The quasi-parabolic nature of the KdV equation in the asymmetrically weighted Sobolev space

Eduardo Arbieto Alarcon
Universidade Federal de Goiás - IME - Brasil

First Workshop on Nonlinear Dispersive Equations

Novembro 01, 2013
Joint work with Alexander Eduardo Arbieto Mendoza IM-UFRJ

In 1983, Tosio Kato in the paper On the Cauchy Problem for the (Generalized) Korteweg-de Vries Equation, considers the initial value problem for (KdV):

$$
\begin{equation*}
\frac{\partial u}{\partial t}+D^{3} u+u D u=0, t>0, x \in \mathbb{R}, u(0)=\phi \tag{1}
\end{equation*}
$$

where $D=\frac{\partial}{\partial x}$, for initial data in asymmetric spaces with the resulting irreversibility in time. Specifically $\phi \in Y=H^{s}(\mathbb{R}) \cap L_{b}^{2}(\mathbb{R})$ where $L_{b}^{2}(\mathbb{R})=L^{2}\left(e^{2 b x} d x\right)$ for $s \geq 0, b>0$.

He notes that the semigroup $\exp \left(-t D^{3}\right)$ in $L_{b}^{2}(\mathbb{R})$, is formally equivalent to the semigroup

$$
\begin{equation*}
U_{b}(t)=\exp \left[-t(D-b)^{3}\right], t \geq 0 \tag{2}
\end{equation*}
$$

considered in $L^{2}(\mathbb{R})=H^{0}$. Really of

$$
(D-b) e^{b x} u=e^{b x} D u
$$

there follows

$$
(D-b)^{3} e^{b x} u=e^{b x} D^{3} u
$$

where $U_{b}(t)$ satisfies Lemma 1 (T. Kato).
$\left\{U_{b}(t): t>0\right\}$ is an infinitely differentiable semigroup on $H^{s}(\mathbb{R})$ for each real s, with

$$
\begin{aligned}
\left\|D^{n} U_{b}(t)\right\|_{B\left(L^{2}(\mathbb{R}), L^{2}(\mathbb{R})\right)} & \leq c_{n} t^{-n / 2} \exp \left(b^{3} t\right), \quad n=1,2,3, \ldots \\
\left\|(d / d t) U_{b}(t)\right\|_{B\left(L^{2}(\mathbb{R}), L^{2}(\mathbb{R})\right)} & \leq c t^{-3 / 2} \exp \left(b^{3} t\right)
\end{aligned}
$$

$U_{b}(t)$ is bounded on H^{s} to $H^{s^{\prime}}$, with

$$
\begin{equation*}
\left\|U_{b}(t)\right\|_{B\left(H^{s}, H^{s^{\prime}}\right)} \leq c t^{-\left(s^{\prime}-s\right) / 2} \exp \left(b^{3} t\right), \quad s \leq s^{\prime} \tag{3}
\end{equation*}
$$

These results are easy consequences of the factorization $U_{b}(t)=\exp \left(b^{2} t\right) \exp \left(-3 b^{2} t D\right) \exp \left(3 b t D^{2}\right) \exp \left(-t D^{3}\right)$, where $\exp \left(-3 b^{2} t D\right)$ and $\exp \left(-t D^{3}\right)$ are unitary on H^{s} and $\exp \left(3 b t D^{2}\right)$ is heat semigroup, which is holomorphic in $t>0$.

Moreover T. Kato (see Lemma 9.2.) shows which, if $e^{b x} u \in L^{\infty}\left([0, T]: L^{2}(\mathbb{R})\right), e^{b x} f \in L^{\infty}\left([0, T]: H^{-1}(\mathbb{R})\right)$ and u satisfies

$$
\frac{\partial u}{\partial t}+D^{3} u=f, 0<t<T
$$

then

$$
\left.\left.e^{b x} \in C\left([0, T]: L^{2}(\mathbb{R})\right) \cap C(] 0, T\right]: H^{s}(\mathbb{R})\right) \quad \forall s<1
$$

and

$$
e^{b x} u=U_{b}(t) e^{b x} u(0)+\int_{0}^{t} U_{b}(t-r) e^{b x} f(r) d r
$$

Now for the case not autonomous

$$
\begin{equation*}
\frac{\partial u}{\partial t}+D^{3} u+a(t) D u=0, \quad t \in I \tag{4}
\end{equation*}
$$

where $I \subset \mathbb{R}$ be an open interval, \mathbf{T}. Kato shows which (see Lemma 9.3. in [Kato]), if $(a-c) \in C\left(I ; H^{\infty}(\mathbb{R})\right)$, where c is a constant and u satisfies (4), then

$$
e^{b x} u \in C\left(I ; H^{\infty}(\mathbb{R})\right)
$$

this lemma shows the quasi-parabolic nature of the equation (4).

Results for the globally well posed is obtained by Kato (see Theorem 10.1 in [Kato]), if $\phi \in H^{s} \cap L_{b}^{2}, s \geq 2$ and $b>0$, then exists a unique solution u to (1) such that $u \in C\left([0,+\infty) ; H^{s} \cap L_{b}^{2}\right)$, with the map $\phi \rightarrow u$ continuous. Moreover, $e^{b x} u \in C\left([0,+\infty) ; H^{s^{\prime}}\right)$ for any $s^{\prime}<s+2$. In the case $\phi \in H^{0} \cap L_{b}^{2}, b>0$, exists a unique solution

$$
u \in C_{w}\left([0,+\infty) ; H^{0}\right)
$$

(see Theorem 12.1 in [Kato]).

In 2002, Kenig - Ponce - Vega in the work On the support of solutions to the generalized $K d V$ equation [KPV] showed that if $u(x, t)$ is solution of the $\mathrm{k}-\mathrm{gKdV}$ equation

$$
\partial_{t} u+\partial_{x}^{3} u+u^{k} \partial_{x} u=0
$$

such that

$$
\sup _{t \in[0,1]}\|u(\cdot, t)\|_{H^{1}(\mathbb{R})}<+\infty
$$

and such that for a given $\beta>0 e^{\beta x} u_{0} \in L^{2}(\mathbb{R})$ then $e^{\beta x} u \in C\left([0,1]: L^{2}(\mathbb{R})\right)$ (Lemma 2.1 in $\left.[\mathrm{KPV}]\right)$ and an extension to higher derivatives.

We use the ideas of the proof of the following Carleman estimates (see Lemma 2.3 in [KPV])

$$
\left\|e^{\lambda x} f\right\|_{L^{8}\left(\mathbb{R}^{2}\right)} \leq c\left\|e^{\lambda x}\left\{\partial_{t}+\partial_{x}^{3}\right\} f\right\|_{L^{8 / 7}\left(\mathbb{R}^{2}\right)}
$$

for all $\lambda \in \mathbb{R}$, where $f \in C_{0}^{3,1}\left(\mathbb{R}^{2}\right)$ this is, $\partial_{x} f, \partial_{x}^{2} f, \partial_{x}^{3} f$, $\partial_{t} f \in C_{b}\left(\mathbb{R}^{2}\right)$ with compact support.

We also follow the ideas contained in the work On uniqueness properties of solutions of the k-generalized KdV equations by Escauriaza - Kenig - Ponce - Vega '2007 [EKPV] and Lower bounds for non-trivial travelling wave solutions of equations of KdV type by Kenig - Ponce - Vega '2012 [KPV2].

Also use arguments analogous to those found in the work of Carvajal - Panthee Well-posedness for some perturbations of the KdV equation with low regularity data'2008, they considering the initial value problem

$$
\begin{align*}
u_{t}+u_{x x x}+\eta L u+u u_{x} & =0, \quad x \in \mathbb{R}, t \geq 0 \\
u(x, 0) & =0 \tag{5}
\end{align*}
$$

where $\eta>0$ is a constant and the linear operator L is defined via the Fourier transform by $\widehat{L u}(\xi)=-\Phi(\xi) \widehat{u}(\xi)$. The Fourier symbol

$$
\begin{equation*}
\Phi(\xi)=\sum_{j=0}^{n} \sum_{i=0}^{2 m} c_{i, j} \xi^{i}|\xi|^{j}, \quad c_{i, j} \in \mathbb{R}, c_{2 m, n}=-1 \tag{6}
\end{equation*}
$$

is a real valued function which is bounded above, they proved in [CP] the IVP (5) with $\eta>0$ and $\Phi(\xi)$ given by (6) is locally well-posed for any data $u_{0} \in H^{s}(\mathbb{R})$, $s>-3 / 4$ (see Theorem 1.1 in [CP]).

We consider the Cauchy problem for the forced Kortewegde Vries equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+D^{3} u+u D u=f, \quad t>0, \quad x \in \mathbb{R} \tag{7}
\end{equation*}
$$

with initial data in $Y=X^{s} \cap L_{b}^{2}$ where X^{s} is the Sobolev space $H^{s}(\mathbb{R})$ or the Zhidkov spaces

$$
\left\{\phi \in \mathcal{D}(\mathbb{R}): \phi \in L^{\infty}(\mathbb{R}), \quad \phi^{\prime} \in H^{(s-1)}(\mathbb{R})\right\}
$$

Without loss of generality we consider $b=1$, since

$$
u_{b}\left(y, t^{\prime}\right)=b^{-2} u\left(b^{-1} y, b^{-3} t^{\prime}\right)
$$

satisfies

$$
\begin{equation*}
\frac{\partial u_{b}}{\partial t^{\prime}}+\frac{\partial^{3} u_{b}}{\partial y^{3}}+u_{b} \frac{\partial u_{b}}{\partial y}=f_{b} \tag{8}
\end{equation*}
$$

where $f_{b}\left(y, t^{\prime}\right)=b^{-5} f\left(b^{-1} y, b^{-3} t^{\prime}\right)$.
Multiplying by $e^{x}(7)$ obtain

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(e^{x} u\right)+(D-1)^{3}\left(e^{x} u\right)+u(D-1)\left(e^{x} u\right)=e^{x} f \tag{9}
\end{equation*}
$$

We denote by $v=e^{x} u$ and $g=e^{x} f$ obtaining,

$$
\begin{equation*}
\frac{\partial v}{\partial t}+(D-1)^{3} v+u(D-1) v=g \tag{10}
\end{equation*}
$$

Since the linear symbol of (10) is $i \tau+(i \xi-1)^{3}$, by analogy with the spaces introduced by Molinet and Ribaud '2002 (see [MR]) for Korteweg- de Vries - Burgers equation, we define the function space $X^{a, s}$ endowed with the norm

$$
\|v\|_{X^{a, s}}=\left\|\left\langle i \tau+(i \xi-1)^{3}\right\rangle^{a}\langle\xi\rangle^{s} \widehat{v}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}
$$

where $\langle\cdot\rangle=\left(1+|\cdot|^{2}\right)^{1 / 2}$, so that

$$
\|v\|_{X^{a, s}}=\left\|\langle | \tau-\xi^{3}+\xi\left|+\left|\xi^{2}-1\right|\right\rangle^{a}\langle\xi\rangle^{s} \widehat{v}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}
$$

We can re-express the norm of $X^{a, s}$ as

$$
\|v\|_{X^{a, s}} \sim\|U(-t) v\|_{H^{a, s}}+\|v\|_{L_{t}^{2} H^{s+2 a}}
$$

where $U(t)=\exp \left(-t D^{3}\right)$ and

$$
\|v\|_{H^{a, s}}^{2}=\int_{\mathbb{R}^{2}}\langle\tau\rangle^{2 a}\langle\xi\rangle^{2 s}|\widehat{v}(\xi, \tau)|^{2} d \xi d \tau
$$

We denote by W the semigroup $U_{b}(t)$ in (2) for $b=1$, associated with the free evolution of (10), $\forall t>0$

$$
\mathcal{F}_{x}(W(t) \phi)(\xi)=\exp \left[-3 \xi^{2} t+t+i\left(\xi^{3}-3 \xi\right) t\right], \phi \in S^{\prime}
$$

and we extend W to a linear operator defined on the whole real axis by setting $\forall t \in \mathbb{R}$,

$$
\mathcal{F}_{x}(W(t) \phi)(\xi)=\exp \left[-3 \xi^{2}|t|+t+i\left(\xi^{3}-3 \xi\right) t\right], \phi \in S^{\prime}
$$

Using Duhamel's principle, we will mainly work on the integral formulation of the equation (10)

$$
\begin{align*}
v(t)= & W(t) \phi-\frac{1}{2} \int_{0}^{t} W\left(t-t^{\prime}\right)[D(u v)-u v]\left(t^{\prime}\right) d t^{\prime}+ \\
& \int_{0}^{t} W\left(t-t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime}, t \geq 0 \tag{11}
\end{align*}
$$

For $T>0$ consider the localized spaces $X_{T}^{a, s}$ endowed with the norm

$$
\|v\|_{X_{T}^{a, s}}=\inf _{w \in X^{a, s}}\left\{\|w\|_{X^{a, s}}: w(t)=v(t) \text { on }[0, T]\right\}
$$

If $f \in H^{\infty}(\mathbb{R})$ time independent and $\phi \in H^{s}(\mathbb{R})$ for $s \geq$ $-3 / 4$, using the linear estimates and bilinear estimates in Zihua Guo '2009 (see [GUO]) and Colliander - Keel - Staffilani - Takaoka- Tao '2003 (see [CKSTT]), we can adapt the proofs to show the existence the $T>0$ and $u \in C\left([-T, T]: H^{-s}(\mathbb{R})\right)$ unique solution of (7) for $s \geq-3 / 4$.

If $g=e^{b x} f \in H^{\infty}(\mathbb{R})$,

$$
\phi \in H_{b}^{s}(\mathbb{R})=\left\{\psi \in S^{\prime}: e^{b x} \psi \in H^{s}(\mathbb{R})\right\}
$$

and $\left.u \in C([0, T]): H^{s}(\mathbb{R})\right)$ be a solution to (7) for $s \geq-3 / 4$ and using the argument used in Molinet and Ribaud '2002 ([MR]) find estimates analogous to (2.1) for example, exists $C>0$ such that

$$
\|\psi(t) W(t) \phi\|_{X^{1 / 2, s}} \leq C\|\phi\|_{H^{s}(\mathbb{R})}, \quad \forall \phi \in H^{s}(\mathbb{R}),
$$

$s \in \mathbb{R}$, where ψ is a time cutoff function satisfying

$$
\psi \in C_{0}^{\infty}(\mathbb{R}), \quad \sup \psi \subset[-2,2], \quad \psi \equiv 1 \text { on }[-1,1]
$$

Also show estimates analogous to (2.2), (2.9), (2.33), (2.34) and bilinear estimates as in Proposition 3.1, show the existence the $T^{\prime}>0$ such that, there exists a unique solution

$$
v \in C\left(\left[0, T^{\prime}\right]: H^{s}(\mathbb{R})\right) \cap X_{T^{\prime}}^{1 / 2, s}
$$

of (10).

Combining these results we prove the local existence result

Theorem 2. Let $f \in H^{\infty}(\mathbb{R})$ time independent, $e^{b x} f \in$ $H^{\infty}(\mathbb{R}), \phi \in H^{s}(\mathbb{R}) \cap H_{b}^{s}(\mathbb{R})$ for $s \geq-3 / 4$ and $b>0$. Then there exist $T>0$ and unique solution $u(t)$ of the $I V P(7)$ in the time interval $[0, T]$ in

$$
C\left([0, T]: H^{s}(\mathbb{R}) \cap H_{b}^{s}(\mathbb{R})\right)
$$

Moreover, the map $\phi \mapsto u$ is smooth from $H^{s}(\mathbb{R}) \cap H_{b}^{s}(\mathbb{R})$ to $C\left([0, T]: H^{s}(\mathbb{R}) \cap H_{b}^{s}(\mathbb{R})\right)$;
u and $e^{b x} u$ belongs to $\left.\left.C(] 0, T\right]: H^{\infty}(\mathbb{R})\right)$.

Using the results for the local existence of KdV for $s \geq 0$ and ideas of Kato [Kato] (see Theorem 11.1), follows easily
Theorem 3. Let $f \in H^{\infty}(\mathbb{R})$ time independent, $e^{b x} f \in$ $H^{\infty}(\mathbb{R}), \phi \in H^{s}(\mathbb{R}) \cap L_{b}^{2}(\mathbb{R})$ for $s \geq 0$ and $b>0$. Then there exist $T>0$ and unique solution $u(t)$ of the IVP (7) in the time interval $[0, T]$ in

$$
C\left([0, T]: H^{s}(\mathbb{R}) \cap L_{b}^{2}(\mathbb{R})\right)
$$

Moreover, the map $\phi \mapsto u$ is smooth from $H^{s}(\mathbb{R}) \cap L_{b}^{2}(\mathbb{R})$ to $C\left([0, T]: H^{s}(\mathbb{R}) \cap L_{b}^{2}(\mathbb{R})\right)$;
u and $e^{b x} u$ belongs to $C\left([0, T]: H^{\infty}(\mathbb{R})\right)$.

To prove the global well-posedness in $H^{s}(\mathbb{R}) \cap L_{b}^{2}(\mathbb{R})$ for $s \geq 0$, first we establish a series of a priori estimates.

We can adapt Fourier proof that $\|u(t)\|_{L^{2}(\mathbb{R})}=\|\phi\|_{L^{2}(\mathbb{R})}$, $\forall t \in \mathbb{R}$ for u solution the $K d V$ equation (see [CKSTT]).

By Plancherel,

$$
\|u(t)\|_{L^{2}(\mathbb{R})}^{2}=\int_{\xi_{1}+\xi_{2}=0} \widehat{u}\left(\xi_{1}\right) \widehat{u}\left(\xi_{2}\right) d \xi_{1} d \xi_{2}
$$

Hence, for u local solution of (7), we apply ∂_{t}, use symmetry, and the equation to find

$$
\partial_{t}\left(\|u(t)\|_{L^{2}(\mathbb{R})}^{2}\right)=2 \int_{\xi_{1}+\xi_{2}=0} \widehat{f}\left(\xi_{1}\right) \widehat{u}\left(\xi_{2}\right) d \xi_{1} d \xi_{2}
$$

we have

$$
\begin{equation*}
\|u(t)\|_{L^{2}(\mathbb{R})} \leq\|\phi\|_{L^{2}(\mathbb{R})}+\|f\|_{L^{2}(\mathbb{R})} t, \forall t \in[0, T] \tag{12}
\end{equation*}
$$

For $t>0$, multiplying by v and integrating by parts in \mathbb{R} with respect to x the equation

$$
\frac{\partial v}{\partial t}+(D-b)^{3} v+u(D-b) v=g
$$

we have

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t} \int v^{2} d x= & -3 b \int(D v)^{2} d x-\int u v D v d x+b \int u v^{2} d x+ \\
& \int g v d x
\end{aligned}
$$

Using the Cauchy-Schwartz inequality and GagliardoNiremberg interpolation, we obtain the estimate

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t} \int v^{2} d x= & C\left(\frac{1}{b^{3}}\|u\|_{L^{2}(\mathbb{R})}^{4}+b\|u\|_{L^{2}(\mathbb{R})}^{4 / 3}\right)\|v\|_{L^{2}(\mathbb{R})}^{2}+ \\
& \|g\|_{L^{2}(\mathbb{R})}\|v\|_{L^{2}(\mathbb{R})}
\end{aligned}
$$

An application of Gronwall's inequality, using (12) and theorem (3) gives

Theorem 4. Let $f \in H^{\infty}(\mathbb{R})$ time independent, $e^{b x} f \in$ $H^{\infty}(\mathbb{R}), \phi \in L_{b}^{2}(\mathbb{R}) \cap H^{2}(\mathbb{R})$ for $s \geq 0$ and $b>0$. Then exist a unique solution $u(t)$ of the IVP (7) in

$$
C\left(\left[0,+\infty\left[: L_{b}^{2}(\mathbb{R}) \cap H^{s}(\mathbb{R})\right)\right.\right.
$$

Moreover, the map $\phi \mapsto u$ is smooth from $H^{s}(\mathbb{R})$ to $L_{b}^{2}(\mathbb{R}) \cap H^{s}(\mathbb{R})$;
u and $e^{b x} u$ belongs to $C(] 0,+\infty\left[: H^{\infty}(\mathbb{R})\right)$.

For initial value problem in spaces Zhidkov, we can adapt the estimates in $H^{s}(\mathbb{R}) \cap L_{b}^{2}(\mathbb{R})$ and apply the methods used in Iorio-Linares-Scialom '1998 (see [ILS]) and Gallo '2005 (see [G]) for establish existence the global solutions of (7) for $s \geq 1$.

We are interested in the case forced for the existence of global attractors in Y, this is, a compact invariant set \mathcal{A} attracts an open set of initial conditions and Hausdorff dimension finite, is a consequence of the quasiparabolic nature of the $K d V$ equation in the asymmetrically weighted Sobolev space.

Bibliography

[Kato] T. Kato - On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, Adv. Math. Suppl. Stud., 8, Academic Press, New York, (1983), 93-128.
[GUO] Zihua Guo - Global well-posedness of Korteweg-de Vries equation in $H^{-3 / 4}$. J. Math. Pures Appl. (9) 91 (2009), no. 6, 583-597.
[CKSTT] J. Colliander; M. Keel; G. Staffilani; H. Takaoka and T. Tao - sharp global well-posedness for KdV
and modified $K d V$ on \mathbb{R} and \mathbb{T}, J. amer. Math. Soc. 16 (2003), no 3, 745-749.
[MR] L. Molinet and F. Ribaud -On the Iow regularity of the Korteweg-de Vries - Burgers equation, Int. Math. res. Not. 2002, no. 37, 1979-2005.
[ILS] R. J. Iorio, Jr.; F. Linares and M. Scialom- Kdv and BO equations with bore-like data, Differential Integral Equations 11 (1998), no. 6, 895-915.
[G] C. Gallo - Korteweg-de Vries and Benjamin-Ono equation on Zhidkov spaces, Adv. Differential Equations 10 (2005), no. 3, 277-308.
[KPV] C. E. Kenig; G. Ponce; L. Vega - On the support of solution to the generalized KdV equation, Ann. I. H. Poincaré - AN 19, 2 (2002), 191-208.
[EKPV] L. Escauriaza; C. E. Kenig; G. Ponce; L. Vega - On uniqueness properties of solutions of the k generalized KdV equations, Journal of Functional Analysis 244 (2007), 504-535.
[KPV2] C. E. Kenig; G. Ponce; L. Vega - Lower bounds for non-trivial travelling wave solutions of equations of KdV type, Nonlinearity 25 (2012), 1235-1245.

