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In 1983, Tosio Kato in the paper On the Cauchy Pro-

blem for the (Generalized) Korteweg-de Vries Equation,

considers the initial value problem for (KdV):

∂u

∂t
+D3 u+ uDu = 0, t > 0, x ∈ R, u(0) = ϕ, (1)

where D =
∂

∂x
, for initial data in asymmetric spaces

with the resulting irreversibility in time. Specifically

ϕ ∈ Y = Hs(R) ∩ L2
b (R) where L2

b (R) = L2
(
e2b x dx

)
for

s ≥ 0, b > 0.

He notes that the semigroup exp
(
−tD3

)
in L2

b (R), is

formally equivalent to the semigroup

Ub(t) = exp
[
−t (D − b)3

]
, t ≥ 0, (2)
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considered in L2(R) = H0. Really of

(D − b) ebx u = ebxDu,

there follows

(D − b)3 ebx u = ebxD3u.

where Ub(t) satisfies
Lemma 1 (T. Kato).

{Ub(t): t > 0} is an infinitely differentiable semigroup on
Hs(R) for each real s, with

||DnUb(t)||B(L2(R), L2(R)) ≤ cn t
−n/2 exp(b3 t), n = 1, 2, 3, . . .

||(d/dt)Ub(t)||B(L2(R), L2(R)) ≤ c t−3/2 exp(b3t).

Ub(t) is bounded on Hs to Hs′, with

||Ub(t)||B(Hs, Hs′)
≤ c t−(s′−s)/2 exp(b3 t), s ≤ s′. (3)
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These results are easy consequences of the factorization

Ub(t) = exp(b2t) exp(−3b2tD) exp(3 b tD2) exp(−tD3),

where exp(−3b2tD) and exp(−tD3) are unitary on Hs

and exp(3 b tD2) is heat semigroup, which is holomorphic
in t > 0.

Moreover T. Kato (see Lemma 9.2.) shows which, if
ebx u ∈ L∞

(
[0, T ] : L2(R)

)
, ebx f ∈ L∞

(
[0, T ] : H−1(R)

)
and u satisfies

∂u

∂t
+D3 u = f, 0 < t < T,

then

ebx ∈ C
(
[0, T ] : L2(R)

)
∩ C (]0, T ] : Hs(R)) ∀s < 1
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and

ebx u = Ub(t) e
bxu(0) +

∫ t

0
Ub(t− r)ebxf(r)dr.

Now for the case not autonomous

∂u

∂t
+D3 u+ a(t)Du = 0, t ∈ I, (4)

where I ⊂ R be an open interval, T. Kato shows which

(see Lemma 9.3. in [Kato]), if (a − c) ∈ C (I;H∞(R)),
where c is a constant and u satisfies (4), then

ebx u ∈ C (I;H∞(R)) ,

this lemma shows the quasi-parabolic nature of the

equation (4).
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Results for the globally well posed is obtained by Kato

(see Theorem 10.1 in [Kato]), if ϕ ∈ Hs ∩ L2
b , s ≥ 2

and b > 0, then exists a unique solution u to (1) such

that u ∈ C
(
[0, +∞);Hs ∩ L2

b

)
, with the map ϕ → u

continuous. Moreover, ebx u ∈ C
(
[0, +∞);Hs′

)
for any

s′ < s+2. In the case ϕ ∈ H0∩L2
b , b > 0, exists a unique

solution

u ∈ Cw
(
[0, +∞);H0

)
,

(see Theorem 12.1 in [Kato]).

5



In 2002, Kenig - Ponce - Vega in the work On the
support of solutions to the generalized KdV equation
[KPV] showed that if u(x, t) is solution of the k-gKdV
equation

∂tu+ ∂3xu+ uk ∂xu = 0,

such that

sup
t∈[0,1]

||u(·, t)||H1(R) < +∞,

and such that for a given β > 0 eβx u0 ∈ L2(R) then
eβx u ∈ C

(
[0, 1]: L2(R)

)
(Lemma 2.1 in [KPV]) and an

extension to higher derivatives.

We use the ideas of the proof of the following Carleman
estimates (see Lemma 2.3 in [KPV])

||eλx f ||L8(R2) ≤ c ||eλx
{
∂t+ ∂3x

}
f ||

L8/7(R2)
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for all λ ∈ R, where f ∈ C
3,1
0 (R2) this is, ∂x f , ∂2x f , ∂

3
x f ,

∂t f ∈ Cb(R2) with compact support.

We also follow the ideas contained in the work On
uniqueness properties of solutions of the k-generalized
KdV equations by Escauriaza - Kenig - Ponce - Vega
’2007 [EKPV] and Lower bounds for non-trivial travel-
ling wave solutions of equations of KdV type by Kenig
- Ponce - Vega ’2012 [KPV2].

Also use arguments analogous to those found in the
work of Carvajal - Panthee Well-posedness for some
perturbations of the KdV equation with low regularity
data ’2008, they considering the initial value problem

ut+ uxxx+ η Lu+ uux = 0, x ∈ R, t ≥ 0,

u(x, 0) = 0 (5)
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where η > 0 is a constant and the linear operator L is

defined via the Fourier transform by L̂u(ξ) = −Φ(ξ) û(ξ).

The Fourier symbol

Φ(ξ) =
n∑

j=0

2m∑
i=0

ci, jξ
i |ξ|j, ci, j ∈ R, c2m,n = −1, (6)

is a real valued function which is bounded above, they

proved in [CP] the IVP (5) with η > 0 and Φ(ξ) given

by (6) is locally well-posed for any data u0 ∈ Hs(R),
s > −3/4 (see Theorem 1.1 in [CP]).
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We consider the Cauchy problem for the forced Korteweg-

de Vries equation

∂u

∂t
+D3 u+ uDu = f, t > 0, x ∈ R. (7)

with initial data in Y = Xs∩L2
b where Xs is the Sobolev

space Hs(R) or the Zhidkov spaces{
ϕ ∈ D(R): ϕ ∈ L∞(R), ϕ′ ∈ H(s−1)(R)

}
.

Without loss of generality we consider b = 1, since

ub(y, t
′) = b−2 u(b−1y, b−3t′),

satisfies

∂ub
∂t′

+
∂3ub
∂y3

+ ub
∂ub
∂y

= fb, (8)

9



where fb(y, t
′) = b−5f(b−1y, b−3t′).

Multiplying by ex (7) obtain

∂

∂t
(ex u) + (D − 1)3 (ex u) + u (D − 1) (ex u) = ex f,

(9)

We denote by v = ex u and g = ex f obtaining,

∂v

∂t
+ (D − 1)3 v + u (D − 1) v = g. (10)

Since the linear symbol of (10) is i τ + (i ξ − 1)3, by
analogy with the spaces introduced by Molinet and Ri-
baud ’2002 (see [MR]) for Korteweg- de Vries - Burgers
equation, we define the function space Xa, s endowed
with the norm

||v||Xa, s = ||⟨i τ + (i ξ − 1)3⟩a ⟨ξ⟩s v̂||L2(R2),
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where ⟨ · ⟩ = (1+ | · |2)1/2, so that

||v||Xa, s = ||⟨|τ − ξ3 + ξ|+ |ξ2 − 1|⟩a ⟨ξ⟩s v̂||L2(R2).

We can re-express the norm of Xa, s as

||v||Xa, s ∼ ||U(−t)v||Ha, s + ||v||L2
t H

s+2a,

where U(t) = exp
(
−tD3

)
and

||v||2Ha, s =
∫
R2

⟨τ⟩2a ⟨ξ⟩2s |v̂(ξ, τ)|2 dξ dτ.

We denote by W the semigroup Ub(t) in (2) for b = 1,

associated with the free evolution of (10), ∀t > 0

Fx (W (t)ϕ) (ξ) = exp
[
−3ξ2t+ t+ i

(
ξ3 − 3ξ

)
t
]
, ϕ ∈ S′,
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and we extend W to a linear operator defined on the
whole real axis by setting ∀t ∈ R,

Fx (W (t)ϕ) (ξ) = exp
[
−3ξ2|t|+ t+ i

(
ξ3 − 3ξ

)
t
]
, ϕ ∈ S′,

Using Duhamel´s principle, we will mainly work on the
integral formulation of the equation (10)

v(t) = W (t)ϕ−
1

2

∫ t

0
W (t− t′) [D(u v)− u v] (t′) dt′ +∫ t

0
W (t− t′)f(t′) dt′, t ≥ 0. (11)

For T > 0 consider the localized spaces Xa, s
T endowed

with the norm

||v||Xa, s
T

= inf
w∈Xa, s

{ ||w||Xa, s : w(t) = v(t) on [0, T ] } .
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If f ∈ H∞(R) time independent and ϕ ∈ Hs(R) for s ≥
−3/4, using the linear estimates and bilinear estimates
in Zihua Guo ’2009 (see [GUO]) and Colliander - Keel
- Staffilani - Takaoka- Tao ’2003 (see [CKSTT]), we
can adapt the proofs to show the existence the T > 0
and u ∈ C

(
[−T, T ] : H−s(R)

)
unique solution of (7) for

s ≥ −3/4.

If g = ebx f ∈ H∞(R),

ϕ ∈ Hs
b(R) =

{
ψ ∈ S′ : ebxψ ∈ Hs(R)

}
,

and u ∈ C ([0, T ]) : Hs(R)) be a solution to (7) for
s ≥ −3/4 and using the argument used in Molinet and
Ribaud ’2002 ([MR]) find estimates analogous to (2.1)
for example, exists C > 0 such that

||ψ(t)W (t)ϕ||
X1/2, s ≤ C ||ϕ||Hs(R), ∀ϕ ∈ Hs(R),
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s ∈ R, where ψ is a time cutoff function satisfying

ψ ∈ C∞
0 (R), supψ ⊂ [−2, 2], ψ ≡ 1 on [−1, 1].

Also show estimates analogous to (2.2), (2.9), (2.33),

(2.34) and bilinear estimates as in Proposition 3.1,

show the existence the T ′ > 0 such that, there exists a

unique solution

v ∈ C
(
[0, T ′] : Hs(R)

)
∩X1/2, s

T ′ ,

of (10).

Combining these results we prove the local existence

result
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Theorem 2. Let f ∈ H∞(R) time independent, ebxf ∈
H∞(R), ϕ ∈ Hs(R) ∩ Hs

b(R) for s ≥ −3/4 and b > 0.

Then there exist T > 0 and unique solution u(t) of the

IVP (7) in the time interval [0, T ] in

C
(
[0, T ] : Hs(R) ∩Hs

b(R)
)
.

Moreover, the map ϕ 7→ u is smooth from Hs(R)∩Hs
b(R)

to C
(
[0, T ] : Hs(R) ∩Hs

b(R)
)
;

u and ebx u belongs to C (]0, T ] : H∞(R)).
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Using the results for the local existence of KdV for s ≥ 0

and ideas of Kato [Kato] (see Theorem 11.1), follows

easily

Theorem 3. Let f ∈ H∞(R) time independent, ebxf ∈
H∞(R), ϕ ∈ Hs(R) ∩ L2

b (R) for s ≥ 0 and b > 0. Then

there exist T > 0 and unique solution u(t) of the IVP

(7) in the time interval [0, T ] in

C
(
[0, T ] : Hs(R) ∩ L2

b (R)
)
.

Moreover, the map ϕ 7→ u is smooth from Hs(R)∩L2
b (R)

to C
(
[0, T ] : Hs(R) ∩ L2

b (R)
)
;

u and ebx u belongs to C (]0, T ] : H∞(R)).
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To prove the global well-posedness in Hs(R)∩L2
b (R) for

s ≥ 0, first we establish a series of a priori estimates.

We can adapt Fourier proof that ||u(t)||L2(R) = ||ϕ||L2(R),
∀t ∈ R for u solution the KdV equation (see [CKSTT]).

By Plancherel,

||u(t)||2
L2(R) =

∫
ξ1+ξ2=0

û(ξ1) û(ξ2) dξ1 dξ2.

Hence, for u local solution of (7), we apply ∂t, use
symmetry, and the equation to find

∂t
(
||u(t)||2

L2(R)

)
= 2

∫
ξ1+ξ2=0

f̂(ξ1) û(ξ2) dξ1 dξ2,
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we have

||u(t)||L2(R) ≤ ||ϕ||L2(R) + ||f ||L2(R) t, ∀t ∈ [0, T ]. (12)

For t > 0, multiplying by v and integrating by parts in

R with respect to x the equation

∂v

∂t
+ (D − b)3 v+ u (D − b) v = g,

we have

1

2

d

dt

∫
v2 dx = −3b

∫
(Dv)2 dx−

∫
u vDv dx+ b

∫
u v2 dx+∫

g v dx.
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Using the Cauchy-Schwartz inequality and Gagliardo-

Niremberg interpolation, we obtain the estimate

1

2

d

dt

∫
v2 dx = C

(
1

b3
||u||4

L2(R) + b ||u||4/3
L2(R)

)
||v||2

L2(R) +

||g||L2(R)||v||L2(R).

An application of Gronwall´s inequality, using (12) and

theorem (3) gives

19



Theorem 4. Let f ∈ H∞(R) time independent, ebx f ∈
H∞(R), ϕ ∈ L2

b (R) ∩ H
2(R) for s ≥ 0 and b > 0. Then

exist a unique solution u(t) of the IVP (7) in

C
(
[0, +∞[ : L2

b (R) ∩H
s(R)

)
.

Moreover, the map ϕ 7→ u is smooth from Hs(R) to

L2
b (R) ∩H

s(R);

u and ebx u belongs to C (]0, +∞[ : H∞(R)).

For initial value problem in spaces Zhidkov, we can

adapt the estimates in Hs(R) ∩ L2
b (R) and apply the

methods used in Iorio-Linares-Scialom ’1998 (see [ILS])

and Gallo ’2005 (see [G]) for establish existence the

global solutions of (7) for s ≥ 1.
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We are interested in the case forced for the existence of

global attractors in Y , this is, a compact invariant set

A attracts an open set of initial conditions and Haus-

dorff dimension finite, is a consequence of the quasi-

parabolic nature of the KdV equation in the asymme-

trically weighted Sobolev space.
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