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A BRIEF INTRODUCTION.

Periodic waves of conservative Hamiltonian systems arise as a
special class of solutions of evolutions equations

dU

dt
= JE ′(U) (1)

in a Hilbert space X . The Hamiltonian system has two conserved
quantities E (U) and F (U). Then for any constant c , we may
consider the conserved quantity (first integral) E (U)− cF (U).

In our context, we named periodic traveling/standing waves
as the critical points of E (U)− cF (U), that is, solutions Φ = Φc

of the Euler-Lagrange equation

E ′(Φ)− cF ′(Φ) = 0. (2)
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As example, let us consider the Klein-Gordon equation with
logarithm nonlinearity (log-KG henceforth),

utt − uxx + u − log(|u|2)u = 0, (3)

where u : R× R→ C is a complex valued function. We assume
that u is an L−periodic function, that is, u(x + L, t) = u(x , t) for
all x , t ∈ R.
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Equation (3) can be expressed as an abstract Hamiltonian
system.

Indeed, by considering U := (Re u, Im ut , Im u,Re ut) we
have

Ut = JE ′(U),

where

J =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


and

E (U) =
1

2

∫ L

0

[
|ux |2 + |ut |2 + |u|2

(
2− log(|u|2)

)]
dx (4)
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If one considers periodic waves solutions of the form
u(x , t) = e ictφc(x), t > 0, c ∈ (−1, 1) and, φc is a smooth
L−periodic function, the Euler-Lagrange equation becomes

(E ′ − cF ′)(Φ) =


−φ′′c + φc − φc log(|φc |2)− c2φc

cφc − cφc
0
0

 = ~0,

where Φ := Φc = (φc , icφc) := (φc , cφc , 0, 0) and

F (U) = Im

∫ L

0
ūut dx =

∫ L

0
(Re u Im ut − Im u Re ut) dx .
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An important qualitative aspect regarding the Hamiltonian
systems (1) is the orbital stability.
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DEFINITION OF STABILITY.

We assume that E (U) and F (U) are invariant under the
action of groups T1(s) and T2(s), s ∈ R.

Roughly speaking, we
say that the periodic wave Φ is orbitally stable, if the profile of an
initial condition U0 for (1) is close to Φ, then the profile of the
solution U(t) of (1) with U(0) = U0 remains close to Φ for all
values of t. More precisely Φ is orbitally stable with respect to (1)
if, for all ε > 0, there exists δ > 0 such that if ||U0 −Φ||X < δ and
U(t) is the solution of (1) with U(0) = U0, then

sup
−∞<t<∞

inf{||U(t)− T1(s1)T2(s2)Φ||X , −∞ < s1, s2 <∞} < ε.

Otherwise, we say that the periodic wave is orbitally unstable in X
(or X−unstable).
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STABILITY - SUFFICIENT CONDITIONS.

In a general setting, it is understood that the periodic wave Φ
is stable if we can show that E has a local minimum at Φ for a
given value of F .

By using methods introduced by Albert, Bona,
Henry, Grillakis, Shatah, Strauss and, Weinstein, to prove the
stability of Φ, we must show that

the existence of a differentiable family Φ of solutions of the
Euler-Lagrange equation (2)

we define the function

d(c) = E (Φc)− cF (Φc) (5)

and the linearized operator for (2) at Φc

Lc = E ′′(Φc)− cF ′′(Φc). (6)
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Due to the invariance of the problem, it is expected that zero
is always an eigenvalue of Lc .

For the case of the Klein-Gordon equation, the periodic wave
Φc is X−stable if d is non-degenerate at c and:

(1) n−(Lc) = 1

(2) zero is a simple (or double) eigenvalue of Lc =

(
LR 0
0 LI

)
.

(3) d ′′(c) > 0, for all c ∈ I.
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In order to deduce the orbital stability of periodic waves, we
need to determine (at least) existence and uniqueness of (weak)
solutions.
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EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS

We suppose that f : R→ R is a real function and the Cauchy
problem 

utt − uxx + u − f (|u|2)u = 0

u(x , 0) = u0(x), ut(x , 0) = u′0(x),
(7)

has a unique (local) solution

u ∈ C ([0,T ];H1
per ([0, L])) ∩ C 1([0,T ]; L2per ([0, L])).

In addition, we assume that problem (7) has two (convenient)
conserved quantities E and F .
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Let us consider f (|u|2) = |u|2p, p ≥ 1, integer.

We obtain
that |u|2pu is a C 1−function.

The existence and uniqueness of local solutions is established
by using standard arguments (fixed point theory).

If f (|u|2) = log(|u|2) the argument above does not work since
g(s) = s log(|s|2) is not differentiable at s = 0.
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Theorem 1.

Consider (u0, u
′
0) ∈ H1

per ([0, L])× L2per ([0, L]). The Cauchy
Problem (7) has a unique (local) weak solution
u ∈ C ([0,T ];H1

per ([0, L]))∩ C 1([0,T ]; L2per ([0, L])). In addition, we
have the following conserved quantities

E (U) =
1

2

∫ L

0

[
|ux |2 + |ut |2 + |u|2

(
2− log(|u|2)

)]
dx ,

and

F (U) = Im

∫ L

0
ūut dx .
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INGREDIENTS OF THE PROOF:

In order to prove Theorem 1 we need to follow the arguments
in Cazenave and Haraux (1980).

We use Galerkin’s approximation + compact embedding of
the space H1

per ↪→ L2per to obtain the existence of (global)
weak solutions.

In addition, we need to use the logarithmic Sobolev inequality

4π2
∫ L

0
|u|2 log |u| dx ≤

∫ L

0
|ux |2 dx

+ 2π2
∫ L

0
|u|2 log

(
2π

L

∫ L

0
|u|2 dx

)
dx ,

u ∈ H1
per ([0, L]).
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per ↪→ L2per to obtain the existence of (global)
weak solutions.
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Uniqueness of solutions is a big problem!

Let u and v be weak solutions of the problem (7). Thus, one
can prove that ϕ := u − v is a weak solution of the problem

ϕtt − ϕxx + ϕ− u log(|u|2) + v log(|v |2) = 0

ϕ(x , 0) = 0, ϕt(x , 0) = 0.
(8)
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In addition, solution ϕ can be expressed as

ϕ(x , t) =
1

2

∫ t

0

∫ x+t−τ

x−t+τ

[
u log(|u|2)− v log(|v |2)

]
dydτ, (9)

for all (x , t) ∈ R× [0,T ].

To prove equality above we must consider 0 < T < L/4.

Finally, to establish that ϕ ≡ 0 we need to use the logarithmic
Gronwall inequality:

Consider T > 0, α > 0, β0 ∈ [0, 1/e] and β ∈ L∞(0,T ) with
β ≥ 0. If

β(t) ≤ β0 − α
∫ t

0
β(s) log β(s) ds,

a.e. t ∈ [0,T ]. Thus,

β(t) ≤ βe−αt

0 ,

a.e. t ∈ [0,T ?].
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ORBITAL STABILITY OF PERIODIC WAVES

In what follows, let us assume the following set of
assumptions:

there is c0 ∈ R such that φc0 is an even positive and
L0−periodic solution associated with the equation

−φ′′c0 + (1− c20 )φc0 − f (φ2c0)φc0 = 0.

The linearized operator L1 = −∂2x + (1− c20 )− F (φc0) has
zero as a simple eigenvalue whose eigenfunction is φ′c0 and
n−(L1) = 1. Here F is real function satisfying
(f (s2)s)′ = F (s).
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In a general framework, let us consider the nonlinear ODE

− φ′′ + g(c , φ) = 0, (10)

where g : O ⊂ R2 → R is a differentiable function.
Following the arguments due to —– and Neves (2013) (see

also Neves [(2008), (2010)]), it is possible to establish sufficient
conditions on the function g , in order to prove the existence of a
smooth curve

c ∈ I 7→ φc ,

of periodic solutions which solves equation (10), all of them with
the same (fixed) period L > 0.

In addition, the same approach determines sufficient
conditions to obtain the spectral property associated with the
operator L1.
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In order to find a local minimum, we define the orbit
generated by Φ

Oφc :=
{
e iθ(φc(·+ y), icφc(·+ y)); (y , θ) ∈ [0, L]× [0, 2π)

}
.

Taking v := ut , let us consider (y , θ) ∈ [0, L]× [0, 2π). Let
t ∈ [0,T ] be arbitrary but fixed. We define the continuous function

Ωt(y , θ) := ‖ux(·+ y , t)e iθ − φ′c‖2L2per
+ (1− c2)‖u(·+ y , t)e iθ − φc‖2L2per (11)

+ ‖v(·+ y , t)e iθ − icφc‖2L2per .

Since Ωt , t ∈ [0,T ], is continuous and [0, L]× [0, 2π) is bounded,
we can write,

Ωt(y(t), θ(t)) = inf
(y ,θ)∈[0,L]×[0,2π)

Ωt(y , θ) := [ρc(~u(·, t),Oφc )]2 .(12)
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Furthermore, the map

t 7→ inf
(y ,θ)∈[0,L]×[0,2π)

Ωt(y , θ)

is continuous (see Bona (1975)).

Next, let us consider the following perturbations of the wave
(φc , icφc)

u(x + y , t)e iθ := φc(x) + w(x , t) where w := A + iB (13)

and

v(x + y , t)e iθ := icφc(x) + z(x , t) where z := C + iD, (14)

Denoting

~w = (w , z) = (Re w , Im z , Im w ,Re z) = (A,D,B,C ).
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By using the minimum property (above) one has〈(
A(·, t)
D(·, t)

)
,

(
log(φ2c)φ′c + 2φ′c

cφ′c

)〉
2,2

= 0 (15)

and 〈(
B(·, t)
C (·, t)

)
,

(
φc log(φ2c)
−cφc

)〉
2,2

= 0, (16)

∀ t ∈ [0,T ].
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Next, since G = E − cF is a conserved quantity and
G ′(φc , icφc) = (E ′ − cF ′)(φc , icφc) = 0, we deduce from Taylor’s
Theorem

∆G := G (u0, u1)− G (φc , icφc)

= G (w(·, t) + φc , z(·, t) + icφc)− G (φc , icφc)

≥ 1

2

〈
LR
(

A(·, t)
D(·, t)

)
,

(
A(·, t)
D(·, t)

)〉
2,2

+
1

2

〈
LI
(

B(·, t)
C (·, t)

)
,

(
B(·, t)
C (·, t)

)〉
2,2

− β3‖~w(·, t)‖3 − β4‖~w(·, t)‖4 −O(‖~w(·, t)‖5),
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Here, operators LR and LI are defined as

LR =

(
−∂2x + 1− log(|φc |2)− 2 −c

−c 1

)
(17)

and

LI =

(
−∂2x + 1− log(|φc |2) c

c 1

)
. (18)

Since zero is a simple eigenvalue of L1 and n−(L1) = 1, we
can use the min-max Theorem to guarantee that zero is a
simple eigenvalue of LR whose eigenfunction is (φ′c , cφ

′
c). In

addition, the min-max Theorem give us that n−(LR) = 1.

The fact that φc is positive enable us to conclude that zero is
the first eigenvalue of LI which is simple.
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Thus, classical methods of orbital stability (in the sense of
definition above) is established on the set

A = {(u, v) ∈ H1
per × L2per ; F (u, v) = F (φc , icφc)},

provided that〈
L−1R,φc

(
cφc
φc

)
,

(
cφc
φc

)〉
2,2

=

〈(
M
N

)
,

(
cφc
φc

)〉
2,2︸ ︷︷ ︸

:=−d ′′(c)

< 0,

where

(
M
N

)
=

 d

dc
(φc)

φc + c
d

dc
(φc)

 .
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However, one has

− d ′′(c) =

∫ L

0
φ2c dx + c

d

dc

(∫ L

0
φ2c dx

)
︸ ︷︷ ︸

Ic

. (19)

To find a convenient expression for the term Ic , we need to
consider the ODE

−φ′′c + (1− c2)φc − log(φ2c)φc = 0.

Since c ∈ I 7→ φc is smooth one has

− η′′c − 2cφc + (1− c2)ηc − log(φ2c)ηc − 2ηc = 0, (20)

where ηc = d
dcφc .

Multiplying equation (20) by φc and integrating the final
expression over [0, L], we have

Ic = −2c

∫ L

0
φ2c dx . (21)
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Collecting the results in (19) and (21) we deduce

−d ′′(c) = (1− 2c2)

∫ L

0
φ2c dx ,

that is, −d ′′(c) < 0 if, and only if, |c | >
√
2
2 .

A simple application of the triangle inequality and the fact
that G is C 1 map in a neighborhood of the point (φc , icφc) give us
the orbital stability if (u, v) /∈ A
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THANK YOU VERY MUCH!
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