: \mathcal{O} \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a differentiable function.

In a general framework, let us consider the nonlinear ODE

$$
\begin{equation*}
-\phi^{\prime \prime}+g(c, \phi)=0, \tag{10}
\end{equation*}
$$

where $g: \mathcal{O} \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a differentiable function.
Following the arguments due to - and Neves (2013) (see also Neves [(2008), (2010)]), it is possible to establish sufficient conditions on the function g, in order to prove the existence of a smooth curve

In a general framework, let us consider the nonlinear ODE

$$
\begin{equation*}
-\phi^{\prime \prime}+g(c, \phi)=0, \tag{10}
\end{equation*}
$$

where $g: \mathcal{O} \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a differentiable function.
Following the arguments due to - and Neves (2013) (see also Neves [(2008), (2010)]), it is possible to establish sufficient conditions on the function g, in order to prove the existence of a smooth curve

$$
c \in \mathcal{I} \mapsto \phi_{c},
$$

In a general framework, let us consider the nonlinear ODE

$$
\begin{equation*}
-\phi^{\prime \prime}+g(c, \phi)=0 \tag{10}
\end{equation*}
$$

where $g: \mathcal{O} \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a differentiable function.
Following the arguments due to - and Neves (2013) (see also Neves [(2008), (2010)]), it is possible to establish sufficient conditions on the function g, in order to prove the existence of a smooth curve

$$
c \in \mathcal{I} \mapsto \phi_{c},
$$

of periodic solutions which solves equation (10), all of them with the same (fixed) period $L>0$.

In a general framework, let us consider the nonlinear ODE

$$
\begin{equation*}
-\phi^{\prime \prime}+g(c, \phi)=0 \tag{10}
\end{equation*}
$$

where $g: \mathcal{O} \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a differentiable function.
Following the arguments due to - and Neves (2013) (see also Neves [(2008), (2010)]), it is possible to establish sufficient conditions on the function g, in order to prove the existence of a smooth curve

$$
c \in \mathcal{I} \mapsto \phi_{c},
$$

of periodic solutions which solves equation (10), all of them with the same (fixed) period $L>0$.

In addition, the same approach determines sufficient conditions to obtain the spectral property associated with the operator \mathcal{L}_{1}.

In order to find a local minimum, we define the orbit generated by Φ

$$
\mathcal{O}_{\phi_{c}}:=\left\{e^{i \theta}\left(\phi_{c}(\cdot+y), i c \phi_{c}(\cdot+y)\right) ; \quad(y, \theta) \in[0, L] \times[0,2 \pi)\right\} .
$$

In order to find a local minimum, we define the orbit generated by Φ
$\mathcal{O}_{\phi_{c}}:=\left\{e^{i \theta}\left(\phi_{c}(\cdot+y), i c \phi_{c}(\cdot+y)\right) ;(y, \theta) \in[0, L] \times[0,2 \pi)\right\}$.
Taking $v:=u_{t}$, let us consider $(y, \theta) \in[0, L] \times[0,2 \pi)$.

In order to find a local minimum, we define the orbit generated by Φ
$\mathcal{O}_{\phi_{c}}:=\left\{e^{i \theta}\left(\phi_{c}(\cdot+y), i c \phi_{c}(\cdot+y)\right) ;(y, \theta) \in[0, L] \times[0,2 \pi)\right\}$.
Taking $v:=u_{t}$, let us consider $(y, \theta) \in[0, L] \times[0,2 \pi)$. Let $t \in[0, T]$ be arbitrary but fixed. We define the continuous function

$$
\begin{align*}
\Omega_{t}(y, \theta) & :=\left\|u_{x}(\cdot+y, t) e^{i \theta}-\phi_{c}^{\prime}\right\|_{L_{p e r}^{2}}^{2} \\
& +\left(1-c^{2}\right)\left\|u(\cdot+y, t) e^{i \theta}-\phi_{c}\right\|_{L_{p e r}^{2}}^{2} \tag{11}\\
& +\left\|v(\cdot+y, t) e^{i \theta}-i c \phi_{c}\right\|_{L_{p e r}^{2}}^{2} .
\end{align*}
$$

In order to find a local minimum, we define the orbit generated by Φ
$\mathcal{O}_{\phi_{c}}:=\left\{e^{i \theta}\left(\phi_{c}(\cdot+y), i c \phi_{c}(\cdot+y)\right) ;(y, \theta) \in[0, L] \times[0,2 \pi)\right\}$.
Taking $v:=u_{t}$, let us consider $(y, \theta) \in[0, L] \times[0,2 \pi)$. Let $t \in[0, T]$ be arbitrary but fixed. We define the continuous function

$$
\begin{align*}
\Omega_{t}(y, \theta) & :=\left\|u_{x}(\cdot+y, t) e^{i \theta}-\phi_{c}^{\prime}\right\|_{L_{p e r}^{2}}^{2} \\
& +\left(1-c^{2}\right)\left\|u(\cdot+y, t) e^{i \theta}-\phi_{c}\right\|_{L_{p e r}^{2}}^{2} \tag{11}\\
& +\left\|v(\cdot+y, t) e^{i \theta}-i c \phi_{c}\right\|_{L_{p e r}^{2}}^{2} .
\end{align*}
$$

Since $\Omega_{t}, t \in[0, T]$, is continuous and $[0, L] \times[0,2 \pi)$ is bounded, we can write,
$\Omega_{t}(y(t), \theta(t))=\inf _{(y, \theta) \in[0, L] \times[0,2 \pi)} \Omega_{t}(y, \theta):=\left[\rho_{c}\left(\vec{u}(\cdot, t), \mathcal{O}_{\phi_{c}}\right)\right]^{2}$.

Furthermore, the map

$$
t \mapsto \inf _{(y, \theta) \in[0, L] \times[0,2 \pi)} \Omega_{t}(y, \theta)
$$

is continuous (see Bona (1975)).

Furthermore, the map

$$
t \mapsto \inf _{(y, \theta) \in[0, L] \times[0,2 \pi)} \Omega_{t}(y, \theta)
$$

is continuous (see Bona (1975)).
Next, let us consider the following perturbations of the wave ($\phi_{c}, i c \phi_{c}$)

$$
\begin{equation*}
u(x+y, t) e^{i \theta}:=\phi_{c}(x)+w(x, t) \text { where } w:=A+i B \tag{13}
\end{equation*}
$$

Furthermore, the map

$$
t \mapsto \inf _{(y, \theta) \in[0, L] \times[0,2 \pi)} \Omega_{t}(y, \theta)
$$

is continuous (see Bona (1975)).
Next, let us consider the following perturbations of the wave ($\phi_{c}, i c \phi_{c}$)

$$
\begin{equation*}
u(x+y, t) e^{i \theta}:=\phi_{c}(x)+w(x, t) \text { where } w:=A+i B \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
v(x+y, t) e^{i \theta}:=i c \phi_{c}(x)+z(x, t) \text { where } z:=C+i D \tag{14}
\end{equation*}
$$

Furthermore, the map

$$
t \mapsto \inf _{(y, \theta) \in[0, L] \times[0,2 \pi)} \Omega_{t}(y, \theta)
$$

is continuous (see Bona (1975)).
Next, let us consider the following perturbations of the wave $\left(\phi_{c}, i c \phi_{c}\right)$

$$
\begin{equation*}
u(x+y, t) e^{i \theta}:=\phi_{c}(x)+w(x, t) \text { where } w:=A+i B \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
v(x+y, t) e^{i \theta}:=i c \phi_{c}(x)+z(x, t) \text { where } z:=C+i D \tag{14}
\end{equation*}
$$

Denoting

$$
\vec{w}=(w, z)=(\operatorname{Re} w, \operatorname{Im} z, \operatorname{Im} w, \operatorname{Re} z)=(A, D, B, C) .
$$

By using the minimum property (above) one has

$$
\begin{equation*}
\left\langle\binom{ A(\cdot, t)}{D(\cdot, t)},\binom{\log \left(\phi_{c}^{2}\right) \phi_{c}^{\prime}+2 \phi_{c}^{\prime}}{c \phi_{c}^{\prime}}\right\rangle_{2,2}=0 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\binom{ B(\cdot, t)}{C(\cdot, t)},\binom{\phi_{c} \log \left(\phi_{c}^{2}\right)}{-c \phi_{c}}\right\rangle_{2,2}=0 \tag{16}
\end{equation*}
$$

$\forall t \in[0, T]$.

Next, since $G=E-c F$ is a conserved quantity and $G^{\prime}\left(\phi_{c}, i c \phi_{c}\right)=\left(E^{\prime}-c F^{\prime}\right)\left(\phi_{c}, i c \phi_{c}\right)=0$, we deduce from Taylor's Theorem

Next, since $G=E-c F$ is a conserved quantity and $G^{\prime}\left(\phi_{c}, i c \phi_{c}\right)=\left(E^{\prime}-c F^{\prime}\right)\left(\phi_{c}, i c \phi_{c}\right)=0$, we deduce from Taylor's Theorem

$$
\begin{aligned}
\Delta G & :=G\left(u_{0}, u_{1}\right)-G\left(\phi_{c}, i c \phi_{c}\right) \\
& =G\left(w(\cdot, t)+\phi_{c}, z(\cdot, t)+i c \phi_{c}\right)-G\left(\phi_{c}, i c \phi_{c}\right) \\
& \geq \frac{1}{2}\left\langle\mathcal{L}_{R}\binom{A(\cdot, t)}{D(\cdot, t)},\binom{A(\cdot, t)}{D(\cdot, t)}\right\rangle_{2,2} \\
& +\frac{1}{2}\left\langle\mathcal{L}_{l}\binom{B(\cdot, t)}{C(\cdot, t)},\binom{B(\cdot, t)}{C(\cdot, t)}\right\rangle_{2,2} \\
& -\beta_{3}\|\vec{w}(\cdot, t)\|^{3}-\beta_{4}\|\vec{w}(\cdot, t)\|^{4}-\mathcal{O}\left(\|\vec{w}(\cdot, t)\|^{5}\right),
\end{aligned}
$$

Here, operators \mathcal{L}_{R} and $\mathcal{L}_{/}$are defined as

$$
\mathcal{L}_{R}=\left(\begin{array}{cc}
-\partial_{x}^{2}+1-\log \left(\left|\phi_{c}\right|^{2}\right)-2 & -c \tag{17}\\
-c & 1
\end{array}\right)
$$

and

Here, operators \mathcal{L}_{R} and $\mathcal{L}_{/}$are defined as

$$
\mathcal{L}_{R}=\left(\begin{array}{cc}
-\partial_{x}^{2}+1-\log \left(\left|\phi_{c}\right|^{2}\right)-2 & -c \tag{17}\\
-c & 1
\end{array}\right)
$$

and

$$
\mathcal{L}_{I}=\left(\begin{array}{cc}
-\partial_{x}^{2}+1-\log \left(\left|\phi_{c}\right|^{2}\right) & c \tag{18}\\
c & 1
\end{array}\right) .
$$

Here, operators \mathcal{L}_{R} and \mathcal{L}_{I} are defined as

$$
\mathcal{L}_{R}=\left(\begin{array}{cc}
-\partial_{x}^{2}+1-\log \left(\left|\phi_{c}\right|^{2}\right)-2 & -c \tag{17}\\
-c & 1
\end{array}\right)
$$

and

$$
\mathcal{L}_{I}=\left(\begin{array}{cc}
-\partial_{x}^{2}+1-\log \left(\left|\phi_{c}\right|^{2}\right) & c \tag{18}\\
c & 1
\end{array}\right) .
$$

- Since zero is a simple eigenvalue of \mathcal{L}_{1} and $n^{-}\left(\mathcal{L}_{1}\right)=1$, we can use the min-max Theorem to guarantee that zero is a simple eigenvalue of \mathcal{L}_{R} whose eigenfunction is $\left(\phi_{c}^{\prime}, c \phi_{c}^{\prime}\right)$.

Here, operators \mathcal{L}_{R} and \mathcal{L}_{I} are defined as

$$
\mathcal{L}_{R}=\left(\begin{array}{cc}
-\partial_{x}^{2}+1-\log \left(\left|\phi_{c}\right|^{2}\right)-2 & -c \tag{17}\\
-c & 1
\end{array}\right)
$$

and

$$
\mathcal{L}_{I}=\left(\begin{array}{cc}
-\partial_{x}^{2}+1-\log \left(\left|\phi_{c}\right|^{2}\right) & c \tag{18}\\
c & 1
\end{array}\right) .
$$

- Since zero is a simple eigenvalue of \mathcal{L}_{1} and $n^{-}\left(\mathcal{L}_{1}\right)=1$, we can use the min-max Theorem to guarantee that zero is a simple eigenvalue of \mathcal{L}_{R} whose eigenfunction is $\left(\phi_{c}^{\prime}, c \phi_{c}^{\prime}\right)$. In addition, the min-max Theorem give us that $n^{-}\left(\mathcal{L}_{R}\right)=1$.

Here, operators \mathcal{L}_{R} and \mathcal{L}_{I} are defined as

$$
\mathcal{L}_{R}=\left(\begin{array}{cc}
-\partial_{x}^{2}+1-\log \left(\left|\phi_{c}\right|^{2}\right)-2 & -c \tag{17}\\
-c & 1
\end{array}\right)
$$

and

$$
\mathcal{L}_{I}=\left(\begin{array}{cc}
-\partial_{x}^{2}+1-\log \left(\left|\phi_{c}\right|^{2}\right) & c \tag{18}\\
c & 1
\end{array}\right) .
$$

- Since zero is a simple eigenvalue of \mathcal{L}_{1} and $n^{-}\left(\mathcal{L}_{1}\right)=1$, we can use the min-max Theorem to guarantee that zero is a simple eigenvalue of \mathcal{L}_{R} whose eigenfunction is $\left(\phi_{c}^{\prime}, c \phi_{c}^{\prime}\right)$. In addition, the min-max Theorem give us that $n^{-}\left(\mathcal{L}_{R}\right)=1$.
- The fact that ϕ_{c} is positive enable us to conclude that zero is the first eigenvalue of $\mathcal{L}_{/}$which is simple.

Thus, classical methods of orbital stability (in the sense of definition above) is established on the set

$$
\mathcal{A}=\left\{(u, v) \in H_{p e r}^{1} \times L_{p e r}^{2} ; F(u, v)=F\left(\phi_{c}, i c \phi_{c}\right)\right\},
$$

provided that

$$
\left\langle\mathcal{L}_{R, \phi_{c}}^{-1}\binom{c \phi_{c}}{\phi_{c}},\binom{c \phi_{c}}{\phi_{c}}\right\rangle_{2,2}=\underbrace{\left\langle\binom{ M}{N},\binom{c \phi_{c}}{\phi_{c}}\right\rangle_{2,2}}_{:=-d^{\prime \prime}(c)}<0,
$$

Thus, classical methods of orbital stability (in the sense of definition above) is established on the set

$$
\mathcal{A}=\left\{(u, v) \in H_{p e r}^{1} \times L_{p e r}^{2} ; F(u, v)=F\left(\phi_{c}, i c \phi_{c}\right)\right\}
$$

provided that

$$
\left\langle\mathcal{L}_{R, \phi_{c}}^{-1}\binom{c \phi_{c}}{\phi_{c}},\binom{c \phi_{c}}{\phi_{c}}\right\rangle_{2,2}=\underbrace{\left\langle\binom{ M}{N},\binom{c \phi_{c}}{\phi_{c}}\right\rangle_{2,2}}_{:=-d^{\prime \prime}(c)}<0
$$

where

$$
\binom{M}{N}=\binom{\frac{d}{d c}\left(\phi_{c}\right)}{\phi_{c}+c \frac{d}{d c}\left(\phi_{c}\right)}
$$

However, one has

$$
\begin{equation*}
-d^{\prime \prime}(c)=\int_{0}^{L} \phi_{c}^{2} d x+c \underbrace{\frac{d}{d c}\left(\int_{0}^{L} \phi_{c}^{2} d x\right)}_{I_{c}} . \tag{19}
\end{equation*}
$$

However, one has

$$
\begin{equation*}
-d^{\prime \prime}(c)=\int_{0}^{L} \phi_{c}^{2} d x+c \underbrace{\frac{d}{d c}\left(\int_{0}^{L} \phi_{c}^{2} d x\right)}_{I_{c}} \tag{19}
\end{equation*}
$$

To find a convenient expression for the term I_{c}, we need to consider the ODE

$$
-\phi_{c}^{\prime \prime}+\left(1-c^{2}\right) \phi_{c}-\log \left(\phi_{c}^{2}\right) \phi_{c}=0
$$

However, one has

$$
\begin{equation*}
-d^{\prime \prime}(c)=\int_{0}^{L} \phi_{c}^{2} d x+c \underbrace{\frac{d}{d c}\left(\int_{0}^{L} \phi_{c}^{2} d x\right)}_{I_{c}} \tag{19}
\end{equation*}
$$

To find a convenient expression for the term I_{c}, we need to consider the ODE

$$
-\phi_{c}^{\prime \prime}+\left(1-c^{2}\right) \phi_{c}-\log \left(\phi_{c}^{2}\right) \phi_{c}=0
$$

Since $c \in \mathcal{I} \mapsto \phi_{c}$ is smooth one has

However, one has

$$
\begin{equation*}
-d^{\prime \prime}(c)=\int_{0}^{L} \phi_{c}^{2} d x+c \underbrace{\frac{d}{d c}\left(\int_{0}^{L} \phi_{c}^{2} d x\right)}_{I_{c}} \tag{19}
\end{equation*}
$$

To find a convenient expression for the term I_{c}, we need to consider the ODE

$$
-\phi_{c}^{\prime \prime}+\left(1-c^{2}\right) \phi_{c}-\log \left(\phi_{c}^{2}\right) \phi_{c}=0
$$

Since $c \in \mathcal{I} \mapsto \phi_{c}$ is smooth one has

$$
\begin{equation*}
-\eta_{c}^{\prime \prime}-2 c \phi_{c}+\left(1-c^{2}\right) \eta_{c}-\log \left(\phi_{c}^{2}\right) \eta_{c}-2 \eta_{c}=0 \tag{20}
\end{equation*}
$$

where $\eta_{c}=\frac{d}{d c} \phi_{c}$.

However, one has

$$
\begin{equation*}
-d^{\prime \prime}(c)=\int_{0}^{L} \phi_{c}^{2} d x+c \underbrace{\frac{d}{d c}\left(\int_{0}^{L} \phi_{c}^{2} d x\right)}_{I_{c}} \tag{19}
\end{equation*}
$$

To find a convenient expression for the term I_{c}, we need to consider the ODE

$$
-\phi_{c}^{\prime \prime}+\left(1-c^{2}\right) \phi_{c}-\log \left(\phi_{c}^{2}\right) \phi_{c}=0
$$

Since $c \in \mathcal{I} \mapsto \phi_{c}$ is smooth one has

$$
\begin{equation*}
-\eta_{c}^{\prime \prime}-2 c \phi_{c}+\left(1-c^{2}\right) \eta_{c}-\log \left(\phi_{c}^{2}\right) \eta_{c}-2 \eta_{c}=0 \tag{20}
\end{equation*}
$$

where $\eta_{c}=\frac{d}{d c} \phi_{c}$.
Multiplying equation (20) by ϕ_{c} and integrating the final expression over $[0, L]$, we have

However, one has

$$
\begin{equation*}
-d^{\prime \prime}(c)=\int_{0}^{L} \phi_{c}^{2} d x+c \underbrace{\frac{d}{d c}\left(\int_{0}^{L} \phi_{c}^{2} d x\right)}_{I_{c}} \tag{19}
\end{equation*}
$$

To find a convenient expression for the term I_{c}, we need to consider the ODE

$$
-\phi_{c}^{\prime \prime}+\left(1-c^{2}\right) \phi_{c}-\log \left(\phi_{c}^{2}\right) \phi_{c}=0
$$

Since $c \in \mathcal{I} \mapsto \phi_{c}$ is smooth one has

$$
\begin{equation*}
-\eta_{c}^{\prime \prime}-2 c \phi_{c}+\left(1-c^{2}\right) \eta_{c}-\log \left(\phi_{c}^{2}\right) \eta_{c}-2 \eta_{c}=0 \tag{20}
\end{equation*}
$$

where $\eta_{c}=\frac{d}{d c} \phi_{c}$.
Multiplying equation (20) by ϕ_{c} and integrating the final expression over $[0, L]$, we have

$$
\begin{equation*}
I_{c}=-2 c \int_{0}^{L} \phi_{c}^{2} d x \tag{21}
\end{equation*}
$$

Collecting the results in (19) and (21) we deduce

Collecting the results in (19) and (21) we deduce

$$
-d^{\prime \prime}(c)=\left(1-2 c^{2}\right) \int_{0}^{L} \phi_{c}^{2} d x
$$

that is, $-d^{\prime \prime}(c)<0$ if, and only if, $|c|>\frac{\sqrt{2}}{2}$.

Collecting the results in (19) and (21) we deduce

$$
-d^{\prime \prime}(c)=\left(1-2 c^{2}\right) \int_{0}^{L} \phi_{c}^{2} d x
$$

that is, $-d^{\prime \prime}(c)<0$ if, and only if, $|c|>\frac{\sqrt{2}}{2}$.
A simple application of the triangle inequality and the fact that G is C^{1} map in a neighborhood of the point $\left(\phi_{c}, i c \phi_{c}\right)$ give us the orbital stability if $(u, v) \notin \mathcal{A}$

THANK YOU VERY MUCH!

SPONSORS

fundacão ARAUCARIA
Apoio ao Desenvolvimento Científico e Tecnológico do Paraná

QCNPq

