Almost sure global well-posedness for the cubic wave equation

Anne-Sophie de Suzzoni

Université Paris 13

First Workshop on Nonlinear Dispersive Equations 31/10 to 1/11/2013

Table of contents

Motivation and main result

Remarks on the analysis

Definition and properties of the randomization

Uniformly bounded basis

Wave equation

We consider the cubic wave equation on \mathbb{R}^{3} :

$$
\left\{\begin{array}{l}
\partial_{t}^{2} f-\Delta f+f^{3}=0 \\
f_{\mid t=0}=f_{0}, \partial_{t} f_{t=0}=f_{1}
\end{array}\right.
$$

The critical exponent of this equation is $s=\frac{1}{2}$.
Our aim is to use probabilities to prove that this equation is almost surely (with regard to a certain measure) globally well-posed in subcritical spaces $H^{\sigma} \times H^{\sigma-1}$ with $\sigma \in[0,1 / 2)$.

Result

Theorem There exist probability measures μ on spaces of low regularity such that $\mu\left(\mathrm{H}^{1 / 2} \times \mathrm{H}^{-1 / 2}\right)=0$ and for μ-almost every $\left(f_{0}, f_{1}\right)$, the cubic wave equation with initial datum $\left(f_{0}, f_{1}\right)$ has a unique global solution in $L(t)\left(f_{0}, f_{1}\right)+C\left(\mathbb{R}, H^{1}\left(\mathbb{R}^{3}\right)\right)$ where $L(t)$ is the flow of the linear wave equation $\partial_{t}^{2}-\Delta=0$.

Table of contents

Motivation and main result

Remarks on the analysis

Definition and properties of the randomization

Uniformly bounded basis

Compactification

The first step is to use the Penrose transform (conformal) to turn the problem on \mathbb{R}^{3} into a problem on the sphere S^{3} :

$$
\left\{\begin{array}{l}
\partial_{T}^{2} u+\left(1-\Delta_{S^{3}}\right) u+u^{3}=0 \\
u_{T T=0}=u_{0}, \partial_{T} u_{\mid T=0}=u_{1}
\end{array} .\right.
$$

Remark: This step is probably unnecessary. Though, skipping it implies using objects that seem less natural or at least not canonical.
The transform that maps $\left(u_{0}, u_{1}\right)$ to $\left(f_{0}, f_{1}\right)$ is an isometry between $H^{s} \times H^{s-1}$ of the sphere and $\mathcal{H}_{0}^{s} \times \mathcal{H}_{1}^{s-1}$ of \mathbb{R}^{3} where \mathcal{H}_{i}^{s} is very similar to H^{s}. In particular, if $\left(u_{0}, u_{1}\right)$ is not in $\mathrm{H}^{1 / 2} \times \mathrm{H}^{-1 / 2}$ then (f_{0}, f_{1}) can not be in critical or super critical spaces.
Remark 2 : The existence of a solution of this compact equation gives the existence of a solution on \mathbb{R}^{3}. Uniqueness has to be treated separately.

Reduction

The second step is to reduce the equation on u on an equation on $v=u-U(T)\left(u_{0}, u_{1}\right)$ where $U(T)$ is the flow of the linear equation $\partial_{T}^{2}+1-\Delta_{S^{3}}=0$. We get

$$
\partial_{T}^{2} v+\left(1-\Delta_{S^{3}}\right) v+\left(U(T)\left(u_{0}, u_{1}\right)+v\right)^{3}=0
$$

with initial datum $v_{\mid T=0}=v_{0}=0$ and $\partial_{T} v_{\mid T=0}=v_{1}=0$.

Local well-posedness

The Duhamel form of this equation is given by :
$v(T)=U(T)\left(v_{0}, v_{1}\right)-\int_{0}^{T} \frac{\sin ((T-\tau) \sqrt{1-\Delta})}{\sqrt{1-\Delta}}\left(U(\tau)\left(u_{0}, u_{1}\right)+v(\tau)\right)^{3} d \tau$.
The local theory yields that the Cauchy problem associated with this equation is well-posed in H^{1} as soon as $v_{0} \in H^{1}, v_{1} \in L^{2}$ and $\frac{1}{\left(1+T^{2}\right)^{1 / 3}} U(T)\left(u_{0}, u_{1}\right) \in L_{T}^{3}, L^{6}\left(S^{3}\right)$.

Global theory on v

We use energy estimates with

$$
\mathcal{E}(T)=\int_{S^{3}}\left(\partial_{T} v\right)^{2}+\int v(1-\Delta) v+\frac{1}{2} \int v^{4} .
$$

Gronwall lemma yields

$$
\mathcal{E}(T) \lesssim\left(\int_{0}^{T}\left\|U(\tau)\left(u_{0}, u_{1}\right)\right\|_{L^{6}}^{3} d \tau\right) e^{c \int_{0}^{T}\left(\left\|U(\tau)\left(u_{0}, u_{1}\right)\right\|_{L^{6}}^{2}+\left\|U(\tau)\left(u_{0}, u_{1}\right)\right\|_{L^{\infty}}\right) d \tau} .
$$

We have global well posedness in $U(T)\left(u_{0}, u_{1}\right)+C\left(\mathbb{R}, H^{1}\right)$ as soon as $U(T)\left(u_{0}, u_{1}\right)$ belongs to $L_{\text {loc }, T}^{1}, L^{\infty}\left(S^{3}\right)$.

Conditions on the measure

We want to find a non trivial measure ρ on the topological σ-algebra of $H^{\sigma} \times H^{\sigma-1}$ such that:

- $\rho\left(H^{1 / 2} \times H^{-1 / 2}\right)=0$,
- $\frac{1}{\left(1+T^{2}\right)^{1 / 3}} U(T)\left(u_{0}, u_{1}\right) \in L_{T}^{3}, L^{6}\left(S^{3}\right)$,
- $U(T)\left(u_{0}, u_{1}\right) \in L_{\mathrm{loc}, T}^{1}, L^{\infty}\left(S^{3}\right)$.

For this, we will randomize the initial data.

Table of contents

Motivation and main result

Remarks on the analysis

Definition and properties of the randomization

Uniformly bounded basis

Notations

- $\left(e_{n, k}\right)_{n, k}$ is a L^{2} orthogonal basis composed of spherical harmonics : - $\Delta_{S^{3}} e_{n, k}=n^{2} e_{n, k}, 1 \leq k \leq(n+1)^{2}$,
- $\left(a_{n, k}\right)_{n, k},\left(b_{n, k}\right)_{n, k}$ are two sequences of independent real Gaussian variables of law $\mathcal{N}(0,1)$ in a probability space $\Omega, \mathcal{A}, \mathbb{P}$,
- $\bar{u}_{0}=\sum \lambda_{n, k} e_{n, k}$ belongs to H^{σ} for some $\sigma \in(0,1 / 2)$ but does not belong to $H^{1 / 2}$,
- $\bar{u}_{1}=\sum \mu_{n, k} e_{n, k}$ belongs to $H^{\sigma-1}$ (for the same σ) but not to $H^{-1 / 2}$.

Remark : The Gaussian condition can be released. We can take $\left(a_{n, k}\right)_{n, k},\left(b_{n, k}\right)_{n, k}$ two sequences of i.i.d random variables that satisfy : "there exists c such that for all γ and all (n, k)

$$
E\left(e^{\gamma a_{n, k}}\right), E\left(e^{\gamma b_{n, k}}\right) \leq e^{c \gamma^{2}}
$$

We can also take $\sigma=0$.

Randomization

We then build two random variables :

$$
\begin{aligned}
& u_{0}(\omega)=\sum_{n, k} \lambda_{n, k} a_{n, k}(\omega) e_{n, k} \\
& u_{1}(\omega)=\sum_{n, k} \mu_{n, k} b_{n, k}(\omega) e_{n, k}
\end{aligned}
$$

We then have a measure ρ on $H^{\sigma} \times H^{\sigma-1}$, the image measure of \mathbb{P} by $\left(u_{0}, u_{1}\right)$, that is

$$
\rho\left(A_{0} \times A_{1}\right)=\mathbb{P}\left(u_{0}^{-1}\left(A_{0}\right)\right) \mathbb{P}\left(u_{1}^{-1}\left(A_{1}\right)\right) .
$$

Using the continuity of the space-time compactification on the initial datum, we can define the image measure μ of ρ by this transform and get back on the Euclidean space this way.
For almost all $\omega \in \Omega, u_{0}(\omega)$ does not belong to $H^{1 / 2}$ and $u_{1}(\omega)$ does not belong to $H^{-1 / 2}$. For μ almost all $\left(f_{0}, f_{1}\right)$, f_{0} does not belong to $H^{1 / 2}$ and f_{1} does not belong to $H^{-1 / 2}$.

Properties of the randomization

With a good choice of $e_{n, k}$ and $\sigma>0$, we have for all $(p, q) \in[1, \infty)$
$\rho\left(\left\{\left(\tilde{u}_{0}, \tilde{u}_{1}\right) \in H^{\sigma} \times H^{\sigma-1} \left\lvert\,\left\|\frac{1}{\left(1+T^{2}\right)^{1 / p}} U(T)\left(\tilde{u}_{0}, \tilde{u}_{1}\right)\right\|_{L_{T}^{p}, W^{\sigma, q}\left(S^{3}\right)}<\infty\right.\right\}\right)=1$.
In other words, for ρ almost every $\left(\tilde{u}_{0}, \tilde{u}_{1}\right)$ taken in $H^{\sigma} \times H^{\sigma-1}$, the function $\frac{1}{\left(1+T^{2}\right)^{1 / p}} U(T)\left(\tilde{u}_{0}, \tilde{u}_{1}\right)$ belongs to $L_{T}^{p}, W^{\sigma, q}\left(S^{3}\right)$ and since $\sigma>0$ to $L_{T}^{p}, L^{\infty}\left(S^{3}\right)$.

Hence, ρ almost every ($\tilde{u}_{0}, \tilde{u}_{1}$) is a good candidate to be an initial datum of the equation on the sphere.

We prove that

$$
I:=\left\|\frac{1}{\left(1+T^{2}\right)^{1 / p}} D^{\sigma} U(T)\left(u_{0}, u_{1}\right)\right\|_{L_{\omega}^{r}, L_{T}^{p}, L q\left(S^{3}\right)}
$$

is finite with $r=\max (p, q)$ and $D=\left(1-\Delta_{S^{3}}\right)^{1 / 2}$.
The Minkowski inequality yields

$$
I \leq\left\|\frac{1}{\left(1+T^{2}\right)^{1 / p}} D^{\sigma} U(T)\left(u_{0}, u_{1}\right)\right\|_{L_{T}^{p}, L^{q}\left(S^{3}\right), L_{\omega}^{r}} .
$$

Then, at $x \in S^{3}$ and T fixed, with $\langle n\rangle=\left(1+n^{2}\right)^{1 / 2}$

$$
\begin{aligned}
& \frac{1}{\left(1+T^{2}\right)^{1 / \rho}} D^{\sigma} U(T)\left(u_{0}, u_{1}\right)=\sum_{n, k} \frac{1}{\left(1+T^{2}\right)^{1 / \rho}}\langle n\rangle^{\sigma} \times \\
& \quad\left(\cos (\langle n\rangle T) a_{n, k} \lambda_{n, k} e_{n, k}(x)+\frac{\sin \langle\langle \rangle\rangle T)}{\langle n\rangle} b_{n, k} \mu_{n, k} e_{n, k}(x)\right)
\end{aligned}
$$

is a Gaussian variable as a linear combination of independent Gaussian variables. Hence, its L_{ω}^{r} norm is bounded by $C \sqrt{r}$ times its L_{ω}^{2} norm.

It gives

$$
\begin{aligned}
\left\|\frac{1}{\left(1+T^{2}\right)^{1 / p}} D^{\sigma} U(T)\left(u_{0}, u_{1}\right)\right\|_{L_{\omega}} \lesssim & \sqrt{r} \frac{1}{\left(1+T^{2}\right)^{1 / p}}\left(\sum _ { n , k } \left(\langle n\rangle^{2 \sigma}\left|\lambda_{n, k}\right|^{2}+\right.\right. \\
& \left.\left.\langle n\rangle^{2 \sigma-2}\left|\mu_{n, k}\right|^{2}\right)\left|e_{n, k}(x)\right|^{2}\right)^{1 / 2} .
\end{aligned}
$$

It remains to take the $L_{T}^{p}, L^{q}\left(S^{3}\right)$ of the right hand side of the inequality.

$$
I \leq C \sqrt{r}\left(\sum_{n, k}\left(\langle n\rangle^{2 \sigma}\left|\lambda_{n, k}\right|^{2}+\langle n\rangle^{2 \sigma-2}\left|\mu_{n, k}\right|^{2}\right)\left\|e_{n, k}\right\|_{L^{q}}^{2}\right)^{1 / 2} .
$$

We need a L^{2} basis $\left(e_{n, k}\right)_{n, k}$ uniformly bounded in L^{9}.

Table of contents

Motivation and main result

Remarks on the analysis

Definition and properties of the randomization

Uniformly bounded basis

A measure on basis

(Technique and result by Burq and Lebeau)
The idea is to build a measure on the basis of L^{2} composed of spherical harmonics such that the probability that the basis is uniformly bounded in L^{p} is non 0 .

We consider the L^{2} orthonormal basis of spherical harmonics of degree n as the orthogonal group $O_{N_{n}}(\mathbb{R})$ where N_{n} is the dimension of spherical harmonics of degree $n: N_{n}=(n+1)^{2}$.

Take v_{n} the Haar measure on $O_{N_{n}}(\mathbb{R})$ and

$$
v=\otimes_{n \in \mathbb{N}} v_{n}
$$

To evaluate probabilities on one element $b_{n, k}$ of the basis, we have to take the k-th column of the matrix associated to $\left(b_{n, j}\right)_{j}$.

The image measure of v_{n} by the map that takes the k-th column is (thanks to invariances) the uniform probability measure on the sphere $S^{N_{n}}: p_{N_{n}}$.

Measure concentration phenomenon

The Lipschitz-continuous functions F from S^{N} to \mathbb{R} concentrate on their median M_{F} in the sense that

$$
p_{N}\left(\left\{x| | F(x)-M_{F} \mid \geq R\right\}\right) \leq 2 e^{-(N-1) R^{2} /\left(2\|F\|_{\text {lip }}^{2}\right)}
$$

with

$$
|F(x)-F(y)| \leq\|F\|_{l i p}\|x-y\|_{2} .
$$

The L^{p} norm is Lipschitz continuous on spherical harmonics of degree n :

$$
\|x-y\|_{L^{p}} \leq C n^{1-1 / p}\|x-y\|_{L^{2}}
$$

and its median M_{p} is bounded by $C \sqrt{p}$ (independent from n). Both are consequences of the fact that S^{3} has a finite volume and that for all x, y in S^{3}, there exists a transformation R on S^{3} that preserves the metrics such that $x=R y$.

We get then

$$
\begin{aligned}
v_{n}\left(\left\|b_{n, k}\right\|_{L^{p}}-M_{p} \geq R\right) & \leq p_{n}\left(\left|\|x\|_{L^{p}}-M_{p}\right| \geq R\right) \\
& \lesssim e^{-c R^{2} n^{4 / p}} .
\end{aligned}
$$

By summing over k

$$
v_{n}\left(\exists k \mid\left\|b_{n, k}\right\|_{L^{p}}-M_{p} \geq R\right) \lesssim n^{2} e^{-c R^{2} n^{4 / p}}
$$

and over n

$$
v\left(\exists n, k \mid\left\|b_{n, k}\right\|_{L^{p}}-M_{p} \geq R\right) \leq C_{p} R^{-2} .
$$

Conclusion

We have used probabilities in two ways:

- randomizing the initial datum makes it almost surely in L^{p} spaces,
- randomizing the basis enables us to take one uniformly bounded in L^{p}.
If σ (the regularity of the ID) is 0 , then we do not have $U(T)\left(u_{0}, u_{1}\right)$ almost surely in L^{∞} but being careful with the choice of the basis and using a bootstrap argument in the energy estimates, we still have the same result as before.

