Introduction	The δ -interaction	Stability theory	Specific calculations	Bibliography
			00000 000 00	

Stability of standing waves of a nonlinear Schrödinger equation with a Dirac Delta potential

César A. Hernández Melo

First Workshop on Nonlinear Dispersive Equations October 30 2013

Hernández Melo, C. A.

Universidade Estadual de Maringá

- E > - E >

Introduction	The δ -interaction	Stability theory	Specific calculations	Bibliography
			00000 000 00	

3.5-Schrödinger equation in $H^1(\mathbb{R})$ (3.5-SE)

$$iu_t + u_{xx} + Z\delta(x)u + u(|u|^2 + |u|^4) = 0$$

Here, $u = u(x, t) \in \mathbb{C}$, $x, t \in \mathbb{R}$, $Z \in \mathbb{R}$ and δ is given by

$$\delta: H^1(\mathbb{R}) \to \mathbb{C}, \qquad \langle \delta, \boldsymbol{g} \rangle = \boldsymbol{g}(0).$$

The non-linearity in the equation: $u|u|^2 + u|u|^4$

Hernández Melo, C. A.

Universidade Estadual de Maringá

・ 同 ト ・ ヨ ト ・ ヨ

Introduction	The δ -interaction	Stability theory	Specific calculations	Bibliography
			00000 000 00	

Physical applications for the 3.5-Schrödinger equation

1-Study of nonlinear resonance of light propagation with localized defects

Problems to be addressed

1- Existence of solutions to the 3.5-Schrödinger equation 2- Existence of standing waves solutions 3- Stability/instability

Hernández Melo, C. A.

Universidade Estadual de Maringá

Standing waves

By a standing wave, we mean global solutions to the 3.5-Schrödinger equation in the form:

$$u(\mathbf{x},t)=\mathrm{e}^{-\mathrm{i}\mathrm{w}t}\phi(\mathbf{x})$$

where $w \in \mathbb{R}$ and $\phi : \mathbb{R} \to \mathbb{R}$.

The function ϕ (the profile of the standing wave) must satisfy the ordinary equation:

$$\phi'' + Z\delta(x)\phi + w\phi + \phi^3 + \phi^5 = 0$$

Hernández Melo, C. A.

Universidade Estadual de Maringá

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction o●oooooooo	The δ-interaction ○○	Stability theory	Specific calculations	Bibliography ○
Standing waves, stability definition, main results			$iu_t + u_{xx} + Z\delta(x)u + u_{xx}$	$(u ^2 + u ^4) = 0$

Jump condition on the derivative of the function ϕ

$$\phi'' + Z\delta(\mathbf{x})\phi + \mathbf{w}\phi + \phi^3 + \phi^5 = \mathbf{0}$$

Assuming that $\phi \in C^2(\mathbb{R} - \{0\}) \bigcap C(\mathbb{R})$, integrating the last equation on the interval $(-\epsilon, \epsilon)$, we have

$$\phi'(\epsilon) - \phi'(-\epsilon) + Z\phi(0) + \int_{-\epsilon}^{\epsilon} w\phi + \phi^3 + \phi^5 dx = 0,$$

taking $\epsilon \rightarrow$ 0, the profile of the standing wave ϕ must satisfy:

$$\phi'(0+) - \phi'(0-) = -Z\phi(0)$$

The standing wave solutions are not smooth functions. The 3.5-Schrodinger equation loses translation symmetry. The second derivative at the ODE has to be considered in the weak sense.

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction ○○●○○○○○○○	The δ-interaction ○○	Stability theory	Specific calculations 00000 000 000	Bibliography ○
Standing waves, stability definition, main results			$iu_t + u_{xx} + Z\delta(x)u + u_{xx}$	$u(u ^2 + u ^4) = 0$

Properties of the solutions of the ODE (Jeanjean):

$$\phi'' + Z\delta(\mathbf{x})\phi + \mathbf{w}\phi + \phi^3 + \phi^5 = \mathbf{0}$$

Lemma

Let $Z \in \mathbb{R}$ and $-w > \frac{Z^2}{4}$. Then every solution $g \in H^1(\mathbb{R})$ of the ODE, satisfies the following properties

$$g\in C^j(\mathbb{R}-\{0\})\cap C(\mathbb{R}), \ j=1,2.$$
 (1a)

$$-g'' - wg - g^3 - g^5 = 0$$
, for $x \neq 0$. (1b)

$$g'(0+) - g'(0-) = -Zg(0).$$
 (1c)

$$g'(x), g(x) \rightarrow 0, \quad \text{if } |x| \rightarrow \infty.$$
 (1d)

Universidade Estadual de Maringá

Hernández Melo, C. A.

Introduction ○○○●○○○○○○	The δ-interaction ○○	Stability theory	Specific calculations 00000 000 000	Bibliography O
Standing waves, stability definition, main results			$iu_t + u_{xx} + Z\delta(x)u + u_{xx}$	$u(u ^2 + u ^4) = 0$

Dynamic of the ODE when Z = 0 and w = -1

Hernández Melo, C. A.

Introduction ○○○○●○○○○○	The δ-interaction ○○	Stability theory	Specific calculations 00000 000 000	Bibliography ○
Standing waves, stability definition, main results			$iu_t + u_{xx} + Z\delta(x)u + u_{xx}$	$u(u ^2 + u ^4) = 0$

Standing wave profiles in $H^1(\mathbb{R})$, Z = 0:

The level curve $H[\cdot, \cdot] = 0$ represents the profile of the standing wave solution when w = -1, Z = 0:

$$\phi_{-1,0}(x) = \left[\frac{1}{4} + \frac{\sqrt{57}}{12}\cosh(2x)\right]^{-\frac{1}{2}}$$

In general, for -w > 0 the function

$$\phi_w(x) = \left[-\frac{1}{4w} - \frac{\sqrt{9 - 48w}}{12w} \cosh(2\sqrt{-w}x) \right]^{-\frac{1}{2}},$$

represents the positive profile in $H^1(\mathbb{R})$ of the standing wave to the 3.5-Schrödinger equation when Z = 0.

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction ○○○○○●○○○○	The δ-interaction ○○	Stability theory	Specific calculations 00000 000 00	Bibliography ○
Standing waves, stability definition, main results			$iu_t + u_{xx} + Z\delta(x)u + u_{xx}$	$u(u ^2 + u ^4) = 0$

Standing wave profiles in $H^1(\mathbb{R}), Z \in \mathbb{R}$:

For w, Z satisfying the relation $-w > \frac{Z^2}{4}$, the function: $\phi_{w,Z} =$

$$\left[-\frac{1}{4w}-\frac{\sqrt{9-48w}}{12w}\cosh\left(2\sqrt{-w}\left(|x|+R^{-1}\left(\frac{Z}{2\sqrt{-w}}\right)\right)\right)\right]^{-\frac{1}{2}},$$

where $\alpha = \frac{-1}{4w}$, $\beta = \frac{\sqrt{9-48w}}{-12w}$ and $b \to R(b)$ being the strictly increasing function given by:

$${m R}(b) = rac{eta \sinh(2\sqrt{-w}b)}{lpha + eta \cosh(2\sqrt{-w}b)},$$

is a standing wave profile.

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction ○○○○○○●○○○	The δ-interaction ○○	Stability theory	Specific calculations 00000 000 00	Bibliography ○
Standing waves, stability definition, main results			$iu_t + u_{xx} + Z\delta(x)u + u_{xx}$	$u(u ^2 + u ^4) = 0$

▶ *w* = −3, *Z* = −2

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction ○○○○○●○○○	The δ-interaction ○○	Stability theory	Specific calculations 00000 000 00	Bibliography ○
Standing waves, stability definition, main results			$iu_t + u_{xx} + Z\delta(x)u + u_{xx}$	$u(u ^2 + u ^4) = 0$

▶ *w* = −3, *Z* = −2

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction ○○○○○○●○○○	The δ-interaction ○○	Stability theory	Specific calculations 00000 000 00	Bibliography ○
Standing waves, stability definition, main results			$iu_t + u_{xx} + Z\delta(x)u + u_{xx}$	$u(u ^2 + u ^4) = 0$

Hernández Melo, C. A.

Introduction ○○○○○●○○○	The δ-interaction ○○	Stability theory	Specific calculations 00000 000 00	Bibliography ○
Standing waves, stability definition, main results			$iu_t + u_{xx} + Z\delta(x)u + u_{xx}$	$u(u ^2 + u ^4) = 0$

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction ○○○○○●○○○	The δ -interaction	Stability theory	Specific calculations 00000 000 00	Bibliography ○
Standing waves, stability definition, main results			$iu_t + u_{xx} + Z\delta(x)u + u(u ^2 + u ^4) = 0$	

- ▶ *w* = −3, *Z* = −2
- ▶ *w* = −3, *Z* = 0
- ▶ *w* = −3, *Z* = 2

Hernández Melo, C. A.

Universidade Estadual de Maringá

A B > A B >

Introduction 0000000000	The δ-interaction ○○	Stability theory	Specific calculations 00000 000 000	Bibliography ○
Standing waves, stability definition, main results			$iu_t + u_{xx} + Z\delta(x)u + u_{xx}$	$u(u ^2 + u ^4) = 0$

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction ○○○○○○●○○	The δ -interaction	Stability theory	Specific calculations 00000 000 000	Bibliography ○
Standing waves, stability definition, main results			$iu_t + u_{xx} + Z\delta(x)u + u_{xx}$	$u(u ^2 + u ^4) = 0$

Symmetries of the equation

Formally, if u(t) is a solution of the 3.5-Schrödinger equation, then the function

 $T(\theta)u(t), \qquad \theta \in \mathbb{R},$

is also a solution of the 3.5-Schrödinger equation.

We observe that for $\theta \in \mathbb{R}$, the family of unitary linear operators $T(\theta)$ defined by:

$$T(\theta): L^2(\mathbb{R}) \to L^2(\mathbb{R}) \qquad T(\theta)g = e^{-\theta i}g,$$

form a one-parameter group.

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction ○○○○○○○●○	The δ-interaction ○○	Stability theory	Specific calculations 00000 000 000	Bibliography ○
Standing waves, stability definition, main results			$iu_t + u_{xx} + Z\delta(x)u + u_{xx}$	$u(u ^2 + u ^4) = 0$

Stability definition

We consider the orbit

$$\Omega_{\phi_{\boldsymbol{w},\boldsymbol{Z}}} = \left\{ \boldsymbol{T}(\theta)\phi_{\boldsymbol{w},\boldsymbol{Z}} | \theta \in [0, 2\pi] \right\},$$

We say that $\Omega_{\phi_{w,Z}}$ is stable in $H^1(\mathbb{R})$, if for any $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that for all $u(0) \in H^1(\mathbb{R})$ with

$$\inf_{\theta\in[0,2\pi]}||T(\theta)\phi_{w,Z}-u(0)||_1<\delta,$$

then

$$\inf_{\theta \in [0,2\pi]} ||T(\theta)\phi_{w,Z} - u(t)||_1 < \epsilon$$

for all $t \in \mathbb{R}$. Other case, the orbit $\Omega_{\phi_{w,Z}}$ is called instable.

Hernández Melo, C. A.

Universidade Estadual de Maringá

Stability of standing waves of a nonlinear Schrödinger equation with a Dirac Delta potential

ł

Introduction ○○○○○○○○●	The δ-interaction ○○	Stability theory	Specific calculations 00000 000 00	Bibliography ○
Standing waves, stability definition, main results			$iu_t + u_{xx} + Z\delta(x)u + u_{xx}$	$u(u ^2 + u ^4) = 0$

Main results

Let $-w > \frac{Z^2}{4}$ and $Z^* \approx -0.8660254$, then we get

I- For $Z \ge 0$, the orbit $\Omega_{\phi_{w,Z}}$ is stable in $H^1(\mathbb{R})$. II- For $Z \in (Z^*, 0)$, the orbit $\Omega_{\phi_{w,Z}}$ is instable in $H^1(\mathbb{R})$. III- For $Z \in (Z^*, \infty)$, the orbit $\Omega_{\phi_{w,Z}}$ is stable in $H^1_{even}(\mathbb{R})$. IV- For $Z < Z^*$, the orbit $\Omega_{\phi_{w,Z}}$ is instable in $H^1_{even}(\mathbb{R})$.

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction	The δ-interaction ●○	Stability theory	Specific calculations 00000 000 00	Bibliography ○
The interaction	$\partial_{xx} + \gamma \delta(x)$, Albeverio		Extension of syr	nmetric operators

The self-adjoint operator $\Delta_{\gamma} := \partial_{xx} + \gamma \delta(x)$ and the second distributional derivative d^2

Let $g \in C^2(\mathbb{R} - \{0\}) \bigcap C(\mathbb{R})$ with $g'(0+) - g'(0-) = -\gamma g(0)$ and $h \in C_0^{\infty}(\mathbb{R})$, then:

$$\int_{-\infty}^{\infty} d^2 g(x) h(x) dx = -\gamma g(0) h(0) + \int_{-\infty}^{\infty} g''(x) h(x) dx$$

therefore,
$$\Delta_\gamma g := g'' = (d^2 + Z\delta(x))g$$

The operator Δ_{γ} does not recognize the singularity of the function *g*

Hernández Melo, C. A.

Universidade Estadual de Maringá

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem

Let $-\infty < \gamma \le \infty$. Then, the essential spectrum of Δ_{γ} is given by

$$\sigma_{\mathsf{ess}}(\Delta_{\gamma}) = [0,\infty).$$

If $-\infty < \gamma < 0$, Δ_{γ} , has exactly one negative simple eigenvalue. Then the point spectrum $\sigma_p(\Delta_{\gamma})$ of Δ_{γ} , is given by

$$\sigma_{p}(\Delta_{\gamma}) = \left\{-\frac{\gamma^{2}}{4}\right\}, \quad \text{with} \quad \psi_{\gamma}(\mathbf{x}) = \mathbf{e}^{\frac{\gamma|\mathbf{x}|}{2}}$$

as its corresponding eigenfunction.

For
$$\gamma < 0$$
, the linear equation $u_t = \Delta_{\gamma} u$
has a standing wave in $H^1(\mathbb{R})$.

Hernández Melo, C. A.

Universidade Estadual de Maringá

< ロ > < 同 > < 回 > < 回 >

000000000 00 00000 0 000 00	Introduction	The δ -interaction	Stability theory	Specific calculations	Bibliography
				00000 000 00	

General conditions to obtain a stability theory

Albert, Bona, Souganidis, Grillakis, Shatah, Straus, Weinstein

(日)(四)(日)(日)(日)(日)

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction	The δ -interaction	Stability theory	Specific calculations	Bibliography
			00000 000 00	

General conditions to obtain a stability theory

Albert, Bona, Souganidis, Grillakis, Shatah, Straus, Weinstein

- 1. Existence of a smooth curve $w \to \phi_w \in H^1$.
- 2. Existence of flow in $H^1(\mathbb{R})$ (near to the orbit).
- 3. Existence of conserved quantities $E, F : H^1 \to \mathbb{R}$ satisfying $\Psi'(\phi_w) = E'(\phi_w) wF'(\phi_w) = 0$, where $\Psi := E wF$.
- 4. Detailed spectral study of the self-adjoint operator $\Psi''([\phi_w, 0]) : D(\Psi''([\phi_w, 0])) \to L^2 \times L^2$.
- 5. Detailed study of the convexity of the function $d: I \subset \mathbb{R} \to \mathbb{R}$, defined by $d(w) = E(\phi_w) wF(\phi_w)$.

Hernández Melo, C. A.

Universidade Estadual de Maringá

(日本) (日本) (日本)

Introduction	The δ -interaction	Stability theory	Specific calculations	Bibliography
			00000 000 00	

Conserved quantities

Let
$$E, F : H^1(\mathbb{R}) \to \mathbb{R}$$
 defined by,

$$E(u) = \frac{1}{2} \int |u_x|^2 dx - \frac{Z}{2} \int \delta(x) |u(x)|^2 dx - \frac{1}{4} \int |u|^4 dx - \frac{1}{6} \int |u|^6 dx$$
and

and

$$\mathsf{F}(u)=\frac{1}{2}\int |u|^2dx,$$

then, we have that E, F are conserved quantities for the flow of the 3.5-Schrodinger equation and invariant under the group of rotations T.

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction	The δ -interaction	Stability theory	Specific calculations	Bibliography
			00000 000 00	

Well-posedness results

1- The Cauchy problem associated to the 3.5-Schrödinger equation is locally well-posed in $H^1(\mathbb{R})$. In addition, if the initial data u_0 is even, then the solution u(t) to the 3.5-Schrödinger equation with initial data $u_0 = u(0)$ is also even.

2- Let $g \in H^1(\mathbb{R})$. Then the solution to the 3.5-Schrödinger equation u is globally well defined whenever the initial data u(0) = g, be small in $L^2(\mathbb{R})$.

3-For Z > 0, any solution u of the 3.5-Schrodinger equation with initial data u(0) = f near to the orbit Ω_{ϕ_w} , is globally well defined.

Hernández Melo, C. A.

Universidade Estadual de Maringá

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction 000000000	The δ-interaction ○○	Stability theory	Specific calculations • 0000 000 00	Bibliography ○
	Encotrol pr	α		

Spectral properties of the operator $\Psi^{\prime\prime}(\phi_{W,Z})$

The second derivative of $\Psi = E - wF$, at $\phi_{w,Z}$:

$$\Psi''([\phi_{w,Z},0]^t) = \begin{bmatrix} \mathcal{L}_{1,Z} & 0 \\ 0 & \mathcal{L}_{2,Z} \end{bmatrix}$$

where the self-adjoint operators $\mathcal{L}_{i,Z} : \mathcal{D} \to L^2(\mathbb{R})$ are defined by

$$\mathcal{L}_{1,Z}g = -rac{d^2}{dx^2}g - wg - 3\phi_{w,Z}^2g - 5\phi_{w,Z}^4g,$$

 $\mathcal{L}_{2,Z}g = -rac{d^2}{dx^2}g - wg - \phi_{w,Z}^2g - \phi_{w,Z}^4g,$

with

$$\mathcal{D}=\left\{g\in H^1(\mathbb{R})\cap H^2(\mathbb{R}-\{0\})|g'(0+)-g'(0-)=-Zg(0)
ight\}$$

Hernández Melo, C. A.

Universidade Estadual de Maringá

< 同 > < 三 > < 三 >

Introduction 0000000000	The δ-interaction ○○	Stability theory	Specific calculations ○●○○○ ○○○ ○○	Bibliography ○
	Spectral pro	operties of the operator Ψ	$^{\prime\prime}(\phi_{w,Z})$	

Spectral properties of the operator $\mathcal{L}_{2,Z}$

 $\mathcal{L}_{2,Z}(\phi_{w,Z})=0$

Theorem

Let w < 0, $Z \in \mathbb{R} - \{0\}$ and $-w > \frac{Z^2}{4}$. Then, $\mathcal{L}_{2,Z}$ is a nonnegative operator with spectrum given by

 $\sigma_{\mathcal{P}}(\mathcal{L}_{2,Z}) = \{\mathbf{0}\}, \quad \sigma_{\mathrm{ess}}(\mathcal{L}_{2,Z}) = [-w,\infty).$

Here, zero is a simple eigenvalue with corresponding eigenfunction $\phi_{w,Z}$.

Hernández Melo, C. A.

Universidade Estadual de Maringá

伺 と く ヨ と く ヨ と

Specral properties of the operator $\mathcal{L}_{1,0}$

Theorem

Let w < 0, the operator $\mathcal{L}_{1,0}$ has only one simple and negative eigenvalue τ_0 , the second eigenvalue is zero, it is also simple with corresponding eigenfunction $\frac{d}{dx}\phi_w$. The rest of the spectrum is essential and it is away from zero. More accurately

 $\sigma_{\rm ess}(\mathcal{L}_{1,0}) = [-w,\infty).$

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction 000000000	The δ-interaction ○○	Stability theory	Specific calculations ooo●o ooo oo	Bibliography ○
	Spectral pr	operties of the operator Ψ	$''(\phi_{W,Z})$	

Spectral properties of the operator $\mathcal{L}_{1,Z}$ in $H^1(\mathbb{R})$

Theorem Let $w < 0, Z \in \mathbb{R} - \{0\}$ and $-w > \frac{Z^2}{4}$. Then, $Ker(\mathcal{L}_{1,Z}) = \{0\}$.

Set $n(\mathcal{L}_{1,Z})$ = number of negative eigenvalues of $\mathcal{L}_{1,Z}$

Theorem

Let w < 0 such that $-w > \frac{Z^2}{4}$. Then, 1- For $Z \ge 0$, $n(\mathcal{L}_{1,Z}) = 1$.

2- For
$$Z < 0$$
, $n(\mathcal{L}_{1,Z}) = 2$.

Proof: Continuation argument based on the spectral structure of $\mathcal{L}_{1,0}$, the study of the negative spectrum of $\mathcal{L}_{1,Z}$ for Z small, analytic perturbation theory ($\mathcal{L}_{1,Z} \rightarrow \mathcal{L}_{1,0}$) and Riesz projections.

Hernández Melo, C. A.

Universidade Estadual de Maringá

Number of negative eigenvalues of the operator $\mathcal{L}_{1,Z}$ in $H^1_{even}(\mathbb{R})$

Properties of the second eigenfunction $\Omega(Z)$

Theorem

The eigenfunction $\Omega(Z)$ corresponding to the second eigenvalue of the operator $\mathcal{L}_{1,Z}$ is a odd function for all $Z \in (-\infty, \infty)$.

We remark that the first eigenfunction of $\mathcal{L}_{1,Z}$ is even

We can conclude that $n(\mathcal{L}_{1,Z}) = 1$ for all $Z \in \mathbb{R}$

Hernández Melo, C. A.

Universidade Estadual de Maringá

< ロ > < 同 > < 回 > < 回 >

Introduction 0000000000	The δ-interaction ○○	Stability theory	Specific calculations ●○○ ○○	Bibliography ○		
Study of the convexity of the function d						

Formula to analyse *d*

$$d''(w) = -\frac{d}{dw} ||\phi_{w,Z}||^2$$
$$||\phi_{w,Z}||^2 = -2\sqrt{3} \left[\operatorname{arctg} \left(\theta(w) \right) - \operatorname{arctg} \left(\theta(w) \ tagh(\sqrt{-w}b) \right) \right],$$
with $\theta(w) = \frac{\sqrt{3} - \sqrt{3} - 16w}{4\sqrt{-w}}$ and $b = R_w^{-1} \left(\frac{Z}{2\sqrt{-w}} \right)$ where
$$R_w(b) = \frac{\beta(w) \operatorname{senh}(2\sqrt{-w}b)}{\alpha(w) + \beta(w) \cosh(2\sqrt{-w}b)},$$
here $\alpha(w) = \frac{-1}{4w}$ and $\beta(w) = \frac{\sqrt{9} - 48w}{-12w}.$

Hernández Melo, C. A.

Universidade Estadual de Maringá

イロト イポト イヨト イヨト

Introduction	The δ-interaction ○○	Stability theory	Specific calculations ○○○○○ ○○○	Bibliography ○
	Study	of the convexity of the fu	nction d	

▶
$$w \in (-50, -2),$$

 $Z \in (-0.9, -0.8)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction 000000000	The δ-interaction ○○	Stability theory	Specific calculations ○○○○○ ○●○ ○○	Bibliography ○
	Study	of the convexity of the fu	nction d	

• $w \in (-50, -2),$ $Z \in (-0.9, -0.8)$

・ロト・雪・・雪・・雪・ つぐの

Universidade Estadual de Maringá

Hernández Melo, C. A.

Introduction	The δ-interaction ○○	Stability theory	Specific calculations ○○○○○ ○○○	Bibliography ○
	Study	of the convexity of the fu	nction d	

▶
$$w \in (-50, -2),$$

 $Z \in (-0.9, -0.8)$
▶ $w \in (-50, -2),$
 $Z \in (-0.8, -0.7)$

Hernández Melo, C. A.

Universidade Estadual de Maringá

Ξ.

《曰》《聞》《臣》《臣》

Introduction 000000000	The δ-interaction ○○	Stability theory	Specific calculations ○○○○○ ○●○ ○○	Bibliography ○
	Study	of the convexity of the fu	nction d	

▶
$$w \in (-50, -2),$$

 $Z \in (-0.9, -0.8)$
▶ $w \in (-50, -2),$
 $Z \in (-0.8, -0.7)$

▲口 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 → のへの

Universidade Estadual de Maringá

Hernández Melo, C. A.

Introduction	The δ-interaction ○○	Stability theory	Specific calculations ○○○○○ ○●○ ○○	Bibliography ○
	Study	of the convexity of the fu	nction d	

▶ $w \in (-50, -2),$ $Z \in (-0.9, -0.8)$ ▶ $w \in (-50, -2),$ $Z \in (-0.8, -0.7)$ ▶ $w \in (-10, -0.8),$

$$Z = -0.86602$$

Hernández Melo, C. A.

Universidade Estadual de Maringá

★ B > < B >

Introduction	The δ-interaction ○○	Stability theory	Specific calculations ○○○○○ ○○○	Bibliography ○
	Study	of the convexity of the fu	nction d	

$$Z = -0.86602$$

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction	The δ-interaction ○○	Stability theory	Specific calculations ○○○○○ ○○○	Bibliography ○
	Study	of the convexity of the fu	nction d	

▶
$$w \in (-50, -2),$$

 $Z \in (-0.9, -0.8)$
▶ $w \in (-50, -2),$
 $Z \in (-0.8, -0.7)$

•
$$w \in (-10, -0.8),$$

 $Z = -0.86602$

•
$$w \in (-5, -1),$$

 $Z = -0.86603$

Hernández Melo, C. A.

Universidade Estadual de Maringá

э.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction 0000000000	The δ-interaction ○○	Stability theory	Specific calculations ○●○ ○○	Bibliography o
	Study	of the convexity of the fu	nction d	

- ▶ $w \in (-50, -2)$, $Z \in (-0.9, -0.8)$ ▶ $w \in (-50, -2)$, $Z \in (-0.8, -0.7)$
- ▶ $w \in (-10, -0.8),$ Z = -0.86602
- ▶ $w \in (-5, -1),$ Z = -0.86603

Hernández Melo. C. A.

-Universidade Estadual de Maringá

Introduction 0000000000	The δ-interaction ○○	Stability theory	Specific calculations ○○○● ○○●	Bibliography ○	
Study of the convexity of the function d					

Theorem

Let $w < 0, Z \in \mathbb{R}$ satisfying $\frac{Z^2}{4} < -w$. Then for $Z^* \approx -0.866025403784$, the function $(w, Z) \rightarrow -||\phi_{w,Z}||^2$ satisfies the following properties

$$\begin{cases} -\partial_{\mathsf{W}} ||\phi_{\mathsf{W},\mathsf{Z}}||^2 > 0, & \text{if } \mathsf{Z} > \mathsf{Z}^*, \\ -\partial_{\mathsf{W}} ||\phi_{\mathsf{W},\mathsf{Z}}||^2 < 0, & \text{if } \mathsf{Z} < \mathsf{Z}^*. \end{cases}$$

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction 0000000000	The δ-interaction ○○	Stability theory	Specific calculations ○○○○ ●○	Bibliography ○		
Proof of the stability theorem						

$$p_{Z}(w_{0}) := \begin{cases} 1, & \text{if } -\partial_{w} ||\phi_{w,Z}||^{2} > 0 \text{ at } w = w_{0}, \\ 0, & \text{if } -\partial_{w} ||\phi_{w,Z}||^{2} < 0 \text{ at } w = w_{0}. \end{cases}$$
$$H_{w_{0},Z} := \Psi''([\phi_{w,Z}, 0]^{t}) = \begin{bmatrix} \mathcal{L}_{1,Z} & 0 \\ 0 & \mathcal{L}_{2,Z} \end{bmatrix},$$

Set $n(H_{w_0,Z})$ = number of negative eigenvalues of $H_{w_0,Z}$

Theorem

Let $-w_0 > \frac{Z^2}{4}$. Suppose that $Ker(\mathcal{L}_{1,Z}) = \{0\}$, $Ker(\mathcal{L}_{2,Z}) = [\phi_{w,Z}]$.

- (1) The standing wave $e^{-iw_0 t}\phi_{w_0,Z}$ is stable in $H^1(\mathbb{R})$ if $n(H_{w_0,Z}) = p_Z(w_0)$.
- (2) The standing wave $e^{-iw_0 t}\phi_{w_0,Z}$ is instable in $H^1(\mathbb{R})$ if $n(H_{w_0,Z}) p_Z(w_0)$ is odd.

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction 0000000000	The δ-interaction ○○	Stability theory	Specific calculations ○○○○○ ○●	Bibliography ○		
Proof of the stability theorem						

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction 0000000000	The δ -interaction οο	Stability theory	Specific calculations ○○○○ ○●	Bibliography ○		
Proof of the stability theorem						

For $Z \ge 0$, $\Omega_{\phi_{w,Z}}$ is stable in $H^1(\mathbb{R})$: $n(H_{w,Z}) = 1 = P_Z(w)$.

Hernández Melo, C. A.

Universidade Estadual de Maringá

★ ∃ > < ∃ >

Introduction 0000000000	The δ-interaction ○○	Stability theory	Specific calculations ○○○○ ○●	Bibliography ○		
Proof of the stability theorem						

I For $Z \ge 0$, $\Omega_{\phi_{w,Z}}$ is stable in $H^1(\mathbb{R})$: $n(H_{w,Z}) = 1 = P_Z(w)$. II For $Z \in (Z^*, 0)$, $\Omega_{\phi_{w,Z}}$ is instable in $H^1(\mathbb{R})$: $n(H_{w,Z}) = 2$ and $P_Z(w) = 1$.

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction 0000000000	The δ-interaction ○○	Stability theory	Specific calculations ○○○○○ ○●	Bibliography O		
Proof of the stability theorem						

I For $Z \ge 0$, $\Omega_{\phi_{w,Z}}$ is stable in $H^1(\mathbb{R})$: $n(H_{w,Z}) = 1 = P_Z(w)$. II For $Z \in (Z^*, 0)$, $\Omega_{\phi_{w,Z}}$ is instable in $H^1(\mathbb{R})$: $n(H_{w,Z}) = 2$ and $P_Z(w) = 1$. III For $Z \in (Z^*, \infty)$, $\Omega_{\phi_{w,Z}}$ is stable in $H^1_{even}(\mathbb{R})$: $n(H_{w,Z}|_{H^1_{even}}) = 1$ and $P_Z(w) = 1$.

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction 0000000000	The δ-interaction ○○	Stability theory	Specific calculations ○○○○○ ○●	Bibliography ○		
Proof of the stability theorem						

 $\begin{array}{l} \text{For } Z \geq 0, \ \Omega_{\phi_{w,Z}} \text{ is stable in } H^1(\mathbb{R}) \text{: } n(H_{w,Z}) = 1 = P_Z(w). \\ \text{II } \text{For } Z \in (Z^*, 0), \ \Omega_{\phi_{w,Z}} \text{ is instable in } H^1(\mathbb{R}) \text{: } \\ n(H_{w,Z}) = 2 \text{ and } P_Z(w) = 1. \\ \text{III } \text{For } Z \in (Z^*, \infty), \ \Omega_{\phi_{w,Z}} \text{ is stable in } H^1_{even}(\mathbb{R}) \text{: } \\ n(H_{w,Z}|_{H^1_{even}}) = 1 \text{ and } P_Z(w) = 1. \\ \text{IV } \text{For } Z \in (-\infty, Z^*), \ \Omega_{\phi_{w,Z}} \text{ is instable in } H^1_{even}(\mathbb{R}) \text{: } \\ n(H_{w,Z}|_{H^1_{even}}) = 1 \text{ and } P_Z(w) = 0. \end{array}$

Hernández Melo, C. A.

Universidade Estadual de Maringá

Introduction 0000000000	The δ-interaction ○○	Stability theory	Specific calculations 00000 000 00	Bibliography ●		
bibliography						

Referências Bibliográficas

- S. Albeverio, F. Gesztesy, R. Krohn, H. Holden, Solvable Models in quantum mechanics, AMS Chelsea publishing. 2004.
- Jaime Angulo Pava, Nonlinear Dispersive Equations: Existence and Stability of Solitary and Periodic Travelling Wave Solutions, AMS 2009.
- T. Cazenave, Semilinear Schrödinger Equations, American Mathematical Society, (AMS). Lecture Notes, v. 10, 2003.
- R. Fukuizumi, and L. Jeanjean, Stability of standing waves for a nonlinear Schrödinger equation with a repulsive Dirac delta Potential, Discrete Contin. Dyn. Syst. 21, 2008.

Hernández Melo, C. A.

Universidade Estadual de Maringá

(*) *) *) *)

Referências Bibliográficas

- H. Goodman, P.J. Holmes and M. I. Weinstein, Strong NLS soliton-defect interaction, Physica D, 192, 215-248, 2004.
- M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., 160-197, 74 1987.
- T. Kato, Perturbation Theory for Linear Operators. 2nd edition, Springer, Berlin, 1984.

Hernández Melo, C. A.

Universidade Estadual de Maringá

(4) (2) (4) (2)

Thanks

Hernández Melo, C. A.

Universidade Estadual de Maringá

<ロ> <同> <同> < 同> < 同> < 同> <

= 990