Institute of Mathematical Sciences CHINESE UNIVERSITY OF HONK KONG 11/29/07

Lagrangean Structure and Propagation of Singularities in Multidimensional Compressible Flow

D. Hoff and M.M. Santos
msantos@ime.unicamp.br
http://www.ime.unicamp.br/~msantos

Outline:

1. Hoff solutions
2. Results
3. On proofs

1 Hoff solutions

Navier-Stokes equations

$$
\left\{\begin{array}{l}
\rho_{\mathbf{t}}+\operatorname{div}(\rho \mathbf{u})=0 \\
\begin{array}{l}
\left(\rho \mathbf{u}^{\mathbf{j}}\right)_{\mathbf{t}}+ \\
\quad \operatorname{div}\left(\rho \mathbf{u}^{\mathbf{j}} \mathbf{u}\right)+\mathbf{P}(\rho)_{\mathbf{x}_{\mathbf{j}}} \\
\quad=\mu \mathbf{u}^{\mathbf{j}}+\lambda \operatorname{div}_{\mathbf{x}_{\mathbf{j}}}+\rho \mathbf{f}^{\mathbf{j}}
\end{array} \\
\left.(\rho, \mathbf{u})\right|_{\mathbf{t}=\mathbf{0}}=\left(\rho_{0}, \mathbf{u}_{\mathbf{0}}\right) \\
\mathbf{x} \in \mathbb{R}^{\mathbf{n}}, \quad \mathbf{n}=\mathbf{2}, \mathbf{3}
\end{array}\right.
$$

Assumptions

$$
\left\{\begin{array}{l}
\mathbf{P} \in \mathbf{C}^{2}([\mathbf{0}, \bar{\rho}]), \quad \mathbf{P}^{\prime}(\tilde{\rho})>\mathbf{0}, \quad \text { for some } \tilde{\rho} \in(\mathbf{0}, \bar{\rho}) \\
(\rho-\tilde{\rho})[\mathbf{P}(\rho)-\mathbf{P}(\tilde{\rho})]>\mathbf{0}, \quad \rho \neq \tilde{\rho} ;
\end{array}\right.
$$

$$
\begin{aligned}
\int_{0}^{\infty} & \left(\|\mathbf{f}(\cdot, \mathbf{t})\|_{2}+\|\mathbf{f}(\cdot, \mathbf{t})\|_{2}^{2}\right. \\
& \left.+\sigma(\mathbf{t})^{\gamma}\left\|\mathbf{f}_{\mathbf{t}}(\cdot, \mathbf{t})\right\|_{2}^{2}\right) \mathbf{d} \mathbf{t} \\
& +\sup _{\mathbf{t} \geq \mathbf{0}}\|\mathbf{f}(\cdot, \mathbf{t})\|_{\mathbf{p}} \leq \mathbf{C}_{\mathbf{f}}<\infty
\end{aligned}
$$

$$
\text { some } \mathbf{p}>\mathbf{n}, \quad \sigma(\mathbf{t}):=\min \{\mathbf{1}, \mathbf{t}\}, \quad \gamma= \begin{cases}3, & \mathbf{n}=\mathbf{2} \\ 5, & \mathbf{n}=\mathbf{3}\end{cases}
$$

$$
\left\{\begin{array}{r}
\lambda, \mu>\mathbf{0}, \mathbf{n}=\mathbf{2} \\
\mathbf{0}<\lambda<\frac{5}{4} \mu, \mathbf{n}=\mathbf{3}
\end{array}\right.
$$

$$
\begin{gathered}
\int_{\mathbb{R}^{\mathbf{n}}}\left[\rho_{0}\left|\mathbf{u}_{0}\right|^{2}+\left|\rho_{0}-\tilde{\rho}\right|^{2}\right] \mathbf{d x} \leq \mathbf{C}_{0}<\infty \\
\rho_{0} \geq \mathbf{0} \text { a.e. }, \quad\left\|\rho_{0}\right\|_{\infty}<\bar{\rho}
\end{gathered}
$$

EXISTENCE OF SOLUTION

(D. HOFF 1995, 1997, 2005):

Given $\rho_{1} \in(\widetilde{\rho}, \bar{\rho})$, there are positive numbers ε and \mathbf{C} depending on $\widetilde{\rho}, \rho_{1}, \bar{\rho}, \mathbf{P}, \lambda, \mu$, and \mathbf{p}, and there is a universal positive constant θ such that, given initial data (ρ_{0}, \mathbf{u}_{0}) and external force \mathbf{f} satisfying

$$
0 \leq \operatorname{ess} \inf \rho_{0} \leq \operatorname{ess} \sup \rho_{0} \leq \rho_{1}
$$

and

$$
\mathbf{C}_{0}+\mathbf{C}_{\mathbf{f}} \leq \varepsilon
$$

the above initial--value problem has a global weak solution (ρ, \mathbf{u}) with the following properties:

- (energy estimate)

$$
\begin{aligned}
\sup _{\mathbf{t}>\mathbf{0}} \int_{\mathbb{R}^{\mathbf{n}}} & {\left[\rho(\mathbf{x}, \mathbf{t})|\mathbf{u}(\mathbf{x}, \mathbf{t})|^{2}+|\rho(\mathbf{x}, \mathbf{t})-\tilde{\rho}|^{2}\right.} \\
& \left.+\sigma(\mathbf{t})|\nabla \mathbf{u}(\mathbf{x}, \mathbf{t})|^{2}\right] \mathbf{d x} \\
& +\int_{0}^{\infty} \int_{\mathbb{R}^{\mathbf{n}}}\left[|\nabla \mathbf{u}|^{2}+\sigma(\mathbf{t})^{\mathbf{n}}|\nabla \dot{\mathbf{u}}|^{2}\right] \mathbf{d x d t} \\
& \leq \mathbf{C}\left(\mathbf{C}_{0}+\mathbf{C}_{\mathbf{f}}\right)^{\theta}<\infty
\end{aligned}
$$

$\dot{\mathrm{u}}$ is the 'convective (material) derivative':

$$
\dot{\mathbf{u}^{\mathrm{j}}}:=\mathbf{u}_{\mathbf{t}}^{\mathbf{j}}+\mathbf{u} \cdot \nabla \mathbf{u}^{\mathrm{j}} .
$$

- $\quad \int_{0}^{\infty} \int_{\mathbb{R}^{\mathbf{n}}} \sigma(\mathbf{t}) \rho|\dot{\mathbf{u}}|^{2} \mathbf{d x d t} \leq \mathbf{C}\left(\mathbf{C}_{\mathbf{0}}+\mathbf{C}_{\mathbf{f}}\right)^{\theta}$
$\underline{\boldsymbol{i f} \inf \rho_{0}>\mathbf{0}} \quad(\inf \equiv \operatorname{ess} \inf)$
- $\mathbf{C}^{-1} \inf \rho_{0} \leq \rho \leq \bar{\rho} \quad$ a.e. $\quad(\mathbf{C}>0)$
- Hölder continuity: For any $\tau>0$, we have that u,

$$
\mathbf{F}:=(\mu+\lambda) \operatorname{div} \mathbf{u}-(\mathbf{P}(\rho)-\mathbf{P}(\tilde{\rho}))
$$

and
$\omega^{\mathrm{j}, \mathrm{k}}=\mathbf{u}_{\mathrm{x}_{\mathrm{k}}}^{\mathrm{j}}-\mathbf{u}_{\mathrm{x}_{\mathrm{j}}}^{\mathrm{k}} \quad$ (vorticity matrix)
are Hölder continuous in $\mathbb{R}^{\mathbf{n}} \times[\tau, \infty)$.

- The solution (ρ, \mathbf{u}) is obtained as the limit as $\delta \rightarrow 0$ of smooth approximate solutions $\left(\rho^{\delta}, \mathbf{u}^{\delta}\right)$ satisfying the above estimates with constants which are independent of $\delta, \quad \rho_{0}^{\delta}=\mathbf{j}_{\delta} * \rho_{0}+\delta, \quad \mathbf{u}_{0}^{\delta}=\mathbf{j}_{\delta} * \mathbf{u}_{0}$.

Weak solution:

$$
\left.\int_{\mathbb{R}^{\mathbf{n}}} \rho(\mathbf{x}, \cdot) \varphi(\mathbf{x}, \cdot) \mathbf{d x}\right|_{\mathbf{t}_{1}} ^{\mathbf{t}_{\mathbf{2}}}=\int_{\mathbf{t}_{1}}^{\mathbf{t}_{\mathbf{2}}} \int_{\mathbb{R}^{\mathbf{n}}}\left(\rho \varphi_{\mathrm{t}}+\rho \mathbf{u} \cdot \nabla \varphi\right) \mathbf{d x d t}
$$

and

$$
\begin{aligned}
& \left.\int_{\mathbb{R}^{\mathbf{n}}}\left(\rho \mathbf{u}^{\mathrm{j}}\right)(\mathbf{x}, \cdot) \varphi(\mathbf{x}, \cdot) \mathbf{d x}\right|_{\mathbf{t}_{1}} ^{\mathbf{t}_{2}} \\
= & \int_{\mathbf{t}_{1}}^{\mathrm{t}_{2}} \int_{\mathbb{R}^{\mathbf{n}}}\left[\rho \mathbf{u}^{\mathrm{j}} \varphi_{\mathbf{t}}+\rho \mathbf{u}^{\mathrm{j}} \mathbf{u} \cdot \nabla \varphi+\mathbf{P}(\rho) \varphi_{\mathbf{x}_{\mathrm{j}}}\right] \mathbf{d x d t} \\
& -\int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}} \int_{\mathbb{R}^{\mathbf{n}}}\left[\mu \nabla \mathbf{u}^{\mathrm{j}} \cdot \nabla \varphi+\lambda(\operatorname{div} \mathbf{u}) \varphi_{\mathbf{x}_{\mathbf{j}}}\right] \mathbf{d x d t} \\
& +\int_{\mathbf{t}_{1}}^{\mathrm{t}_{2}} \int_{\mathbb{R}^{\mathbf{n}}} \rho \mathbf{f}^{\mathbf{j}} \varphi \mathbf{d x d t}
\end{aligned}
$$

for all $\mathbf{t}_{2} \geq \mathbf{t}_{\mathbf{1}} \geq \mathbf{0}$ and all $\varphi \in \mathbf{C}^{\mathbf{1}}\left(\mathbb{R}^{\mathbf{n}} \times\left[\mathbf{t}_{\mathbf{1}}, \mathbf{t}_{\mathbf{2}}\right]\right)$ with compact support.

Motivation for the definition of $\mathrm{F} /$ Piecewise smooth weak solution:

Let \mathcal{S} be a hypersurface in $\mathrm{x}-\mathrm{t}$ space and suppose that (ρ, \mathbf{u}) is a weak solution that is C^{1} in the complement of \mathcal{S}, it has a uniquely defined flux $\mathbf{X}(\mathbf{t}, \mathbf{x})$ $(\partial \mathbf{X} / \partial \mathbf{t}=\mathbf{u}(\mathbf{X}, \mathbf{t}), \mathbf{X}(\mathbf{0}, \mathbf{x})=\mathbf{x})$, and such that it has onesided limits with respect to \mathcal{S}. (Recall that \mathbf{u} is continuous (in fact Hölder continuous) for $t>0$.) Then

$$
\mathcal{S} \cap\left\{\mathbf{t}=\mathbf{t}_{\mathbf{0}}\right\}=\mathbf{X}\left(\mathbf{t}_{\mathbf{0}}, \cdot\right)(\mathcal{S} \cap\{\mathbf{t}=\mathbf{0}\}),
$$

and the following jump conditions hold along \mathcal{S} :

$$
\begin{aligned}
{\left[\mathbf{u}_{\mathbf{x}_{\mathbf{k}}}^{\mathrm{j}}\right]=} & {\left[\mathbf{u}_{\mathrm{x}_{\mathrm{j}}}^{\mathrm{k}}\right] \text { and }[\mathbf{P}(\rho)]=(\lambda+\mu)[\operatorname{divu}] } \\
& \underline{\text { Rankine-Hugoniot conditions }}
\end{aligned}
$$

i.e.

$$
[\omega]=[\mathbf{F}]=\mathbf{0}
$$

Questions

For Hoff solutions we ask the following questions:

- Does u have a flux and it is unique ?? i.e. Is there a unique map $(\mathbf{t}, \mathbf{x}) \in[0, \infty) \times \mathbb{R}^{\mathbf{n}} \mapsto \mathbf{X}(\mathbf{t}, \mathbf{x}) \in \mathbb{R}^{\mathrm{n}}$ such that

$$
\left\{\begin{array}{cl}
\frac{\partial}{\partial \mathbf{t}} \mathbf{X}(\mathbf{t}, \mathbf{x})=\mathbf{u}(\mathbf{X}(\mathbf{t}, \mathbf{x}), \mathbf{t}), & \mathbf{t}>\mathbf{0}, \mathbf{x} \in \mathbb{R}^{\mathbf{n}} \\
\mathbf{X}(\mathbf{0}, \mathbf{x})=\mathbf{x}, & \mathbf{x} \in \mathbb{R}^{\mathbf{n}} ?
\end{array}\right.
$$

- Given \mathcal{M} a continuous hypersurface in \mathbb{R}^{n}, is $\mathcal{M}^{\mathrm{t}}:=\mathbf{X}(\mathbf{t}, \cdot)(\mathcal{M})$ a continuous hypersurface?
- If ρ_{0} has a one-sided limit with respect to \mathcal{M} at a point x_{0}, does $\rho(\cdot, \mathbf{t})$ have a one-sided limit at $\mathbf{X}\left(t, \mathbf{x}_{0}\right)$ with respect to \mathcal{M}^{t} ?

2 Results

Theorem 1 (Hoff-Santos) - Lagrangean structure:
Assume also that

$$
\sup _{0 \leq t \leq \tau_{0}} \int_{\mathbb{R}^{\mathbf{n}}}|\nabla \mathbf{f}(\mathbf{x}, \mathbf{t})|^{2} \mathrm{dx}+\int_{0}^{\tau_{0}} \int_{\mathbb{R}^{\mathbf{n}}}\left|f_{\mathbf{t}}(\mathrm{x}, \mathrm{t})\right|^{2} \mathrm{dxdt}<\infty
$$

and
$\mathrm{u}_{0} \in \mathrm{H}^{\mathrm{s}}\left(\mathbb{R}^{\mathrm{n}}\right)$ where $\mathrm{s}>0$ for $\mathrm{n}=2$ and $\mathrm{s}>1 / 2$ for $\mathrm{n}=3$.
Let V be an open set in \mathbb{R}^{n} and assume that

$$
\left.\inf \rho_{0}\right|_{\mathrm{V}} \geq \underline{\rho}>\mathbf{0}
$$

Then
a) For each $\mathrm{y} \in \mathrm{V}$ there is a unique curve $\mathrm{X}(\cdot, \mathrm{y})$,

$$
\mathbf{X}(\mathbf{t}, \mathbf{y})=\mathbf{y}+\int_{0}^{\mathbf{t}} \mathbf{u}(\mathbf{X}(\tau, \mathbf{y}), \tau) \mathbf{d} \tau
$$

b) For each $\mathrm{t}>0, \quad \mathrm{~V}^{\mathrm{t}} \equiv \mathrm{X}(\mathrm{t}, \cdot) \mathrm{V}$ is open and the map $\mathrm{y} \mapsto \mathrm{X}(\mathrm{t}, \mathrm{y})$ is a homeomorphism of V onto V^{t}, and it is locally Hölder continuous.
c) Let $\mathcal{M} \subset \subset \mathrm{V}$ be a C^{α} hypersurface, $\alpha \in[0,1)$. Then for any $\mathrm{t}>0, \quad \mathcal{M}^{\mathrm{t}} \equiv \mathbf{X}(\mathrm{t}, \cdot) \mathcal{M}$ is a C^{β} hypersurface, $\beta=\alpha \mathbf{e}^{-\mathrm{Ct}^{\gamma}}$.
d) There is a positive number $\underline{\widetilde{\rho}}$ such that, for all $\mathbf{t}>0$,

$$
\left.\inf \rho(\cdot, \mathbf{t})\right|_{\mathbf{V}^{\mathbf{t}}} \geq \underline{\tilde{\rho}}>\mathbf{0}
$$

Theorem 2 (Hoff-Santos) - One-sided limits:

If ρ_{0} has a one-sided limit at x_{0} from a side of \mathcal{M}, then for each $\mathbf{t}>0, \rho(\cdot, \mathbf{t})$ and div $\mathbf{u}(\cdot, \mathbf{t})$ have one-sided limits at $\mathrm{X}\left(\mathrm{t}, \mathrm{x}_{0}\right)$ from the same side of $\mathrm{X}(\mathrm{t}, \cdot) \mathcal{M}$.

If both one-sided limits $\rho_{0}\left(\mathrm{x}_{0} \pm\right)$ of ρ_{0} at x_{0} with respect to \mathcal{M} exist, then for each $\mathbf{t}>0$ the jumps in $\mathrm{P}(\rho(\cdot, \mathbf{t}))$ and $\operatorname{div} \mathbf{u}(\cdot, \mathbf{t})$ at $\mathbf{X}\left(\mathbf{t}, \mathbf{x}_{0}\right)$ satisfy the Rankine-Hugoniot condition

$$
\left[\mathbf{P}\left(\rho\left(\mathbf{X}\left(\mathbf{t}, \mathbf{x}_{\mathbf{0}}\right), \mathbf{t}\right)\right)\right]=\left[(\mu+\lambda) \operatorname{div} \mathbf{u}\left(\mathbf{X}\left(\mathbf{t}, \mathbf{x}_{\mathbf{0}}\right), \mathbf{t}\right)\right] .
$$

(Indeed,

$$
\mathbf{F}:=(\mu+\lambda) \boldsymbol{\operatorname { d i v }} \mathbf{u}-(\mathbf{P}(\rho)-\mathbf{P}(\tilde{\rho}))
$$

is (Hölder) continuous.)

Theorem 3 (Hoff-Santos) - Time evolution of discontinuities:

The map $\mathrm{t} \mapsto \rho\left(\mathrm{X}\left(\mathrm{t}, \mathrm{x}_{0}\right)+, \mathrm{t}\right)$ is in $\mathrm{C}([\mathbf{0}, \infty)) \cap \mathrm{C}^{\mathbf{1}}((\mathbf{0}, \infty))$ and the map $\mathbf{t} \mapsto \operatorname{div} \mathbf{u}\left(\mathbf{X}\left(\mathbf{t}, \mathrm{x}_{0}\right)+, \mathrm{t}\right)$ is locally Hölder continuous on ($0, \infty$).

If both one-sided limits $\rho_{0}\left(\mathrm{x}_{0} \pm\right)$ of ρ_{0} at x_{0} with respect to \mathcal{M} exist, then the jump in the logarithm of ρ satisfies the representation

$$
\left[\log \rho\left(\mathbf{X}\left(\mathbf{t}, \mathbf{x}_{0}\right), \mathbf{t}\right)\right]=\exp \left(-(\mu+\lambda)^{-1} \int_{0}^{\mathbf{t}} \mathbf{a}(\tau) \mathbf{d} \tau\right)\left[\log \rho_{\mathbf{0}}\left(\mathbf{x}_{0}\right)\right]
$$

where

$$
\mathbf{a}(\tau)=\frac{\left[\mathbf{P}\left(\rho\left(\mathbf{X}\left(\tau, \mathbf{x}_{\mathbf{0}}\right), \tau\right)\right)\right]}{\left[\log \rho\left(\mathbf{X}\left(\tau, \mathbf{x}_{\mathbf{0}}\right), \tau\right)\right]}
$$

3 "Proofs"

Theorem 1 - Lagrangean structure:

A vector field u in \mathbb{R}^{n} is said to be log-Lipschitzian (LL) if

$$
\langle\mathbf{u}\rangle_{L L} \equiv \sup _{0<|\mathbf{x}-\mathbf{y}| \leq 1} \frac{|\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{y})|}{|\mathbf{x}-\mathbf{y}|-|\mathbf{x}-\mathbf{y}| \log |\mathbf{x}-\mathbf{y}|}<\infty .
$$

Example. Let $\mathrm{w} \in \mathbf{L}^{\mathrm{p}}\left(\mathbb{R}^{\mathbf{n}}\right) \cap \mathbf{L}^{\infty}\left(\mathbb{R}^{\mathbf{n}}\right)$, where $\mathrm{p} \in[1, \infty)$, and $\bar{\Gamma}$ the fundamental solution of the Laplacian equation in $\mathbb{R}^{\mathbf{n}}$. Then $\quad \nabla \boldsymbol{\Gamma} * \mathbf{w} \in \mathbf{L L}\left(\mathbb{R}^{\mathbf{n}}\right)$ and

$$
\langle\nabla \boldsymbol{\Gamma} * \mathbf{w}\rangle_{\mathbf{L L}} \leq \mathbf{C}\left(\|\mathbf{w}\|_{\mathbf{p}}+\|\mathbf{w}\|_{\infty}\right)
$$

where $\mathrm{C}=\mathrm{C}(\mathbf{n}, \mathbf{p})$. If $p<n$, we also have

$$
\|\nabla \boldsymbol{\Gamma} * \mathbf{w}\|_{\infty} \leq \mathbf{C}\left(\|\mathbf{w}\|_{\mathbf{p}}+\|\mathbf{w}\|_{\infty}\right)
$$

Lagrangean structure of log-Lipschtzian vector fields
("Generalized Picard's theorem"):
If for each $t \geq 0, \mathbf{u}(\mathrm{x}, t)$ is a vector field in \mathbb{R}^{n} such that

$$
\langle\mathbf{u}(\cdot, t)\rangle_{L L} \in L_{l o c}^{1}([0, \infty))
$$

then for every $\mathrm{x} \in \mathbb{R}^{n}$ there exists a unique map $\mathbf{X}(\cdot, \mathbf{x}) \in \mathbf{C}\left(\left[0, \mathbf{t}_{\mathbf{x}}\right) ; \mathbb{R}^{\mathbf{n}}\right), \mathbf{t}_{\mathbf{x}}>\mathbf{0}$, such that

$$
\mathbf{X}(\mathbf{t}, \mathbf{x})=\mathbf{x}+\int_{0}^{\mathbf{t}} \mathbf{u}(\mathbf{X}(\tau, \mathbf{x}), \tau) \mathbf{d} \tau, \quad\left(\mathbf{0} \leq \mathbf{t}<\mathbf{t}_{\mathbf{x}}\right)
$$

Gronwall type inequality (Osgood's lemma):
Let $\eta \geq 0$ be a mensurable function and locally bounded in $[0, \infty), \mathbf{a} \geq \mathbf{0}$, and $\mathbf{0} \leq \mathrm{g} \in \mathbf{L}_{\mathrm{loc}}^{1}([\mathbf{0}, \infty))$, such that

$$
\eta(\mathbf{t}) \leq \mathbf{a}+\int_{0}^{\mathbf{t}} \mathbf{g}(\tau) \mathbf{m}(\eta(\tau)) \mathbf{d} \tau, \quad \mathbf{t} \in[\mathbf{0}, \infty),
$$

where

$$
m(r)=\left\{\begin{array}{cl}
r(1-\log r) & 0<r \leq 1 \\
r, & 1 \leq r<\infty .
\end{array}\right.
$$

Assume that $\eta \leq 1$. Then

$$
|\eta(\mathbf{t})| \leq \exp \left(\mathbf{1}-\mathbf{e}^{-\int_{0}^{\mathbf{t}} \mathbf{g} \mathbf{d} \tau}\right) \mathbf{a}^{\exp \left(-\int_{0}^{\mathbf{t}} \mathbf{g} \mathbf{d} \tau\right)}
$$

in the case that $\mathrm{a} \neq 0$, and $\eta(\mathrm{t}) \equiv 0$ if $\mathrm{a}=0$.

Decompose the velocity u by writing

$$
\begin{aligned}
\Delta \mathbf{u}^{\mathbf{j}}=\mathbf{u}_{\mathbf{x}_{\mathbf{k}}, \mathbf{x}_{\mathbf{k}}}^{j} & =\mathbf{u}_{\mathbf{x}_{\mathbf{k}}, \mathbf{x}_{\mathbf{j}}}^{\mathbf{k}}+\left(\mathbf{u}_{\mathbf{x}_{\mathbf{k}}}^{j}-\mathbf{u}_{\mathbf{x}_{\mathbf{j}}}^{\mathbf{k}}\right)_{\mathbf{x}_{\mathbf{k}}} \\
& =\operatorname{div} \mathbf{u}_{\mathbf{x}_{\mathbf{j}}}+\omega_{\mathbf{x}_{\mathbf{k}}}^{j, k} \\
& =(\mu+\lambda)^{-1} \mathbf{F}_{\mathbf{x}_{\mathbf{j}}}+\omega_{\mathbf{x}_{\mathbf{k}}}^{j, k}+(\mu+\lambda)^{-1} \mathbf{P}(\rho)_{\mathbf{x}_{\mathbf{j}}} \\
& \equiv \Delta \mathbf{u}_{\mathbf{F}, \omega}^{\mathrm{j}}+\boldsymbol{\Delta} \mathbf{u}_{\mathbf{P}}^{\mathrm{j}},
\end{aligned}
$$

so that

$$
\mathbf{u}=\mathbf{u}_{\mathbf{F}, \omega}+\mathbf{u}_{\mathbf{P}}
$$

where $\mathbf{u}_{\mathrm{F}, \omega}, \mathrm{u}_{\mathrm{P}}$ are defined by

$$
\begin{gathered}
\Delta \mathbf{u}_{\mathbf{F}, \omega}^{\mathbf{j}}=(\mu+\lambda)^{-1} \mathbf{F}_{\mathbf{x}_{\mathbf{j}}}+\left(\omega^{\mathbf{j}, \mathbf{k}}\right)_{\mathbf{x}_{\mathbf{k}}}, \\
\Delta \mathbf{u}_{\mathbf{P}}^{\mathbf{j}}=(\mu+\lambda)^{-\mathbf{1}}(\mathbf{P}(\rho)-\mathbf{P}(\tilde{\rho}))_{\mathbf{x}_{\mathbf{j}}} \\
\mathbf{u}_{\mathbf{p}}=(\mu+\lambda)^{-1} \nabla \boldsymbol{\Gamma} *(\mathbf{P}(\rho)-\mathbf{P}(\tilde{\rho})) .
\end{gathered}
$$

Then

$$
\mathbf{u}_{\mathbf{P}}(\cdot, \mathbf{t}) \in \mathbf{L} \mathbf{L} \quad\left(\mathbf{P}(\rho(\cdot, \mathbf{t}))-\mathbf{P}(\tilde{\rho}) \in \mathbf{L}^{2} \cap \mathbf{L}^{\infty}\right)
$$

$$
\mathbf{u}_{\mathbf{F}, \omega}(\cdot, \mathbf{t}) \in \operatorname{Lip} \quad(\mathbf{F}(\cdot, \mathbf{t}) \mathbf{e} \omega(\cdot, \mathbf{t}) \text { são Hölder contínuas). }
$$

Besides,

$$
\left\langle\mathbf{u}_{\mathbf{P}}(\cdot, \mathbf{t})\right\rangle_{\mathrm{LL}} \leq \mathbf{C}\|\mathbf{P}(\rho(\cdot, \mathbf{t}))-\mathbf{P}(\tilde{\rho})\|_{\mathbf{L}^{2} \cap \mathbf{L}^{\infty}} \in \mathbf{L}_{\mathbf{l o c}}^{1}([\mathbf{0}, \infty)) .
$$

Question: $\quad\left\langle\mathbf{u}_{\mathbf{F}, \omega}(\cdot, \mathbf{t})\right\rangle_{\text {Lip }} \in \mathbf{L}_{\text {loc }}^{1}([\mathbf{0}, \infty))$?
Notice that

$$
\left\langle\mathbf{u}_{\mathbf{F}, \omega}\right\rangle_{\mathrm{Lip}_{\mathrm{p}}} \leq \mathbf{C}\|\nabla \mathbf{F}+\nabla \omega\|_{\mathbf{p}} .
$$

On the other hand, the momentum equation can be written as

$$
\rho \dot{\mathbf{u}}^{\mathbf{j}}=\mathbf{F}_{\mathbf{x}_{\mathbf{j}}}+\mu \omega_{\mathrm{x}_{\mathbf{k}}}^{\mathrm{j}, \mathbf{k}}+\rho \mathbf{f}^{\mathbf{j}} .
$$

so, taking div e rot we obtain the equations

$$
\Delta \mathbf{F}=\operatorname{div}(\rho \dot{\mathbf{u}}-\rho \mathbf{f}) \quad \mu \Delta \omega^{\mathbf{j}, \mathbf{k}}=\operatorname{rot}(\rho \dot{\mathbf{u}}-\rho \mathbf{f})^{\mathbf{j}, \mathbf{k}} .
$$

Therefore

$$
\begin{gathered}
\|\nabla \mathbf{F}\|_{\mathbf{p}}, \quad\|\mathbf{D} \omega\|_{\mathbf{p}} \leq \mathbf{C}\left(\|\rho \dot{\mathbf{u}}\|_{\mathbf{p}}+\|\rho \mathbf{f}\|_{\mathbf{p}}\right) . \\
\|(\rho \dot{\mathbf{u}})(\cdot, \mathbf{t})\|_{\mathbf{p}} \in \mathbf{L}_{\mathbf{l o c}}^{1}([\mathbf{0}, \infty)) ? ?
\end{gathered}
$$

Suppose $\inf \rho_{0}>\mathbf{0}$.

$$
\begin{gathered}
\|\dot{\mathbf{u}}\|_{\mathbf{p}} \leq \mathbf{C}\|\dot{\mathbf{u}}\|_{2}^{1-\kappa}\|\nabla \dot{\mathbf{u}}\|_{2}^{\kappa} \\
\kappa=\mathbf{n}\left(\frac{1}{2}-\frac{1}{\mathbf{p}}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \int_{0}^{1}\left\|\left.\dot{\mathbf{u}}\right|_{2} ^{1-\kappa}\right\| \nabla \dot{\mathbf{u}} \|_{2}^{\kappa} \mathrm{dt} \\
= & \int_{0}^{1}\left(t^{1-s} \int|\dot{\mathbf{u}}|^{2} d \mathbf{x}\right)^{(1-\kappa) / 2}\left(t^{2-s} \int|\nabla \dot{\mathbf{u}}|^{2} d \mathbf{x}\right)^{\kappa / 2} t^{(s-1-\kappa) / 2 d t} \\
\leq & \left(\int_{0}^{1}\left(\mathbf{t}^{1-\mathrm{s}} \int|\dot{\mathbf{u}}|^{2} \mathbf{d x}\right)^{1-\kappa}\left(\mathbf{t}^{2-\mathrm{s}} \int|\nabla \dot{\mathbf{u}}|^{2} \mathbf{d x}\right)^{\kappa} \mathrm{dt}\right)^{1 / 2}\left(\int_{0}^{1} t^{s-1-\kappa} d t\right)^{1 / 2} \\
\leq & \mathbf{c}\left(\mathbf{C}_{0}+\mathbf{C}_{\mathbf{f}}\right)^{\theta} \quad\left(\int_{0}^{1} \mathbf{t}^{s-1-\kappa} \mathbf{d t}\right)^{1 / 2}:
\end{aligned}
$$

finite, since $s>\left\{\begin{array}{rr}0, & \mathbf{n}=2 \\ 1 / 2, & \mathbf{n}=3\end{array}\right.$ e $\quad \mathbf{u}_{0} \in H^{\mathrm{s}}\left(\mathbb{R}^{\mathrm{n}}\right), \quad$ due to
[Hoff] and $\inf _{\mathbf{p}>\mathbf{n}} \kappa=\left.\kappa\right|_{\mathbf{p}=\mathbf{n}}=\mathbf{n}\left(\frac{1}{2}-\frac{1}{\mathbf{n}}\right)=\left\{\begin{array}{cc}0, & \mathbf{n}=\mathbf{2} \\ 1 / 2, & \mathbf{n}=3 .\end{array}\right.$

Since it may occur $\left.\rho_{0}\right|_{V^{c}}=0$ we do not know if

$$
\langle\mathbf{u}(\cdot, \mathbf{t})\rangle_{\mathbf{L L}} \in \mathbf{L}_{\mathbf{l o c}}^{\mathbf{1}}([\mathbf{0}, \infty))
$$

but

$$
\begin{aligned}
& \left|\mathbf{X}_{\mathbf{1}}(\mathbf{t}, \mathbf{y})-\mathbf{X}_{\mathbf{1}}(\mathbf{t}, \mathbf{y})\right| \\
& \leq \int_{0}^{\mathbf{t}} \mathbf{g}(\tau) \mathbf{m}\left(\left|\mathbf{X}_{\mathbf{2}}(\tau, \mathbf{y})-\mathbf{X}_{\mathbf{1}}(\tau, \mathbf{y})\right|\right) \mathbf{d} \tau
\end{aligned}
$$

$$
\mathbf{g}(\mathbf{t}):=\frac{\left|\mathbf{u}\left(\mathbf{X}_{\mathbf{2}}(\mathbf{t}, \mathbf{y}), \mathbf{t}\right)-\mathbf{u}\left(\mathbf{X}_{\mathbf{1}}(\mathbf{t}, \mathbf{y}), \mathbf{t}\right)\right|}{\mathbf{m}\left(\left|\mathbf{X}_{\mathbf{2}}\left(\mathbf{t}, \mathbf{y}_{\mathbf{2}}\right)-\mathbf{X}_{\mathbf{1}}\left(\mathbf{t}, \mathbf{y}_{\mathbf{1}}\right)\right|\right)} \in \mathbf{L}_{\mathrm{loc}}^{1}([\mathbf{0}, \infty))
$$

In fact

$$
\mathbf{g}(\mathbf{t}) \leq \mathbf{g}_{\mathbf{r}}(\mathbf{t}):= \begin{cases}\langle\mathbf{u}(\cdot, \mathbf{t})\rangle_{\mathbf{L L}}, \mathbf{B}_{\mathbf{r}}(\mathbf{X}(\mathbf{t}, \mathbf{y})), & \mathbf{0} \leq \mathbf{t} \leq \mathbf{t}_{\mathbf{r}} \ll \mathbf{1} \\ \langle\mathbf{u}(\cdot, \mathbf{t})\rangle_{\mathbf{L},}, \mathbb{R}^{\mathbf{n}}, & \mathbf{t}>\mathbf{t}_{\mathbf{r}}\end{cases}
$$

and $\mathbf{g}_{\mathbf{r}} \in \mathbf{L}_{\mathrm{loc}}^{1}([\mathbf{0}, \infty))$ where $\mathbf{r}>\mathbf{0} ; \overline{\mathbf{B}_{\mathbf{r}}(\mathbf{y})} \subset \mathbf{V}$. Indeed,

$$
\int_{0}^{\mathrm{t}}\|\mathbf{u}(\cdot, \tau)\|_{\infty} \mathbf{d} \tau \leq \mathbf{C t}^{\gamma}
$$

Theorem 2 - One-sided limits

Recall that $\rho \equiv \rho(\cdot, t)$ has a one-sided limit at $\mathrm{x} \in \mathcal{M}^{\mathrm{t}}$ from the "plus" side $\mathcal{M}_{+}^{\mathrm{t}}$ of \mathcal{M}_{t} if

$$
\begin{aligned}
\operatorname{osc}\left(\rho ; \mathbf{x}, \mathcal{M}_{+}^{\mathbf{t}}\right):= & \lim _{\mathbf{r} \rightarrow \mathbf{0}}\left[\left.\operatorname{ess} \sup \rho\right|_{\mathcal{M}_{+}^{\mathrm{t}} \cap \mathbf{B}_{\mathbf{r}}(\mathbf{x})}\right. \\
& \left.\quad-\left.\operatorname{ess} \inf \rho\right|_{\mathcal{M}_{+}^{\mathbf{t}} \cap \mathbf{B}_{\mathbf{r}}(\mathbf{x})}\right] \\
= & \mathbf{0} .
\end{aligned}
$$

In this case

$$
\begin{aligned}
\rho(\mathbf{x}+, \mathbf{t}) & :=\left.\lim _{\mathbf{r} \rightarrow \mathbf{0}} \operatorname{ess} \sup \rho(\cdot, \mathbf{t})\right|_{\mathcal{M}_{+}^{\mathbf{t}} \cap \mathbf{B}_{\mathbf{r}}(\mathbf{x})} \\
& =\left.\lim _{\mathbf{r} \rightarrow \mathbf{0}} \operatorname{ess} \inf \rho(\cdot, \mathbf{t})\right|_{\mathcal{M}_{+}^{\mathbf{t}} \cap \mathbf{B}_{\mathbf{r}}(\mathbf{x})} .
\end{aligned}
$$

Write the conservation of mass $\rho_{\mathbf{t}}+\operatorname{div}(\rho \mathbf{u})=\mathbf{0}$ as

$$
\begin{gathered}
\dot{\rho}=-\rho \operatorname{divu}=-\rho(\lambda+\mu)^{-\mathbf{1}}[\mathbf{F}+(\mathbf{P}(\rho)-\mathbf{P}(\tilde{\rho}))] \\
(\lambda+\mu) \dot{\rho}=-\rho[\mathbf{F}+(\mathbf{P}(\rho)-\mathbf{P}(\tilde{\rho}))]
\end{gathered}
$$

Since $\left.\rho(\cdot, \mathbf{t})\right|_{\mathrm{V}^{t}}$ is strictly positive, we may divide by $\rho(\mathbf{X}(\mathbf{t}, \mathbf{y}), \mathbf{t})$, for $\mathbf{y} \in \mathbf{V}$, to obtain that

$$
\begin{aligned}
& (\lambda+\mu) \frac{\mathbf{d}}{\mathrm{dt}} \log \rho(\mathbf{X}(\mathbf{t}, \mathbf{y}), \mathbf{t})+\mathbf{P}(\rho(\mathbf{X}(\mathbf{t}, \mathbf{y}), \mathbf{t}))-\mathbf{P}(\tilde{\rho}) \\
= & -\mathbf{F}(\mathbf{X}(\mathbf{t}, \mathbf{y}), \mathbf{t}) .
\end{aligned}
$$

Then for $\mathrm{y}_{1}, \mathrm{y}_{2} \in \mathrm{~V}$,

$$
\begin{gathered}
\left.(\lambda+\mu) \frac{\mathbf{d}}{\mathbf{d t}} \log \rho(\mathbf{X}(\mathbf{t}, \cdot), \mathbf{t})\right|_{\mathrm{y}_{1}} ^{\mathrm{y}_{2}}+\left.\mathbf{a}(\mathbf{t}) \log \rho(\mathbf{X}(\mathbf{t}, \cdot), \mathbf{t})\right|_{\mathrm{y}_{1}} ^{\mathrm{y}_{2}} \\
=-\left.\mathbf{F}(\mathbf{X}(\mathbf{t}, \cdot), \mathbf{t})\right|_{\mathrm{y}_{1}} ^{\mathrm{y}_{2}}, \\
\mathbf{a}(\mathbf{t})=\frac{\left.\mathbf{P}(\rho(\mathbf{X}(\mathbf{t}, \cdot), \mathbf{t}))\right|_{\mathrm{y}_{1}} ^{\mathrm{y}_{2}}}{\left.\log \rho(\mathbf{X}(\mathbf{t}, \cdot), \mathbf{t})\right|_{\mathrm{y}_{1}} ^{\mathrm{y}_{2}}} .
\end{gathered}
$$

Then (writing sup \equiv ess sup and inf \equiv essinf)

$$
\begin{aligned}
&\left.(\sup -\inf) \log \rho(\cdot, \mathbf{t})\right|_{\mathbf{X}(\mathbf{t},)\left(\mathbf{B}_{\mathbf{r}}\left(\mathbf{x}_{0}\right) \cap \mathcal{M}_{+}\right)} \\
& \leq \leq\left.\mathrm{e}^{-(\lambda+\mu)^{-1} \int_{0}^{t} \mathbf{a}(\tau) \mathbf{d} \tau}(\sup -\inf) \log \rho_{0}\right|_{\mathbf{B}_{\mathbf{r}}\left(\mathbf{x}_{0}\right) \cap \mathcal{M}_{+}} \\
& \quad+\int_{0}^{\mathbf{t}} \mathrm{e}^{-\left.(\lambda+\mu)^{-1} \int_{\tau}^{t} \mathbf{a}(\xi) \mathbf{d} \xi(\sup -\inf) \mathbf{F}(\cdot, \tau)\right|_{\mathbf{X}(\tau,))\left(\mathbf{B}_{\mathbf{r}}\left(\mathbf{x}_{0}\right) \cap \mathcal{M}_{+}\right)} \mathbf{d} \tau .}
\end{aligned}
$$

The first term on the right goes to zero as $\mathbf{r} \rightarrow 0$ by the assumption that ρ_{0} has a one-sided limit at x_{0} and the second goes to zero by the Hölder continuity of $\mathbf{F}(\cdot, \tau)$ for $\tau>\mathbf{0}$.

Theorem 3 - Time evolution of discontinuites

Let $\mathrm{r}>0$ such that $\mathrm{r}<\operatorname{dist}\left(\mathrm{x}_{0}, \partial \mathrm{~V}\right), \quad\left\{\mathrm{x}_{\mathrm{h}}\right\}_{\mathrm{h}>0} \in \mathcal{M}_{+}$and $\left\{\mathrm{r}_{\mathrm{h}}\right\}>0$ such that $\mathrm{x}_{\mathrm{h}} \rightarrow \mathrm{x}_{0}, \mathrm{r}_{\mathrm{h}} \rightarrow 0$ as $\mathrm{h} \rightarrow 0$, and $\mathrm{B}_{2 \mathrm{r}_{\mathrm{h}}}\left(\mathrm{x}_{\mathrm{h}}\right) \subset \mathcal{M}_{+} \cap \mathrm{B}_{\mathrm{r}}\left(\mathrm{x}_{0}\right)$, for all $\mathbf{0}<\mathrm{h} \ll \mathbf{1}$.

Define $\varphi^{\delta, h}$, satisfying the transport equation

$$
\varphi_{\mathrm{t}}^{\delta, \mathbf{h}}+\operatorname{div}\left(\varphi^{\delta, h} \mathbf{u}^{\delta}\right)=\mathbf{0}
$$

with initial datum

$$
\left.\varphi^{\delta, \mathbf{h}}\right|_{\mathbf{t}=0}=\varphi_{0}^{\mathbf{h}}
$$

where φ_{0}^{h} is a smooth function with support in $\mathrm{B}_{\mathrm{r}_{\mathrm{h}}}\left(\mathrm{x}_{\mathrm{h}}\right)$, $\int \varphi_{0}^{\mathrm{h}}(\mathrm{x}) \mathrm{dx}=1$, and $0 \leq \varphi_{0}^{\mathrm{h}} \leq \mathrm{C}^{\mathrm{h}}$, for some positive number C^{h}.

Then $\varphi^{\delta, \mathbf{h}}$ has support in $\mathbf{X}^{\delta}(\mathbf{t}, \cdot) \mathbf{B}_{\mathbf{r}_{\mathbf{h}}}\left(\mathbf{x}_{\mathrm{h}}\right), \int \varphi^{\delta, \mathbf{h}}(\mathbf{x}, \mathbf{t}) \mathrm{d} \mathbf{y}=\mathbf{1}$ for every $\mathrm{t} \geq 0$, and $0 \leq \varphi^{\delta, \mathrm{h}} \leq \mathrm{C}^{\mathrm{h}}(\mathbf{T})$ if $0 \leq \mathrm{t} \leq \mathrm{T}$ for some positive number $C^{h}(T)$. This is a consequence of the fact that

$$
\int_{0}^{\mathbf{T}}\left\|\mathbf{F}^{\delta}(\cdot, \mathbf{t})\right\|_{\mathbf{L}^{\infty}\left(\mathrm{X}^{\delta}(\mathrm{t}, \cdot) \mathrm{B}_{\mathbf{r}}\left(\mathbf{x}_{0}\right)\right)} \mathrm{dt} \leq \mathbf{C}\left(\mathbf{T}+\mathbf{T}^{\gamma}\right)
$$

where $\gamma=\gamma(r)>0$.

Write $\mathbf{L}^{\delta} \equiv \log \rho^{\delta}, \quad \mathbf{L} \equiv \log \rho$ and the mass equation in the form

$$
\begin{gathered}
\mathbf{L}_{\mathbf{t}}^{\delta}+\nabla \mathbf{L}^{\delta} \cdot \mathbf{u}^{\delta}=-(\lambda+\mu)^{-\mathbf{1}}\left(\mathbf{F}^{\delta}+\mathbf{P}\left(\rho^{\delta}\right)-\mathbf{P}(\tilde{\rho})\right) \\
\left.\int \varphi^{\delta, \mathbf{h}} \mathbf{L}^{\delta} \mathbf{d x}\right|_{0} ^{\mathbf{t}}=-(\lambda+\mu)^{-\mathbf{1}} \int_{0}^{\mathbf{t}} \int\left(\mathbf{F}^{\delta}+\mathbf{P}\left(\rho^{\delta}\right)-\mathbf{P}(\tilde{\rho})\right) \varphi^{\delta, \mathbf{h}} \mathbf{d x d s}
\end{gathered}
$$

We want to take the limits as $\delta \rightarrow 0$ and then $h \rightarrow 0$. To do that we use that X^{δ} converges to X in $[0, t] \times B_{r}\left(x_{0}\right)$ uniformly with respect to δ and that for each $h>0$ there is a $\delta_{0}(h)>0$ such that

$$
X^{\delta}(s, \cdot) B_{r_{h}}\left(x_{h}\right) \subset X(s, \cdot) B_{2 r_{h}}\left(x_{h}\right)
$$

for all $\delta \leq \delta_{0}(h)$ and $s \in[0, t]$.

For fixed t, we write

$$
\int \varphi^{\delta, \mathbf{h}} \mathbf{L}^{\delta} \mathbf{d} \mathbf{x}=\int \varphi^{\delta, \mathbf{h}}\left(\mathbf{L}^{\delta}-\mathbf{L}\right) \mathbf{d} \mathbf{x}+\int \varphi^{\delta, \mathbf{h}} \mathbf{L d x} \equiv \mathbf{I}+\mathbf{I I}
$$

and notice that $\mathrm{I} \rightarrow \mathbf{0}$ as $\delta \rightarrow \mathbf{0}$ because its integrand tends to zero a.e. and it is bounded by some constant $\mathrm{C}^{\mathrm{h}}(\mathrm{t})$. Thus given h , there is a $\delta_{0}(\mathrm{~h})$ such that $\mathrm{I} \leq \mathrm{h}$ if $\delta \leq \delta_{0}(\mathrm{~h})$. Regarding II, we have

$$
\mathbf{I I} \leq \mathrm{ess} \sup \mathbf{L}(\cdot, \mathbf{t}) \mid \mathbf{X}(\mathbf{t}, \cdot) \mathbf{B}_{2 \mathbf{r}_{\mathbf{h}}}\left(\mathbf{x}_{\mathbf{h}}\right)
$$

if $\delta \leq \delta_{0}(\mathbf{h})$ for some $\delta_{0}(\mathbf{h})>0$. Then, there is a $\delta_{0}(\mathbf{h})>0$ such that $\delta \leq \delta_{0}(\mathbf{h})$ implies

$$
\int \varphi^{\delta, \mathbf{h}} \mathbf{L}^{\delta} \mathbf{d x} \leq \operatorname{ess} \sup \mathbf{L}(\cdot, \mathbf{t}) \mid \mathbf{X}(\mathbf{t}, \cdot) \mathbf{B}_{2 \mathbf{r}_{\mathbf{h}}}\left(\mathbf{x}_{\mathbf{h}}\right)+\mathbf{h} .
$$

Similarly,

$$
\begin{aligned}
& \operatorname{ess} \inf \mathbf{L}(\cdot, \mathbf{t}) \mid \mathbf{X}(\mathbf{t}, \cdot) \mathbf{B}_{2 \mathbf{r}_{\mathbf{h}}}\left(\mathbf{x}_{\mathbf{h}}\right)-\mathbf{h} \leq \int \varphi^{\delta, \mathbf{h}} \mathbf{L}^{\delta} \mathbf{d} \mathbf{x} \\
& \leq \operatorname{ess} \sup \mathbf{L}(\cdot, \mathbf{t}) \mid \mathbf{X}(\mathbf{t}, \cdot) \mathbf{B}_{\mathbf{2 r}_{\mathbf{h}}}\left(\mathbf{x}_{\mathbf{h}}\right)+\mathbf{h}
\end{aligned}
$$

for all $\delta \leq \delta_{0}(\mathbf{h})$.

Also, we write

$$
\begin{aligned}
\int_{0}^{\mathrm{t}} \int \varphi^{\delta, \mathbf{h}} \mathbf{F}^{\delta} \mathrm{dxds} & =\int_{0}^{\mathrm{t}} \int_{0} \varphi^{\delta, \mathbf{h}}\left(\mathbf{F}^{\delta}-\mathbf{F}\right) \mathrm{dsdx}+\int_{0}^{\mathrm{t}} \int \varphi^{\delta, \mathbf{h}} \mathbf{F d x d s} \\
& \equiv \mathbf{I}+\mathbf{I I} .
\end{aligned}
$$

I tends to zero as $\delta \rightarrow \mathbf{0}$:
$\operatorname{supp} \varphi^{\delta, \mathbf{h}}(\cdot, \mathbf{s}) \subset \mathbf{X}^{\delta}(\mathbf{s}, \cdot) \mathbf{B}_{\mathbf{r}_{\mathbf{h}}}\left(\mathbf{x}_{\mathbf{h}}\right) \subset \mathbf{X}^{\delta}(\mathbf{s}, \cdot) \mathbf{B}_{2 \mathbf{r}_{\mathbf{h}}}\left(\mathbf{x}_{\mathbf{0}}\right) \subset \mathbf{X}(\mathbf{s}, \cdot) \mathbf{B}_{\mathbf{r}}\left(\mathbf{x}_{0}\right)$ and

$$
\begin{aligned}
& \left|\int_{0}^{\tau} \int \varphi^{\delta, \mathbf{h}}\left(\mathbf{F}^{\delta}-\mathbf{F}\right) \mathbf{d x d s}\right| \\
\leq & \mathbf{C}^{\mathbf{h}}(\mathbf{t})|\mathbf{K}| \int_{0}^{\tau}\left(| | \mathbf{F}^{\delta}\|+\| \mathbf{F}| |\right)_{\left.\mathbf{L}^{\infty}(\mathbf{X}(\mathrm{s},)) \mathrm{Br}_{\mathbf{r}}\left(\mathbf{x}_{0}\right)\right)} \mathrm{ds} \leq \mathbf{C}^{\mathbf{h}}(\mathbf{t})|\mathbf{K}| \tilde{\mathbf{C}} \tau^{\gamma},
\end{aligned}
$$

for some positive constants \tilde{C}, γ, and any sufficiently small $\tau>0$, where $|K|$ is the Lebesgue measure of the compact set $K=X\left([0, t] \times \overline{B_{r}\left(x_{0}\right)}\right)$. On the other hand,

$$
\left|\varphi^{\delta, \mathbf{h}}\left(\mathbf{F}^{\delta}-\mathbf{F}\right)\right| \leq \mathbf{C}^{\mathbf{h}}(\mathbf{t})\left|\mathbf{F}^{\delta}-\mathbf{F}\right|
$$

converges to zero a.e. and, for $\mathrm{s} \in[\tau, \mathbf{t}]$ and χ being the charateristic function of the set K, we have

$$
\begin{aligned}
\left|\varphi^{\delta, \mathbf{h}}\left(\mathbf{F}^{\delta}-\mathbf{F}\right)\right| & \leq \mathbf{C}^{\mathbf{h}}(\mathbf{t}) \chi(\mathbf{x})\left(\left\|\mathbf{F}^{\delta}\right\|_{\infty}+\lim \inf _{\delta \rightarrow 0}\left\|\mathbf{F}^{\delta}\right\|_{\infty}\right) \\
& \leq \mathbf{2 C}^{\mathbf{h}}(\mathbf{t}) \chi(\mathbf{x}) \sup _{\delta}\left\|\mathbf{F}^{\delta}\right\|_{\infty} \leq \mathbf{C}_{\tau} \mathbf{C}^{\mathbf{h}}(\mathbf{t}) \chi(\mathbf{x}) .
\end{aligned}
$$

Thus, similarly to above, there is a $\delta_{0}(\mathbf{h})$ such that for $\delta \leq \delta_{0}(\mathbf{h})$,

$$
\begin{aligned}
& \int_{0}^{\mathrm{t}} \operatorname{ess} \inf \mathbf{F}(\cdot, \mathrm{~s}) \mid \mathbf{X}(\mathrm{s}, \cdot) \mathbf{B}_{2 \mathbf{r}_{\mathbf{h}}}\left(\mathbf{x}_{\mathrm{h}}\right) \mathrm{ds}-\mathbf{h} \leq \int_{0}^{\mathrm{t}} \int \varphi^{\delta, \mathbf{h}} \mathbf{F}^{\delta} \text { dxds } \\
& \leq \int_{0}^{\mathrm{t}} \operatorname{ess} \sup \mathbf{F}(\cdot, \mathbf{s}) \mid \mathbf{X}(\mathbf{s}, \cdot) \mathbf{B}_{2 \mathbf{r}_{\mathrm{h}}}\left(\mathbf{x}_{\mathbf{h}}\right) \mathrm{ds}+\mathbf{h} .
\end{aligned}
$$

Analogously, we have a similar estimate w.r.t. $\mathbf{P}-\mathbf{P}(\tilde{\rho})$:

$$
\begin{aligned}
& \int_{0}^{\mathbf{t}} \operatorname{ess} \inf [\mathbf{P}(\rho(\cdot, \mathbf{s}))-\mathbf{P}(\tilde{\rho})] \mid \mathbf{X}(\mathbf{s}, \cdot) \mathbf{B}_{2 \mathbf{r}_{\mathbf{h}}}\left(\mathbf{x}_{\mathbf{h}}\right) \mathbf{d s}-\mathbf{h} \\
& \quad \leq \int_{0}^{\mathbf{t}} \int \varphi^{\delta, \mathbf{h}}\left[\mathbf{P}\left(\rho^{\delta}\right)-\mathbf{P}(\tilde{\rho})\right] \mathbf{d x d s} \\
& \leq \int_{0}^{\mathbf{t}} \operatorname{ess} \sup [\mathbf{P}(\rho(\cdot, \mathbf{s}))-\mathbf{P}(\tilde{\rho})] \mid \mathbf{X}(\mathbf{s}, \cdot) \mathbf{B}_{2 \mathbf{r}_{\mathbf{h}}}\left(\mathbf{x}_{\mathbf{h}}\right) \mathbf{d s}+\mathbf{h} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\mathbf{L}\left(\mathbf{x}_{0}^{\mathbf{t}}+, \mathbf{t}\right) & =\lim _{\mathbf{r}^{\prime} \rightarrow \mathbf{0}} \operatorname{ess} \sup \mathbf{L}(\cdot, \mathbf{t}) \mid\left(\mathbf{B}_{\mathbf{r}^{\prime}}\left(\mathbf{x}_{\mathbf{0}}^{\mathbf{t}}\right) \cap \mathcal{M}_{+}^{\mathbf{t}}\right) \\
& =\lim _{\mathbf{r}^{\prime} \rightarrow \mathbf{0}} \operatorname{ess} \inf \mathbf{L}(\cdot, \mathbf{t}) \mid\left(\mathbf{B}_{\mathbf{r}^{\prime}}\left(\mathbf{x}_{\mathbf{0}}^{\mathbf{t}}\right) \cap \mathcal{M}_{+}^{\mathbf{t}}\right)
\end{aligned}
$$

and for each $\mathrm{r}^{\prime}>0$ there is a $\mathrm{h}_{\mathrm{r}^{\prime}}>0$ such that

$$
\mathbf{X}(\mathbf{t}, \cdot) \mathbf{B}_{2 \mathbf{r}_{\mathbf{h}}}\left(\mathbf{x}_{\mathbf{h}}\right) \subset \mathbf{B}_{\mathbf{r}^{\prime}}\left(\mathbf{x}_{\mathbf{0}}^{\mathrm{t}}\right) \cap \mathcal{M}_{+}^{\mathrm{t}}
$$

for all $h \leq h_{r^{\prime}}$.
Thus, for each $\mathrm{r}^{\prime}>0$ and all $\mathrm{h} \leq \mathrm{h}_{\mathrm{r}^{\prime}}$,
$\operatorname{ess} \inf \mathbf{L}(\cdot, \mathbf{t})\left|\left(\mathbf{B}_{\mathbf{r}^{\prime}}\left(\mathbf{x}_{\mathbf{0}}\right) \cap \mathcal{M}_{+}^{\mathbf{t}}\right) \leq \operatorname{ess} \inf \mathbf{L}(\cdot, \mathbf{t})\right| \mathbf{X}(\mathbf{t}, \cdot) \mathbf{B}_{\mathbf{2 r}_{\mathbf{h}}}\left(\mathbf{x}_{\mathbf{h}}\right)$
$\leq e \operatorname{ess} \sup \mathbf{L}(\cdot, \mathbf{t}) \mid\left(\mathbf{B}_{\mathbf{r}^{\prime}}\left(\mathbf{x}_{\mathbf{0}}\right) \cap \mathcal{M}_{+}^{\mathbf{t}}\right)$.
Then, taking here first the \liminf and \limsup as $\mathbf{h} \rightarrow \mathbf{0}$, and then the limit as $\mathrm{r}^{\prime} \rightarrow 0$, we see that there exists the

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \operatorname{ess} \inf \mathbf{L}(\cdot, \mathbf{t}) \mid \mathbf{X}(\mathbf{t}, \cdot) \mathbf{B}_{\mathbf{2 r}_{\mathbf{h}}}\left(\mathbf{x}_{\mathbf{h}}\right)=\mathbf{L}\left(\mathbf{x}_{0}^{\mathrm{t}}+, \mathbf{t}\right)
$$

Analogously,

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \operatorname{ess} \sup \mathbf{L}(\cdot, \mathbf{t}) \mid \mathbf{X}(\mathbf{t}, \cdot) \mathbf{B}_{\mathbf{2 r _ { \mathbf { h } }}}\left(\mathbf{x}_{\mathbf{h}}\right)=\mathbf{L}\left(\mathbf{x}_{\mathbf{0}}^{\mathbf{t}}+, \mathbf{t}\right)
$$

Hence,

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \lim _{\delta \rightarrow \mathbf{0}} \int\left(\varphi^{\delta, \mathbf{h}} \mathbf{L}^{\delta}\right)(\mathbf{x}, \mathbf{t}) \mathbf{d} \mathbf{x}=\mathbf{L}\left(\mathbf{x}_{\mathbf{0}}^{\mathbf{t}}+, \mathbf{t}\right)
$$

Similarly,

$$
\begin{gathered}
\lim _{\mathbf{h} \rightarrow 0} \lim _{\delta \rightarrow 0} \int\left(\varphi^{\delta, \mathbf{h}} \mathbf{L}^{\delta}\right)(\mathbf{x}, \mathbf{0}) \mathbf{d} \mathbf{x}=\mathbf{L}_{\mathbf{0}}\left(\mathbf{x}_{\mathbf{0}}+\right), \\
\lim _{\mathbf{h} \rightarrow 0} \lim _{\delta \rightarrow 0} \int_{0}^{\mathrm{t}} \int \varphi^{\delta, \mathrm{h}} \mathbf{F}^{\delta} \mathbf{d x d s}=\int_{0}^{\mathbf{t}} \mathbf{F}\left(\mathbf{X}\left(\mathbf{s}, \mathbf{x}_{\mathbf{0}}\right)+, \mathbf{s}\right) \mathbf{d s}
\end{gathered}
$$

and

$$
\begin{aligned}
& \lim _{\mathbf{h} \rightarrow 0} \lim _{\delta \rightarrow 0} \int_{0}^{\mathbf{t}} \int \varphi^{\delta, \mathbf{h}}\left[\mathbf{P}\left(\rho^{\delta}\right)-\mathbf{P}(\tilde{\rho})\right] \mathbf{d x d s} \\
& =\int_{0}^{\mathbf{t}}\left[\mathbf{P}\left(\rho\left(\mathbf{X}\left(\mathbf{s}, \mathbf{x}_{0}\right)+, \mathbf{s}\right)\right)-\mathbf{P}(\tilde{\rho})\right] \mathbf{d s} .
\end{aligned}
$$

From all the above, it follows that

$$
\begin{aligned}
& \mathbf{L}\left(\mathbf{x}_{0}^{\mathrm{t}}+, \mathbf{t}\right)-\mathbf{L}\left(\mathbf{x}_{0}+\right) \\
= & -(\lambda+\mu)^{-1} \int_{0}^{\mathbf{t}}\left[\mathbf{F}\left(\mathbf{X}\left(\mathbf{s}, \mathbf{x}_{0}\right)+, \mathbf{s}\right)+\mathbf{P}\left(\rho\left(\mathbf{X}\left(\mathbf{s}, \mathbf{x}_{0}\right)+, \mathbf{s}\right)\right)-\mathbf{P}(\tilde{\rho})\right] \mathbf{d s} .
\end{aligned}
$$

This shows that the map $\mathrm{t} \in[0, \infty) \mapsto \mathbf{L}\left(\mathrm{x}_{0}^{\mathrm{t}}+, \mathrm{t}\right)$ is in $\mathbf{C}([\mathbf{0}, \infty)) \cap \mathbf{C}^{\mathbf{1}}\left((\mathbf{0}, \infty)\right.$, hence so it is $\mathbf{t} \in[\mathbf{0}, \infty) \mapsto \rho\left(\mathbf{x}_{0}^{\mathrm{t}}+, \mathrm{t}\right)$. Next, write the same relation for $\mathrm{L}\left(\mathrm{x}_{0}^{\mathrm{t}}-, \mathrm{t}\right)$ and subtract to get

$$
\left[\mathbf{L}\left(\mathbf{x}_{0}^{\mathrm{t}}, \mathbf{t}\right)\right]-\left[\mathbf{L}\left(\mathbf{x}_{0}\right)\right]=-(\lambda+\mu)^{-1} \int_{0}^{\mathbf{t}}\left[\mathbf{P}\left(\rho\left(\mathbf{X}\left(\mathbf{s}, \mathbf{x}_{0}\right), \mathbf{s}\right)\right)\right] \mathbf{d s} .
$$

Then,

$$
\frac{\mathbf{d}}{\mathbf{d} \mathbf{t}}\left[\mathbf{L}\left(\mathbf{x}_{0}^{\mathrm{t}}, \mathbf{t}\right)\right]=-(\lambda+\mu)^{-1}\left[\mathbf{P}\left(\rho\left(\mathbf{X}\left(\mathbf{x}_{0}^{\mathrm{t}}, \mathbf{t}\right), \mathbf{t}\right)\right)\right] \equiv \mathbf{a}(\mathbf{t})\left[\mathbf{L}\left(\mathbf{x}_{0}^{\mathbf{t}}, \mathbf{t}\right)\right],
$$

so integranting this equation we finish the proof.

References

[Chemin] J.Y. Chemim, Perfect incompressible fluids, Oxford: Clarendon Press, New York: Oxford University Press (1987).
[Bahouri-Chemin] H. Bahouri e J.Y. Chemin, Equations de transport relatives des champs de vecteurs nonLipschitziens et mecanique des fluides, Arch. Rational Mech. Anal. 127(no. 2) (1994) 159-181.
[Hoff-Santos] D. Hoff and M.M. Santos, Lagrangean structure and propagation of singularities in multidimensional compressible flow, accepted in Arch. Rational Mech. Anal. (2007).
[Hoff 1995] David Hoff, Global solutions of the NavierStokes equations for multidimensional, compressible flow with discontinuous initial data, J. Diff. Eqns. 120(no. 1) (1995), 215-254.
[Hoff 1997] David Hoff, Discontinuous solutions of the Navier-Stokes equations for multidimensional, heatconducting flow, Archive Rational Mech. Ana. 139 (1997), 303-354.
[Hoff 2002] David Hoff, Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions, Comm. Pure Appl. Math. LV (2002) 1365-1407.
[Hoff 2005] David Hoff, Compressible Flow in a Half-Space with Navier Boundary Conditions, J. Math. Fluid Mech. 7 (2005) 315-338.
[Zuazua] E. Zuazua, Log-Lipschitz regularity and uniqueness of the flow for a field in $\left(W_{\text {loc }}^{n / p+1, p}\left(\mathbb{R}^{n}\right)\right)^{n}$, C. R. Math. Acad. Sci. Paris 335 (2002), no. 1, 17-22.

