Almost sure global well-posedness for the cubic wave equation

Anne-Sophie de Suzzoni

Université Paris 13

First Workshop on Nonlinear Dispersive Equations 31/10 to 1/11/2013

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Table of contents

Motivation and main result

Remarks on the analysis

Definition and properties of the randomization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Uniformly bounded basis

Wave equation

We consider the cubic wave equation on \mathbb{R}^3 :

$$\begin{cases} \partial_t^2 f - \triangle f + f^3 = 0\\ f_{|t=0} = f_0, \ \partial_t f_{|t=0} = f_1 \end{cases}$$

The critical exponent of this equation is $s = \frac{1}{2}$.

Our aim is to use probabilities to prove that this equation is almost surely (with regard to a certain measure) globally well-posed in subcritical spaces $H^{\sigma} \times H^{\sigma-1}$ with $\sigma \in [0, 1/2)$.

Result

Theorem There exist probability measures μ on spaces of low regularity such that $\mu(H^{1/2} \times H^{-1/2}) = 0$ and for μ -almost every (f_0, f_1) , the cubic wave equation with initial datum (f_0, f_1) has a unique global solution in $L(t)(f_0, f_1) + C(\mathbb{R}, H^1(\mathbb{R}^3))$ where L(t) is the flow of the linear wave equation $\partial_t^2 - \Delta = 0$.

Table of contents

Motivation and main result

Remarks on the analysis

Definition and properties of the randomization

Uniformly bounded basis

▲□▶▲□▶▲□▶▲□▶ = ● ● ●

Compactification

The first step is to use the Penrose transform (conformal) to turn the problem on \mathbb{R}^3 into a problem on the sphere S^3 :

$$\begin{cases} \partial_T^2 u + (1 - \triangle_{S^3}) u + u^3 = 0\\ u_{|T=0} = u_0, \ \partial_T u_{|T=0} = u_1 \end{cases}$$

Remark : This step is probably unnecessary. Though, skipping it implies using objects that seem less natural or at least not canonical.

The transform that maps (u_0, u_1) to (f_0, f_1) is an isometry between $H^s \times H^{s-1}$ of the sphere and $\mathcal{H}_0^s \times \mathcal{H}_1^{s-1}$ of \mathbb{R}^3 where \mathcal{H}_i^s is very similar to H^s . In particular, if (u_0, u_1) is not in $H^{1/2} \times H^{-1/2}$ then (f_0, f_1) can not be in critical or super critical spaces. Remark 2 : The existence of a solution of this compact equation gives the existence of a solution on \mathbb{R}^3 . Uniqueness has to be treated separately.

Reduction

The second step is to reduce the equation on *u* on an equation on $v = u - U(T)(u_0, u_1)$ where U(T) is the flow of the linear equation $\partial_T^2 + 1 - \Delta_{S^3} = 0$. We get

$$\partial_T^2 v + (1 - \triangle_{S^3})v + (U(T)(u_0, u_1) + v)^3 = 0$$

with initial datum $v_{|T=0} = v_0 = 0$ and $\partial_T v_{|T=0} = v_1 = 0$.

The Duhamel form of this equation is given by :

$$v(T) = U(T)(v_0, v_1) - \int_0^T \frac{\sin((T-\tau)\sqrt{1-\Delta})}{\sqrt{1-\Delta}} \Big(U(\tau)(u_0, u_1) + v(\tau) \Big)^3 d\tau$$

The local theory yields that the Cauchy problem associated with this equation is well-posed in H^1 as soon as $v_0 \in H^1$, $v_1 \in L^2$ and $\frac{1}{(1+T^2)^{1/3}}U(T)(u_0, u_1) \in L^3_T$, $L^6(S^3)$.

Global theory on v

We use energy estimates with

$$\mathcal{E}(T) = \int_{S^3} (\partial_T v)^2 + \int v(1- \triangle)v + \frac{1}{2} \int v^4 \, .$$

Gronwall lemma yields

$$\mathcal{E}(T) \lesssim \left(\int_0^T \|U(\tau)(u_0, u_1)\|_{L^6}^3 d\tau\right) e^{c \int_0^T (\|U(\tau)(u_0, u_1)\|_{L^6}^2 + \|U(\tau)(u_0, u_1)\|_{L^\infty}) d\tau}$$

٠

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

We have global well posedness in $U(T)(u_0, u_1) + C(\mathbb{R}, H^1)$ as soon as $U(T)(u_0, u_1)$ belongs to $L^1_{\text{loc}, T}, L^{\infty}(S^3)$.

We want to find a non trivial measure ρ on the topological $\sigma\text{-algebra of }H^\sigma\times H^{\sigma-1}$ such that :

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

•
$$\rho(H^{1/2} \times H^{-1/2}) = 0$$
,

•
$$\frac{1}{(1+T^2)^{1/3}}U(T)(u_0,u_1)\in L^3_T, L^6(S^3),$$

•
$$U(T)(u_0, u_1) \in L^1_{\operatorname{loc}, T}, L^\infty(S^3).$$

For this, we will randomize the initial data.

Table of contents

Motivation and main result

Remarks on the analysis

Definition and properties of the randomization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Uniformly bounded basis

Notations

- (e_{n,k})_{n,k} is a L² orthogonal basis composed of spherical harmonics : − △_{S³} e_{n,k} = n²e_{n,k}, 1 ≤ k ≤ (n + 1)²,
- (a_{n,k})_{n,k}, (b_{n,k})_{n,k} are two sequences of independent real Gaussian variables of law N(0, 1) in a probability space Ω, A, P,
- $\overline{u}_0 = \sum \lambda_{n,k} e_{n,k}$ belongs to H^{σ} for some $\sigma \in (0, 1/2)$ but does not belong to $H^{1/2}$,
- $\overline{u}_1 = \sum \mu_{n,k} e_{n,k}$ belongs to $H^{\sigma-1}$ (for the same σ) but not to $H^{-1/2}$.

Remark : The Gaussian condition can be released. We can take $(a_{n,k})_{n,k}$, $(b_{n,k})_{n,k}$ two sequences of i.i.d random variables that satisfy : "there exists *c* such that for all γ and all (n, k)

$$E(e^{\gamma a_{n,k}}), E(e^{\gamma b_{n,k}}) \leq e^{c\gamma^2}$$
 "

We can also take $\sigma = 0$.

Randomization

We then build two random variables :

$$u_0(\omega) = \sum_{n,k} \lambda_{n,k} a_{n,k}(\omega) e_{n,k}$$
$$u_1(\omega) = \sum_{n,k} \mu_{n,k} b_{n,k}(\omega) e_{n,k}.$$

We then have a measure ρ on $H^{\sigma} \times H^{\sigma-1}$, the image measure of \mathbb{P} by (u_0, u_1) , that is

$$\rho(A_0 \times A_1) = \mathbb{P}(u_0^{-1}(A_0))\mathbb{P}(u_1^{-1}(A_1)) .$$

Using the continuity of the space-time compactification on the initial datum, we can define the image measure μ of ρ by this transform and get back on the Euclidean space this way. For almost all $\omega \in \Omega$, $u_0(\omega)$ does not belong to $H^{1/2}$ and $u_1(\omega)$ does not belong to $H^{-1/2}$. For μ almost all (f_0, f_1) , f_0 does not belong to $H^{1/2}$ and f_1 does not belong to $H^{-1/2}$.

Properties of the randomization

With a good choice of $e_{n,k}$ and $\sigma > 0$, we have for all $(p,q) \in [1,\infty)$

$$\rho\Big(\big\{(\tilde{u}_0,\tilde{u}_1)\in H^{\sigma}\times H^{\sigma-1}\ \Big|\ \|\frac{1}{(1+T^2)^{1/p}}U(T)(\tilde{u}_0,\tilde{u}_1)\|_{L^p_{T},W^{\sigma,q}(S^3)}<\infty\big\}\Big)=1\ .$$

In other words, for ρ almost every $(\tilde{u}_0, \tilde{u}_1)$ taken in $H^{\sigma} \times H^{\sigma-1}$, the function $\frac{1}{(1+T^2)^{1/p}}U(T)(\tilde{u}_0, \tilde{u}_1)$ belongs to $L_T^p, W^{\sigma,q}(S^3)$ and since $\sigma > 0$ to $L_T^p, L^{\infty}(S^3)$.

Hence, ρ almost every $(\tilde{u}_0, \tilde{u}_1)$ is a good candidate to be an initial datum of the equation on the sphere.

We prove that

$$I := \|\frac{1}{(1+T^2)^{1/p}} D^{\sigma} U(T)(u_0, u_1)\|_{L^r_{\omega}, L^p_{T}, L^q(S^3)}$$

is finite with $r = \max(p, q)$ and $D = (1 - \triangle_{S^3})^{1/2}$. The Minkowski inequality yields

$$I \leq \|\frac{1}{(1+T^2)^{1/p}}D^{\sigma}U(T)(u_0,u_1)\|_{L^p_{T},L^q(S^3),L^r_{\omega}}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Then, at $x \in S^3$ and *T* fixed, with $\langle n \rangle = (1 + n^2)^{1/2}$

$$\frac{\frac{1}{(1+T^2)^{1/\rho}}D^{\sigma}U(T)(u_0,u_1) = \sum_{n,k}\frac{1}{(1+T^2)^{1/\rho}}\langle n \rangle^{\sigma} \times \left(\cos(\langle n \rangle T)a_{n,k}\lambda_{n,k}e_{n,k}(x) + \frac{\sin(\langle n \rangle T)}{\langle n \rangle}b_{n,k}\mu_{n,k}e_{n,k}(x)\right)$$

is a Gaussian variable as a linear combination of independent Gaussian variables. Hence, its L_{ω}^{r} norm is bounded by $C \sqrt{r}$ times its L_{ω}^{2} norm.

It gives

$$\begin{split} \|\frac{1}{(1+T^2)^{1/p}}D^{\sigma}U(T)(u_0,u_1)\|_{L^r_{\omega}} &\lesssim & \sqrt{r}\frac{1}{(1+T^2)^{1/p}}\Big(\sum_{n,k}(\langle n\rangle^{2\sigma}|\lambda_{n,k}|^2+ \langle n\rangle^{2\sigma-2}|\mu_{n,k}|^2)|e_{n,k}(x)|^2\Big)^{1/2} \,. \end{split}$$

It remains to take the L_T^p , $L^q(S^3)$ of the right hand side of the inequality.

$$I \leq C \sqrt{r} \left(\sum_{n,k} \left(\langle n \rangle^{2\sigma} |\lambda_{n,k}|^2 + \langle n \rangle^{2\sigma-2} |\mu_{n,k}|^2 \right) \|\boldsymbol{e}_{n,k}\|_{L^q}^2 \right)^{1/2}$$

٠

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We need a L^2 basis $(e_{n,k})_{n,k}$ uniformly bounded in L^q .

Table of contents

Motivation and main result

Remarks on the analysis

Definition and properties of the randomization

Uniformly bounded basis

A measure on basis

(Technique and result by Burq and Lebeau) The idea is to build a measure on the basis of L^2 composed of spherical harmonics such that the probability that the basis is uniformly bounded in L^p is non 0.

We consider the L^2 orthonormal basis of spherical harmonics of degree *n* as the orthogonal group $O_{N_n}(\mathbb{R})$ where N_n is the dimension of spherical harmonics of degree $n : N_n = (n + 1)^2$.

Take v_n the Haar measure on $O_{N_n}(\mathbb{R})$ and

$$v = \otimes_{n \in \mathbb{N}} v_n$$
.

To evaluate probabilities on one element $b_{n,k}$ of the basis, we have to take the *k*-th column of the matrix associated to $(b_{n,j})_j$.

The image measure of ν_n by the map that takes the *k*-th column is (thanks to invariances) the uniform probability measure on the sphere S^{N_n} : p_{N_n} .

Measure concentration phenomenon

The Lipschitz-continuous functions *F* from S^N to \mathbb{R} concentrate on their median M_F in the sense that

$$p_N(\{x \mid |F(x) - M_F| \ge R\}) \le 2e^{-(N-1)R^2/(2||F||_{lip}^2)}$$

with

$$|F(x) - F(y)| \le ||F||_{lip}||x - y||_2$$
.

The L^p norm is Lipschitz continuous on spherical harmonics of degree n:

$$||x - y||_{L^p} \le Cn^{1-1/p} ||x - y||_{L^2}$$

and its median M_p is bounded by $C \sqrt{p}$ (independent from *n*). Both are consequences of the fact that S^3 has a finite volume and that for all *x*, *y* in S^3 , there exists a transformation *R* on S^3 that preserves the metrics such that x = Ry. We get then

$$u_n(||b_{n,k}||_{L^p} - M_p \ge R) \le p_n(||x||_{L^p} - M_p| \ge R) \\
\le e^{-cR^2n^{4/p}}.$$

By summing over k

$$v_n(\exists k \mid \|b_{n,k}\|_{L^p} - M_p \ge R) \le n^2 e^{-cR^2 n^{4/p}}$$

and over n

$$\nu(\exists n, k \mid ||b_{n,k}||_{L^p} - M_p \ge R) \le C_p R^{-2}$$

Conclusion

We have used probabilities in two ways :

- randomizing the initial datum makes it almost surely in L^p spaces,
- randomizing the basis enables us to take one uniformly bounded in L^p.

If σ (the regularity of the ID) is 0, then we do not have $U(T)(u_0, u_1)$ almost surely in L^{∞} but being careful with the choice of the basis and using a bootstrap argument in the energy estimates, we still have the same result as before.