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1 Hoff solutions

Navier-Stokes equations

[ p + div(pu) =0

(p)g + div(puu) + P(p)x
= uAW + Adivuy, + pf?

(P, u)]t=0 = (po, uo),

| xeR", n=223.

Assumptions

{ P € C%([0,p]), P'(p) >0, for some p < (0,p)
(0= P)IPp) =P(p)] >0, p#p;



/OOO (JIEC, )] ]2 + [|[EC. 0)|[3 + o (t)7](-, t)]]3) dt

+ SuptZOHf('?t)Hp < Cf < o0

some p > n|, |o(t):=min{l,t}

=

)\7,LL>O7 ]_’]_:2
0<A<2u,n=3

3, n=2
5, n=3

/ [ poluol*+1]po—pI* | dx < Cy < oo

po = 0 ae., ||l < P



EXISTENCE OF SOLUTION
(D. HOFF 1995, 1997, 2005):

Given p; € (p, p), there are positive numbers ¢ and
C depending on p, p1, p, P, A\, u, and p, and there is a
universal positive constant 6 such that, given initial data
(po, ug) and external force f satisfying

0 < essinf pg < esssup pg < p1,

and
C0+Cf§€,

the above initial-value problem has a global weak solution
(p,u) with the following properties:

e (energy estimate)

sup [ [ gl a0 + ol ) — 7P
+ o(t)|Vu(x, t)?] dx

+ / / [ [Vul? + o(t)*|Va|* | dxdt
0 n

< C(Co+ Cp)f < o0
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u is the ‘convective (material) derivative’:

w=u} +u-Vu.

/ / o(t)p[t|? dxdt < C(Cy + Cy)’
O n

if infpg >0 (inf = essinf )

Clinfpy < p < p a.e. (C>0)

Holder continuity: For any 7 >0, we

have that u,

F:=(u+Adiva — (P(p) —P(p))

and

k

WK = w, — Uy (vorticity matriz)

are Hélder continuous in R"™ X [1,00).
The solution (p,u) is obtained as the limit as ) — 0

of smooth approximate solutions (p°,u’) satisfying the

above estimates with constants which are independent

of 5, pb=]js*po+0, u) = js * ug.

b}



Weak solution:

[ oo ol Jax

to to
= / / (ppr + pu - Vp)dxdt
tq1 t1 n

and
to

[ o) ot x

t1

t2 . .
= / / [pwl oy + pulu - Vo + P(p) gy |dxdt
t1J R»B

t2
— / / (VW - Vo + \(div U)oy |dxdt
t1/ R

to
+ / / pfip dxdt
t;J Rn

for all t; >t; >0 and all ¢ € C}(R" x [t1,t3]) with compact
support.



Motivation for the definition of F/Piecewise smooth weak
solution:

Let S be a hypersurface in x — t space and suppose that
(p,u) is a weak solution that is C' in the complement of S,
it has a  uniquely defined flux  X(t,x)

(0X /0t =u(X,t), X(0,x) =x), and such that it has one-
sided limits with respect to S. (Recall that u is contin-

uous (in fact Holder continuous) for t > 0.) Then
SN{t=to} = X(tg," )(SN{t=0}),
and the following jump conditions hold along S:
Lk B ]
W) = ] and [Pp)] = (A4 goldiva

Xj

Rankine-Hugoniot conditions

1.e.



Questions

For Hoff solutions we ask the following questions:

e Does u have a flux and it is unique 7?7 i.e.
Is there a unique map (t,x) € [0,00) X R* — X(t,x) € R"
such that

2X(t,x) =u(X(t,x),t), t>0, xeR"

ot
X(0,x) = x, x € R* 7

e Given M a continuous hypersurface in R", is
Mb = X(t, )( M ) a continuous hypersurface?

e If pp has a one-sided limit with respect to
M at a point xy, does p(-,t) have a one-sided limit
at X(t,xg) with respect to M"?



2 Results

Theorem 1 (Hoff-Santos) — Lagrangean structure:
Assume also that

70
sup VE(x, t)2dx +/ £, (x, t)|?dxdt < oo
o Jrn

0<t<rp JRn

and

ug € H(R") where s >0 forn=2 and s> 1/2 forn=3.

Let V be an open set in R™ and assume that

inf polv > p > 0|

Then

a) For each y € V there is a unique curve X(-,y),

X(t,y)=y —l—/o w(X(7,y), 7)dr.

b) For each t >0, V'=X(t,-)V 1is open and the map
y — X(t,y) is a homeomorphism of V onto V', and it
1s locally Holder continuous.



c) Let M CCV bea C* hypersurface, o € [0,1). Then
for any t>0, M'=X(t, )M is a C"° hypersurface,
B =ae C,

d) There is a positive number p such that, for all t > 0,

inf p(-,t)[yvt > p>0.
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Theorem 2 (Hoff-Santos) — One-sided limits:

If po has a one-sided limit at xy from a side of M, then
for each t >0, p(-,t) and divu(-,t) have one-sided limits at
X(t,x9) from the same side of X(t, ) M.

If both omne-sided limits po(xot) of po at x¢ with
respect to M exist, then for eacht > 0 the jumps in P(p(-,t))
and divu(-,t) at X(t,x¢) satisfy the Rankine—Hugoniot
condition

P (p(X(t,x0), t))|= [(1 + A)divu(X(t, %), t)].

(Indeed,
F = (u+ A divu — (P(p) — P(5))

is (Hélder) continuous.)
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Theorem 3 (Hoff-Santos) — Time evolution of discontinu-
ities:

The map t — p(X(t, %)+, t) s in C([0,0)) N C((0,00)) and
the map t — divu(X(t,xo)+,t) s locally Hélder continuous
on (0,00).

If both one-sided limits py(xoE) of po at xo with respect
to M exist, then the jump wn the logarithm of p satisfies
the representation

log (X (£, x0), £)] = exp (—m e a@m) log po(o)]

where
[P (p(X(7,%0),7))]

A7) = liog pX . x0), 7]

12



3 “Proofs”

Theorem 1 — Lagrangean structure:

A vector field 1 wm R" 1is said to be log-Lipschitzian

(LL) if

W), = sup u(x) — ufy)| a0

0<lx—yl<1 X —¥| =[x —yllog|x —y] |

Example. Let w < LP(R*)NL>*(R"), where p € [1,00), and
I' the fundamental solution of the Laplacian equation in

R*. Then VIxw € LL(R") and
(VI s« w)rL < C([|w]]p + [|w]])

where C=C(n,p). If p<n, we also have
IVI s wl|oo < C([|w]|p 4 |[W]l) -

13



Lagrangean structure of log-Lipschtzian vector fields
(“Generalized Picard’s theorem”):

If for each t >0, u(x,t) is a vector field in R" such
that

(u( ) € Li([0,00))

loc
then for every x € R" there exists a unique map
X(-,x) € C([0,tx); R™), tyx >0, such that

X(t,x) =x+ /t w(X(7,x),7)dr, (0 <t <tyx).

Gronwall type inequality (Osgood’s lemma):

Let n >0 be a mensurable function and locally bounded
in [0,00), a>0, and 0<gecL] ([0,00)), such that

loc

nt) <a+ / g(r)m(y(r)dr,  te0,00),

where : )
r(l—logr), 0<r<1
m(r){ T, 1<r<oo.
Assume that n<1. Then

n(t)] < exp (1 — e~ Jo8dm) qexp (= o gdr)
in the case that a#0, and n(t)=0 if a=0.
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Decompose the velocity u by writing

AuJ — ugck,xk — u}lzk,Xj + (ugck T u}lzj)xk

div uy, + wggllf

(1 + N g +wh &+ (1 + A) 7P ()
Auiw + Aup, |,

so that

u = up, + up

where up,, up are defined by
Aug, = (n+ ) Fyg + (w9,

Aul, = (14 N)7H(P(p) = P(p) ),
up = (u+ ALV (P(p) — P(5)).

Then
up(-,t) € LL  (P(p(-t)) - P(p) € L*NL>)
up,(,t) € Lip (F(,t) e w(-,t) sdo Hélder continuas).
Besides,

(up(,t))u < CI[P(p(,t)) = P(p)llLzr~ € Lipc([0,00)).

15



Question: <uF,w<'7t)>Lip S Llloc([(),oo)) ?

Notice that
< Uy o >LipS C HVF + vap :

On the other hand, the momentum equation can be written
as

pid = Fy, + pwl s+ pfd|

so, taking div e rot we obtain the equations

AF = div(pa — pf) AW = rot(pu — pf) 1|

Therefore

IVF[lp, [[Dwllp < C(|[pallp + [[pf]lp) -

| (pa)(-,t) [lp € Li([0,00)) 77
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Suppose inf pg > 0.

[all, < Clall™[Vall;

5)

m:n(%

1
/ i 3| W[5t
1 (1-k)/2 /2
:/ (tls/|u|2dx> (t25/|Vﬂ’2dX) t(S—l—fi)/?dt
0
1 1—k K 1/2 1 1/2
g( / <tls / ]1]1]2dx> (t“ / ]Vﬁ\zdx> dt) ( / t51“dt>
0 0

1 1/2
< ¢(Co+ Cy)’ ( / t31“dt) ;
0

. . 0, n=2 < /o
finite, since s > { 1/2, n—3 e u € H(R"), due to
: 1 1 0, n=2
[Hoff] and Hglli = Filpon = nG =) = { 1/2, n=3.
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Since it may occur IOO}VC =0 we do not know if

(u(-,t)) € Lig([0,00))

but
|X1(Ev Y) o X1<t7 Y)‘
< Og(T)m(\Xz<T, y) — Xa(7,y)|)dr
|u(X2<t7Y>7t> —ll(X <t7Y>7t>| 1
g(t) o m(|X2(t, Y2> . X1<t, Y1>’) < Lloc< [07 OO) )
In fact

(u(-,t)iL, B(X(ty), 0<t<t, <<1
t) < g(t) = ' (/B Be(X(by))
g( ) — g ( ) { <u( 7t)>LL7 Rn, t > tr

and g, € L{

6e([0,00)) where r>0; B.(y) C V.
Indeed,

t
/ (e, 7| dr < Ct7 .
0
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Theorem 2 — One-sided limits

Recall that p = p(-,t) has a one-sided limit at x € M*
from the “plus” side M! of M, if

osc(p; x, MY ):= lim, g [ess sup p|Mt+mBr(X)

— ess iﬂfP|MgmBr(X)]
= 0.
In this case
plact, t) i= lime_p esssup p(-, t) gt g, )
limy_gessinf p(-, t) |M'ﬂ+mBr(X)’

Write the conservation of mass p; + div(pu) =0 as
p=—pdivu=—p A+ ) [F+ (P(p) — P(p))]

A+ pp=—p[F+(Pp) = P(p)
Since p(-,t)|yt is strictly positive, we may divide by
p(X(t,y),t), for y €V, to obtain that

A+ ) 108 p(X (6, 3),8) + Pp(X (5, y),t)) — P(7

— _F(X(t,y),t) .

19



Then for y;,y2 €V,
d y2 y2
(A + )3 log p(X(E, ), £) |7 + a(t) log p(X(t, ), t)][

- _F(X(t7°)>t) zi 3

Then (writing sup = esssup and inf = essinf )

(sup — mf)logp |X ) (Br(x0) M.,
< e O fpal )47 (sup — mf) log po

¢ Br(x0) M4
+/ e~ (M m ™ ffta(é)d’g(sup inf)F(-, {X Bexo)ma AT -
0 r(xo) +)

The first term on the right goes to zero as r — 0 by the as-
sumption that py has a one-sided limit at xy and the second
goes to zero by the Holder continuity of F(-,7) for 7 > 0.
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Theorem 3 — Time evolution of discontinuites

Let r > 0 such that r < dist(xg,0V), {Xn}n=0 € M, and
{rp} > 0 such that x;, — x¢, r, » 0 as h— 0, and
Boy, (xn) C M4 NBy(xp), for all 0 < h << 1.

Define ", satisfying the transport equation
oo™ + div(p™Pu’) = 0
with initial datum
SO(S’h‘t:O - <P87

where ¢} is a smooth function with support in B, (xp),
[ph(x)dx =1, and 0 < ¢j < C", for some positive number
Ch

Then ¢! has support in X°(t,)By, (xn), [ ¢"P(x,t)dy =1
for every t >0, and 0 < ** < CHT) if 0 <t < T for some
positive number C"(T). This is a consequence of the fact
that

T
/0 1F (0 ) 4 < CT +T),

where v = ~(r) > 0.
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Write L° =logp’, L =logp and the mass equation in the
form

L+ VL' - w’ = —(A+ ) (F' + P(p’) — P(p))

t
/gp5th5dx|g = —(A+u)_1/ /(F5+P(p5) —P(p)) ¢"" dxds.
0

We want to take the limits as 6 — 0 and then h — 0.
To do that we use that X° converges to X in [0,t] x B, ()
uniformly with respect to 6 and that for each h > 0 there
is a dp(h) > 0 such that

X(S(Sv ')Brh@jh) - X(Sv ')BQTh(xh)
for all § < dy(h) and s € [0, ].

22



For fixed ¢, we write

/ goé’hLé dx — / SDcs,h(Lé — L)dx + / gpé’hLdX =1+11

and notice that I — 0 as § — 0 because its integrand tends
to zero a.e. and it is bounded by some constant C"(t).

Thus given h, there is a dg(h) such that I <h if § < jy(h).
Regarding II, we have

IT < ess SU.pL(', t)|X(t7 ')Bth(Xh)

if 9 < dg(h) for some Jp(h) > 0. Then, there is a jo(h) > 0 such
that § < §p(h) implies

/cp5’hL5dx < esssupL(-, t)|X(t, -)Bay, (xn) + h.

Similarly,

essinf L(-, t)|X(t, -)Bay, (xn) —h < /¢5’hL5dX

< esssup L(? t>|X<t7 '>B2rh<Xh) + h.
for all § < dg(h).

23



Also, we write

t t
/ / PP Fidxds = / F)dsdx + / / PP Fdxds
0 0 0
I+ 11

I tends to zero as ) — O:

supp go‘;’h(-, s) C X(s, ") By, (x1n) C X°(s, )Bay, (x0) C X(s, -)By(x0)

\// OB(F — F)dxds|
< Cht)|K]

. (HF‘SH + [1F]) 1

. ~
< )By(x0)) ds < C"(t)|K|C 77,

for some positive constants C .7, and any sufficiently small

7 > 0, where |K| is the Lebesgue measure of the compact
set K = X([0,t] X B.(xg)). On the other hand,

" (F — F)| < C'(t)|F’ ~ F|

converges to zero a.e. and, for s € [r,t] and y being the
charateristic function of the set K, we have

" H(F° = F)[ < CHt)x(x)(||[F]]oo + lim infs o [|F*||c)
< 2CR(t)x(x) sup; |[F°[|oc < C-CR(t)x(x).
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Thus, similarly to above, there is a Jy(h) such that for
§ < 0g(h),

t

[ st 8 X(5, B ey — 1 <

0

/ "M Fodxds

0

t
§/esssupF(-,s)]X(s,-)B2rh(xh) ds + h.
0

Analogously, we have a similar estimate w.r.t. P —P(p):

/ :eSS inf [P(p(-,s)) — |X )Bax, (x4)ds — h
/ / ShIP(p’) — P(p)]dxds
= / ZGSS sup [P(p(-,s)) — P(5)]|X(s, ) Bax, (xn) ds + h.

25



Now,

L(x4+,t) = limy_gesssup L(-, t)|(By(x5) N M)
= limy_gessinf L(-, t)|(Bp(x§) N M%),

and for each r’ > 0 there is a hy > 0 such that
X (t, *)Bay, (xn) C Bp(x§) N M
for all h < h,.

Thus, for each ' > 0 and all h < h,/,

essinfL(-, t)|(Bp(x0) N M%) < essinfL(-, t)|X(t, -)Bay, (Xn)
< esssup L(+, t)|(By(xo) N MY).

Then, taking here first the liminf and limsup as h — 0, and
then the limit as r’ — 0, we see that there exists the

}llirr%) essinf L(-, £)|X (¢, -)Bay, (xn) = L(xg+, t).

Analogously,

}llin% esssup L(-, t)|X(t, ) Bay, (xn) = L(xg+, t).
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Hence,

. Shy 6 _ t
Ji i [ (7L, £)dx = L+ t).

Similarly,

o Shy 6 _
lim lim / (L) (x, 0)dx = Lo(xo-),

t t
lim lim / / PP Fdxds = / F(X(s, %)+, s)ds
0

and

limy, o limg_g / / Ship P(j)|dxds
_ /O[P<p< (s, %0)+,5)) — P(7)]ds.
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From all the above, it follows that
L(xg+,t) — L(xo+)

= —(A+p)7! / . [F(X(s,x0)+,8) + P (p(X(s,x0)+,5) ) — P(p)] ds.

This shows that the map te€[0,00)— L(xj+,t) is in
C([0,00)) N C!((0,0)), hence so it is t € [0,00) — p(xi{+,t).
Next, write the same relation for L(x{—,t) and subtract
to get

L )] = (L) = (A ) [ [P (p(X (s, x0)5) )] ds

Then,
d

Tl 8] = —(A+ ) [P (p(X (x5, 1), 1) )] = a(t)[L(xp, b)),

so integranting this equation we finish the proof.
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