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3.5-Schrödinger equation in H1(R) (3.5-SE)

iut + uxx + Zδ(x)u + u(|u|2 + |u|4) = 0

Here, u = u(x , t) ∈ C, x , t ∈ R, Z ∈ R and δ is given by

δ : H1(R) → C, 〈δ, g〉 = g(0).

The non-linearity in the equation: u|u|2 + u|u|4
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Physical applications for the 3.5-Schrödinger equation

1-Study of nonlinear resonance of light propagation
with localized defects

Problems to be addressed

1- Existence of solutions to the 3.5-Schrödinger equation
2- Existence of standing waves solutions

3- Stability/instability
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Standing waves, stability definition, main results iut + uxx + Zδ(x)u + u(|u|2 + |u|4) = 0

Standing waves

By a standing wave, we mean global solutions to the
3.5-Schrödinger equation in the form:

u(x , t) = e−iwtφ(x)

where w ∈ R and φ : R → R.

The function φ (the profile of the standing wave)
must satisfy the ordinary equation:

φ′′ + Zδ(x)φ+ wφ+ φ3 + φ5 = 0
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Standing waves, stability definition, main results iut + uxx + Zδ(x)u + u(|u|2 + |u|4) = 0

Jump condition on the derivative of the function φ

φ′′ + Zδ(x)φ+ wφ+ φ3 + φ5 = 0

Assuming that φ ∈ C2(R− {0})⋂C(R), integrating the last
equation on the interval (−ǫ, ǫ), we have

φ′(ǫ)− φ′(−ǫ) + Zφ(0) +
∫ ǫ

−ǫ

wφ+ φ3 + φ5dx = 0,

taking ǫ→ 0, the profile of the standing wave φ must satisfy:

φ′(0+)− φ′(0−) = −Zφ(0)

The standing wave solutions are not smooth functions. The
3.5-Schrodinger equation loses translation symmetry. The
second derivative at the ODE has to be considered in the weak
sense.
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Standing waves, stability definition, main results iut + uxx + Zδ(x)u + u(|u|2 + |u|4) = 0

Properties of the solutions of the ODE (Jeanjean):

φ′′ + Zδ(x)φ+ wφ+ φ3 + φ5 = 0

Lemma
Let Z ∈ R and −w > Z 2

4 . Then every solution g ∈ H1(R) of the
ODE, satisfies the following properties

g ∈ C j(R− {0}) ∩ C(R), j = 1, 2. (1a)

− g′′ − wg − g3 − g5 = 0, for x 6= 0. (1b)

g′(0+)− g′(0−) = −Zg(0). (1c)

g′(x), g(x) → 0, if |x | → ∞. (1d)
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Standing waves, stability definition, main results iut + uxx + Zδ(x)u + u(|u|2 + |u|4) = 0

Dynamic of the ODE when Z = 0 and w = −1

H[φ, φ′] =
[φ′]2
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Standing waves, stability definition, main results iut + uxx + Zδ(x)u + u(|u|2 + |u|4) = 0

Standing wave profiles in H1(R), Z = 0:
The level curve H[·, ·] = 0 represents the profile

of the standing wave solution when w = −1,Z = 0:

φ−1,0(x) =

[

1
4
+

√
57

12
cosh(2x)

]− 1
2

.

In general, for −w > 0 the function

φw (x) =
[

− 1
4w

−
√

9 − 48w
12w

cosh(2
√
−wx)

]− 1
2

,

represents the positive profile in H1(R) of the standing wave to
the 3.5-Schrödinger equation when Z = 0.
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Standing waves, stability definition, main results iut + uxx + Zδ(x)u + u(|u|2 + |u|4) = 0

Standing wave profiles in H1(R), Z ∈ R:

For w ,Z satisfying the relation −w > Z 2

4 , the function: φw ,Z =

[

− 1
4w

−
√

9 − 48w
12w

cosh
(

2
√
−w

(

|x |+ R−1
(

Z
2
√
−w

)))]− 1
2

,

where α = −1
4w , β =

√
9−48w
−12w and b → R(b) being the strictly

increasing function given by:

R(b) =
β sinh(2

√
−wb)

α+ β cosh(2
√
−wb)

,

is a standing wave profile.
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Standing waves, stability definition, main results iut + uxx + Zδ(x)u + u(|u|2 + |u|4) = 0

Profile of the standing waves φw ,Z

◮ w = −3, Z = −2
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Introduction The δ-interaction Stability theory Specific calculations Bibliography

Standing waves, stability definition, main results iut + uxx + Zδ(x)u + u(|u|2 + |u|4) = 0

Profile of the standing waves φw ,Z

◮ w = −3, Z = −2
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Standing waves, stability definition, main results iut + uxx + Zδ(x)u + u(|u|2 + |u|4) = 0

Profile of the standing waves φw ,Z

◮ w = −3, Z = −2
◮ w = −3, Z = 0
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Standing waves, stability definition, main results iut + uxx + Zδ(x)u + u(|u|2 + |u|4) = 0

Profile of the standing waves φw ,Z

◮ w = −3, Z = −2
◮ w = −3, Z = 0
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Stability of standing waves of a nonlinear Schr ödinger equation with a Dirac Delta potential
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Standing waves, stability definition, main results iut + uxx + Zδ(x)u + u(|u|2 + |u|4) = 0

Profile of the standing waves φw ,Z

◮ w = −3, Z = −2
◮ w = −3, Z = 0
◮ w = −3, Z = 2
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Standing waves, stability definition, main results iut + uxx + Zδ(x)u + u(|u|2 + |u|4) = 0

Profile of the standing waves φw ,Z

◮ w = −3, Z = −2
◮ w = −3, Z = 0
◮ w = −3, Z = 2

0.2

0.4

0.6

0.8

1

1.2

Hernández Melo, C. A. Universidade Estadual de Maring á
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Introduction The δ-interaction Stability theory Specific calculations Bibliography

Standing waves, stability definition, main results iut + uxx + Zδ(x)u + u(|u|2 + |u|4) = 0

Symmetries of the equation

Formally, if u(t) is a solution of the 3.5-Schrödinger equation,
then the function

T (θ)u(t), θ ∈ R,

is also a solution of the 3.5-Schrödinger equation.

We observe that for θ ∈ R, the family of unitary linear operators
T (θ) defined by:

T (θ) : L2(R) → L2(R) T (θ)g = e−θig,

form a one-parameter group.
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Standing waves, stability definition, main results iut + uxx + Zδ(x)u + u(|u|2 + |u|4) = 0

Stability definition
We consider the orbit

Ωφw,Z =
{

T (θ)φw ,Z |θ ∈ [0, 2π]
}

,

We say that Ωφw,Z is stable in H1(R), if for any ǫ > 0 there exists
δ(ǫ) > 0 such that for all u(0) ∈ H1(R) with

inf
θ∈[0,2π]

||T (θ)φw ,Z − u(0)||1 < δ,

then
inf

θ∈[0,2π]
||T (θ)φw ,Z − u(t)||1 < ǫ

for all t ∈ R. Other case, the orbit Ωφw,Z is called instable.
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Standing waves, stability definition, main results iut + uxx + Zδ(x)u + u(|u|2 + |u|4) = 0

Main results

Let −w > Z 2

4 and Z ∗ ≈ −0.8660254, then we get

I- For Z ≥ 0, the orbit Ωφw,Z is stable in H1(R).

II- For Z ∈ (Z ∗, 0), the orbit Ωφw,Z is instable in H1(R).

III- For Z ∈ (Z ∗,∞), the orbit Ωφw,Z is stable in H1
even(R).

IV- For Z < Z ∗, the orbit Ωφw,Z is instable in H1
even(R).
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The interaction ∂xx + γδ(x), Albeverio Extension of symmetric operators

The self-adjoint operator ∆γ := ∂xx + γδ(x) and the
second distributional derivative d2

Let g ∈ C2(R− {0})⋂C(R) with g′(0+)− g′(0−) = −γg(0)
and h ∈ C∞

0 (R), then:
∫ ∞

−∞
d2g(x)h(x)dx = −γg(0)h(0) +

∫ ∞

−∞
g′′(x)h(x)dx

therefore, ∆γg := g′′ = (d2 + Zδ(x))g

The operator ∆γ does not recognize the singularity of the function g
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The interaction ∂xx + γδ(x), Albeverio Extension of symmetric operators

Theorem
Let −∞ < γ ≤ ∞. Then, the essential spectrum of ∆γ is given
by

σess(∆γ) = [0,∞).

If −∞ < γ < 0, ∆γ , has exactly one negative simple
eigenvalue. Then the point spectrum σp(∆γ) of ∆γ , is given by

σp(∆γ) =

{

−γ
2

4

}

, with ψγ(x) = e
γ|x|

2

as its corresponding eigenfunction.

For γ < 0, the linear equation ut = ∆γu
has a standing wave in H1(R).
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General conditions to obtain a stability theory

Albert, Bona, Souganidis, Grillakis, Shatah, Straus, Weinstein
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General conditions to obtain a stability theory

Albert, Bona, Souganidis, Grillakis, Shatah, Straus, Weinstein

1. Existence of a smooth curve w → φw ∈ H1.

2. Existence of flow in H1(R) (near to the orbit).

3. Existence of conserved quantities E ,F : H1 → R satisfying
Ψ′(φw ) = E ′(φw )− wF ′(φw ) = 0, where Ψ := E − wF .

4. Detailed spectral study of the self-adjoint operator
Ψ′′([φw , 0]) : D(Ψ′′([φw , 0])) → L2 × L2.

5. Detailed study of the convexity of the function
d : I ⊂ R → R, defined by d(w) = E(φw )− wF (φw ).
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Conserved quantities

Let E ,F : H1(R) → R defined by,

E(u) =
1
2

∫

|ux |2dx−Z
2

∫

δ(x)|u(x)|2dx−1
4

∫

|u|4dx−1
6

∫

|u|6dx

and

F (u) =
1
2

∫

|u|2dx ,

then, we have that E ,F are conserved quantities for the flow of
the 3.5-Schrodinger equation and invariant under the group of
rotations T .

Hernández Melo, C. A. Universidade Estadual de Maring á
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Well-posedness results

1- The Cauchy problem associated to the 3.5-Schrödinger
equation is locally well-posed in H1(R). In addition, if the initial
data u0 is even, then the solution u(t) to the 3.5-Schrödinger
equation with initial data u0 = u(0) is also even.

2- Let g ∈ H1(R). Then the solution to the 3.5-Schrödinger
equation u is globally well defined whenever the initial data
u(0) = g, be small in L2(R).

3-For Z > 0, any solution u of the 3.5-Schrodinger equation
with initial data u(0) = f near to the orbit Ωφw , is globally well
defined.
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Spectral properties of the operator Ψ′′(φw,Z )

The second derivative of Ψ = E − wF , at φw ,Z :

Ψ′′([φw ,Z , 0]
t) =

[

L1,Z 0
0 L2,Z

]

,

where the self-adjoint operators Li,Z : D → L2(R) are defined
by

L1,Z g = − d2

dx2 g − wg − 3φ2
w ,Z g − 5φ4

w ,Z g,

L2,Z g = − d2

dx2 g − wg − φ2
w ,Z g − φ4

w ,Z g,

with

D =
{

g ∈ H1(R) ∩ H2(R− {0})|g′(0+)− g′(0−) = −Zg(0)
}
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Spectral properties of the operator Ψ′′(φw,Z )

Spectral properties of the operator L2,Z

L2,Z (φw ,Z ) = 0

Theorem
Let w < 0, Z ∈ R− {0} and −w > Z 2

4 . Then, L2,Z is a
nonnegative operator with spectrum given by

σp(L2,Z ) = {0}, σess(L2,Z ) = [−w ,∞).

Here, zero is a simple eigenvalue with corresponding
eigenfunction φw ,Z .
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Stability of standing waves of a nonlinear Schr ödinger equation with a Dirac Delta potential
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Spectral properties of the operator Ψ′′(φw,Z )

Specral properties of the operator L1,0

Theorem
Let w < 0, the operator L1,0 has only one simple and negative
eigenvalue τ0, the second eigenvalue is zero, it is also simple
with corresponding eigenfunction d

dxφw . The rest of the
spectrum is essential and it is away from zero. More accurately

σess(L1,0) = [−w ,∞).
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Spectral properties of the operator Ψ′′(φw,Z )

Spectral properties of the operator L1,Z in H1(R)

Theorem
Let w < 0, Z ∈ R− {0} and −w > Z 2

4 . Then, Ker(L1,Z ) = {0}.

Set n(L1,Z ) = number of negative eigenvalues of L1,Z

Theorem
Let w < 0 such that −w > Z 2

4 . Then,
1- For Z ≥ 0, n(L1,Z ) = 1.

2- For Z < 0, n(L1,Z ) = 2.

Proof: Continuation argument based on the spectral structure
of L1,0, the study of the negative spectrum of L1,Z for Z small,
analytic perturbation theory (L1,Z → L1,0) and Riesz
projections.
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Spectral properties of the operator Ψ′′(φw,Z )

Number of negative eigenvalues of the operator L1,Z in
H1

even(R)

Properties of the second eigenfunction Ω(Z )

Theorem
The eigenfunction Ω(Z ) corresponding to the second
eigenvalue of the operator L1,Z is a odd function for all
Z ∈ (−∞,∞).

We remark that the first eigenfunction of L1,Z is even

We can conclude that n(L1,Z ) = 1 for all Z ∈ R
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Study of the convexity of the function d

Formula to analyse d

d ′′(w) = − d
dw ||φw ,Z ||2

||φw ,Z ||2 = −2
√

3
[

arctg (θ(w))− arctg
(

θ(w) tagh(
√
−wb)

)]

,

with θ(w) =
√

3−
√

3−16w
4
√
−w

and b = R−1
w

(

Z
2
√
−w

)

where

Rw (b) =
β(w)senh(2

√
−wb)

α(w) + β(w)cosh(2
√
−wb)

,

here α(w) = −1
4w and β(w) =

√
9−48w
−12w .
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Study of the convexity of the function d

Sign of d ′′(w) = d ′′(w ,Z )
◮ w ∈ (−50,−2),

Z ∈ (−0.9,−0.8)
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Study of the convexity of the function d

Sign of d ′′(w) = d ′′(w ,Z )
◮ w ∈ (−50,−2),

Z ∈ (−0.9,−0.8)
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Study of the convexity of the function d

Sign of d ′′(w) = d ′′(w ,Z )
◮ w ∈ (−50,−2),

Z ∈ (−0.9,−0.8)
◮ w ∈ (−50,−2),

Z ∈ (−0.8,−0.7)
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Study of the convexity of the function d

Sign of d ′′(w) = d ′′(w ,Z )
◮ w ∈ (−50,−2),

Z ∈ (−0.9,−0.8)
◮ w ∈ (−50,−2),

Z ∈ (−0.8,−0.7)
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Study of the convexity of the function d

Sign of d ′′(w) = d ′′(w ,Z )
◮ w ∈ (−50,−2),

Z ∈ (−0.9,−0.8)
◮ w ∈ (−50,−2),

Z ∈ (−0.8,−0.7)
◮ w ∈ (−10,−0.8),

Z = −0.86602
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Study of the convexity of the function d

Sign of d ′′(w) = d ′′(w ,Z )
◮ w ∈ (−50,−2),

Z ∈ (−0.9,−0.8)
◮ w ∈ (−50,−2),

Z ∈ (−0.8,−0.7)
◮ w ∈ (−10,−0.8),

Z = −0.86602
1.5

2.5
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Study of the convexity of the function d

Sign of d ′′(w) = d ′′(w ,Z )
◮ w ∈ (−50,−2),

Z ∈ (−0.9,−0.8)
◮ w ∈ (−50,−2),

Z ∈ (−0.8,−0.7)
◮ w ∈ (−10,−0.8),

Z = −0.86602
◮ w ∈ (−5,−1),

Z = −0.86603
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Study of the convexity of the function d

Sign of d ′′(w) = d ′′(w ,Z )
◮ w ∈ (−50,−2),

Z ∈ (−0.9,−0.8)
◮ w ∈ (−50,−2),

Z ∈ (−0.8,−0.7)
◮ w ∈ (−10,−0.8),

Z = −0.86602
◮ w ∈ (−5,−1),

Z = −0.86603
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Study of the convexity of the function d

Theorem
Let w < 0, Z ∈ R satisfying Z 2

4 < −w. Then for
Z ∗ ≈ −0.866025403784, the function (w ,Z ) → −||φw ,Z ||2
satisfies the following properties

{

−∂w ||φw ,Z ||2 > 0, if Z > Z ∗,

−∂w ||φw ,Z ||2 < 0, if Z < Z ∗.
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Proof of the stability theorem

pZ (w0) :=

{

1, if −∂w ||φw ,Z ||2 > 0 at w = w0,

0, if −∂w ||φw ,Z ||2 < 0 at w = w0.

Hw0,Z := Ψ′′([φw ,Z , 0]
t) =

[

L1,Z 0
0 L2,Z

]

,

Set n(Hw0,Z ) = number of negative eigenvalues of Hw0,Z

Theorem
Let −w0 >

Z 2

4 . Suppose that Ker(L1,Z ) = {0},
Ker(L2,Z ) = [φw ,Z ].

(1) The standing wave e−iw0tφw0,Z is stable in H1(R) if
n(Hw0,Z ) = pZ (w0).

(2) The standing wave e−iw0tφw0,Z is instable in H1(R) if
n(Hw0,Z )− pZ (w0) is odd.
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I For Z ≥ 0, Ωφw,Z is stable in H1(R): n(Hw ,Z ) = 1 = PZ (w).
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Proof of the stability theorem

Proof of stability/instability theorem

I For Z ≥ 0, Ωφw,Z is stable in H1(R): n(Hw ,Z ) = 1 = PZ (w).

II For Z ∈ (Z ∗, 0), Ωφw,Z is instable in H1(R):
n(Hw ,Z ) = 2 and PZ (w) = 1.
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Introduction The δ-interaction Stability theory Specific calculations Bibliography

Proof of the stability theorem

Proof of stability/instability theorem

I For Z ≥ 0, Ωφw,Z is stable in H1(R): n(Hw ,Z ) = 1 = PZ (w).

II For Z ∈ (Z ∗, 0), Ωφw,Z is instable in H1(R):
n(Hw ,Z ) = 2 and PZ (w) = 1.

III For Z ∈ (Z ∗,∞), Ωφw,Z is stable in H1
even(R):

n(Hw ,Z |H1
even

) = 1 and PZ (w) = 1.
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Proof of the stability theorem

Proof of stability/instability theorem

I For Z ≥ 0, Ωφw,Z is stable in H1(R): n(Hw ,Z ) = 1 = PZ (w).

II For Z ∈ (Z ∗, 0), Ωφw,Z is instable in H1(R):
n(Hw ,Z ) = 2 and PZ (w) = 1.

III For Z ∈ (Z ∗,∞), Ωφw,Z is stable in H1
even(R):

n(Hw ,Z |H1
even

) = 1 and PZ (w) = 1.

IV For Z ∈ (−∞,Z ∗), Ωφw,Z is instable in H1
even(R):

n(Hw ,Z |H1
even

) = 1 and PZ (w) = 0.
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