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Wave equation

We consider the cubic wave equation on �3 :{
∂2

t f − 4f + f3 = 0
f|t=0 = f0 , ∂t f|t=0 = f1

.

The critical exponent of this equation is s = 1
2 .

Our aim is to use probabilities to prove that this equation is almost
surely (with regard to a certain measure) globally well-posed in
subcritical spaces Hσ × Hσ−1 with σ ∈ [0, 1/2).



Result

Theorem There exist probability measures µ on spaces of low
regularity such that µ(H1/2 × H−1/2) = 0 and for µ-almost every
(f0, f1), the cubic wave equation with initial datum (f0, f1) has a
unique global solution in L(t)(f0, f1) + C(�,H1(�3)) where L(t) is
the flow of the linear wave equation ∂2

t − 4 = 0.
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Compactification

The first step is to use the Penrose transform (conformal) to turn
the problem on �3 into a problem on the sphere S3 :{

∂2
T u + (1 − 4S3)u + u3 = 0

u|T=0 = u0 , ∂T u|T=0 = u1
.

Remark : This step is probably unnecessary. Though, skipping it
implies using objects that seem less natural or at least not
canonical.
The transform that maps (u0, u1) to (f0, f1) is an isometry between
Hs × Hs−1 of the sphere and Hs

0 ×H
s−1
1 of �3 where Hs

i is very
similar to Hs . In particular, if (u0, u1) is not in H1/2 × H−1/2 then
(f0, f1) can not be in critical or super critical spaces.
Remark 2 : The existence of a solution of this compact equation
gives the existence of a solution on �3. Uniqueness has to be
treated separately.



Reduction

The second step is to reduce the equation on u on an equation on
v = u − U(T)(u0, u1) where U(T) is the flow of the linear equation
∂2

T + 1 − 4S3 = 0. We get

∂2
T v + (1 − 4S3)v + (U(T)(u0, u1) + v)3 = 0

with initial datum v|T=0 = v0 = 0 and ∂T v|T=0 = v1 = 0.



Local well-posedness

The Duhamel form of this equation is given by :

v(T) = U(T)(v0, v1) −

∫ T

0

sin((T − τ)
√

1 − 4)
√

1 − 4

(
U(τ)(u0, u1) + v(τ)

)3
dτ .

The local theory yields that the Cauchy problem associated with
this equation is well-posed in H1 as soon as v0 ∈ H1, v1 ∈ L2 and

1
(1+T2)1/3 U(T)(u0, u1) ∈ L3

T , L
6(S3).



Global theory on v

We use energy estimates with

E(T) =

∫
S3

(∂T v)2 +

∫
v(1 − 4)v +

1
2

∫
v4 .

Gronwall lemma yields

E(T) .
( ∫ T

0
‖U(τ)(u0, u1)‖3L6 dτ

)
ec

∫ T
0 (‖U(τ)(u0,u1)‖

2
L6+‖U(τ)(u0,u1)‖L∞ )dτ .

We have global well posedness in U(T)(u0, u1) + C(�,H1) as
soon as U(T)(u0, u1) belongs to L1

loc,T , L
∞(S3).



Conditions on the measure

We want to find a non trivial measure ρ on the topological
σ-algebra of Hσ × Hσ−1 such that :
I ρ(H1/2 × H−1/2) = 0,
I 1

(1+T2)1/3 U(T)(u0, u1) ∈ L3
T , L

6(S3),

I U(T)(u0, u1) ∈ L1
loc,T , L

∞(S3).

For this, we will randomize the initial data.
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Notations

I (en,k )n,k is a L2 orthogonal basis composed of spherical
harmonics : − 4S3 en,k = n2en,k , 1 ≤ k ≤ (n + 1)2,

I (an,k )n,k , (bn,k )n,k are two sequences of independent real
Gaussian variables of law N(0, 1) in a probability space
Ω,A,�,

I u0 =
∑
λn,k en,k belongs to Hσ for some σ ∈ (0, 1/2) but does

not belong to H1/2,
I u1 =

∑
µn,k en,k belongs to Hσ−1 (for the same σ) but not to

H−1/2.

Remark : The Gaussian condition can be released. We can take
(an,k )n,k , (bn,k )n,k two sequences of i.i.d random variables that
satisfy : “there exists c such that for all γ and all (n, k)

E(eγan,k ),E(eγbn,k ) ≤ ecγ2
” .

We can also take σ = 0.



Randomization
We then build two random variables :

u0(ω) =
∑
n,k

λn,k an,k (ω)en,k

u1(ω) =
∑
n,k

µn,k bn,k (ω)en,k .

We then have a measure ρ on Hσ × Hσ−1, the image measure of �
by (u0, u1), that is

ρ(A0 × A1) = �(u−1
0 (A0))�(u−1

1 (A1)) .

Using the continuity of the space-time compactification on the
initial datum, we can define the image measure µ of ρ by this
transform and get back on the Euclidean space this way.
For almost all ω ∈ Ω, u0(ω) does not belong to H1/2 and u1(ω)
does not belong to H−1/2. For µ almost all (f0, f1), f0 does not
belong to H1/2 and f1 does not belong to H−1/2.



Properties of the randomization

With a good choice of en,k and σ > 0, we have for all (p, q) ∈ [1,∞)

ρ
({

(ũ0, ũ1) ∈ Hσ × Hσ−1
∣∣∣∣ ‖ 1

(1 + T2)1/p U(T)(ũ0, ũ1)‖Lp
T ,W

σ,q(S3) < ∞
})

= 1 .

In other words, for ρ almost every (ũ0, ũ1) taken in Hσ × Hσ−1, the
function 1

(1+T2)1/p U(T)(ũ0, ũ1) belongs to Lp
T ,W

σ,q(S3) and since

σ > 0 to Lp
T , L

∞(S3).

Hence, ρ almost every (ũ0, ũ1) is a good candidate to be an initial
datum of the equation on the sphere.



We prove that

I := ‖
1

(1 + T2)1/p
DσU(T)(u0, u1)‖L r

ω,L
p
T ,L

q(S3)

is finite with r = max(p, q) and D = (1 − 4S3)1/2.
The Minkowski inequality yields

I ≤ ‖
1

(1 + T2)1/p
DσU(T)(u0, u1)‖Lp

T ,L
q(S3),L r

ω
.



Then, at x ∈ S3 and T fixed, with 〈n〉 = (1 + n2)1/2

1
(1+T2)1/p DσU(T)(u0, u1) =

∑
n,k

1
(1+T2)1/p 〈n〉σ×(

cos(〈n〉T)an,kλn,k en,k (x) +
sin(〈n〉T)
〈n〉 bn,kµn,k en,k (x)

)
is a Gaussian variable as a linear combination of independent
Gaussian variables. Hence, its L r

ω norm is bounded by C
√

r times
its L2

ω norm.



It gives

‖
1

(1 + T2)1/p DσU(T)(u0, u1)‖L r
ω
.
√

r
1

(1 + T2)1/p

(∑
n,k

(〈n〉2σ|λn,k |
2 +

〈n〉2σ−2|µn,k |
2)|en,k (x)|2

)1/2
.

It remains to take the Lp
T , L

q(S3) of the right hand side of the
inequality.

I ≤ C
√

r
(∑

n,k

(〈n〉2σ|λn,k |
2 + 〈n〉2σ−2|µn,k |

2)‖en,k ‖
2
Lq

)1/2
.

We need a L2 basis (en,k )n,k uniformly bounded in Lq.
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A measure on basis

(Technique and result by Burq and Lebeau)
The idea is to build a measure on the basis of L2 composed of
spherical harmonics such that the probability that the basis is
uniformly bounded in Lp is non 0.

We consider the L2 orthonormal basis of spherical harmonics of
degree n as the orthogonal group ONn (�) where Nn is the
dimension of spherical harmonics of degree n : Nn = (n + 1)2.

Take νn the Haar measure on ONn (�) and

ν = ⊗n∈�νn .



To evaluate probabilities on one element bn,k of the basis, we have
to take the k -th column of the matrix associated to (bn,j)j .

The image measure of νn by the map that takes the k -th column is
(thanks to invariances) the uniform probability measure on the
sphere SNn : pNn .



Measure concentration phenomenon

The Lipschitz-continuous functions F from SN to � concentrate on
their median MF in the sense that

pN({x | |F(x) −MF | ≥ R}) ≤ 2e−(N−1)R2/(2‖F‖2lip)

with
|F(x) − F(y)| ≤ ‖F‖lip‖x − y‖2 .

The Lp norm is Lipschitz continuous on spherical harmonics of
degree n :

‖x − y‖Lp ≤ Cn1−1/p‖x − y‖L2

and its median Mp is bounded by C
√

p (independent from n).
Both are consequences of the fact that S3 has a finite volume and
that for all x, y in S3, there exists a transformation R on S3 that
preserves the metrics such that x = Ry.



We get then

νn(‖bn,k ‖Lp −Mp ≥ R) ≤ pn(| ‖x‖Lp −Mp | ≥ R)

. e−cR2n4/p
.

By summing over k

νn(∃k | ‖bn,k ‖Lp −Mp ≥ R) . n2e−cR2n4/p

and over n

ν(∃n, k | ‖bn,k ‖Lp −Mp ≥ R) ≤ CpR−2 .



Conclusion

We have used probabilities in two ways :
I randomizing the initial datum makes it almost surely in Lp

spaces,
I randomizing the basis enables us to take one uniformly

bounded in Lp .

If σ (the regularity of the ID) is 0, then we do not have U(T)(u0, u1)
almost surely in L∞ but being careful with the choice of the basis
and using a bootstrap argument in the energy estimates, we still
have the same result as before.
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