Institute of Mathematical Sciences CHINESE UNIVERSITY OF HONK KONG 11/29/07

Lagrangean Structure and Propagation of Singularities in Multidimensional Compressible Flow

D. Hoff and M.M. Santos

msantos@ime.unicamp.br http://www.ime.unicamp.br/~msantos

Outline:

- 1. Hoff solutions
- 2. Results
- 3. On proofs

1 Hoff solutions

Navier-Stokes equations

$$\begin{cases} \rho_{t} + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u}^{j})_{t} + \operatorname{div}(\rho \mathbf{u}^{j} \mathbf{u}) + \mathbf{P}(\rho)_{\mathbf{x}_{j}} \\ = \mu \Delta \mathbf{u}^{j} + \lambda \operatorname{divu}_{\mathbf{x}_{j}} + \rho \mathbf{f}^{j} \\ (\rho, \mathbf{u})|_{t=0} = (\rho_{0}, \mathbf{u}_{0}), \\ \mathbf{x} \in \mathbb{R}^{n}, \quad \mathbf{n} = \mathbf{2}, \mathbf{3}. \end{cases}$$

Assumptions

$$\begin{cases} \mathbf{P} \in \mathbf{C}^2([\mathbf{0}, \bar{\rho}]), \quad \mathbf{P}'(\tilde{\rho}) > \mathbf{0}, & \text{for some } \tilde{\rho} \in (\mathbf{0}, \bar{\rho}) \\ (\rho - \tilde{\rho})[\mathbf{P}(\rho) - \mathbf{P}(\tilde{\rho})] > \mathbf{0}, & \rho \neq \tilde{\rho} \end{cases}; \end{cases}$$

$$\int_{0}^{\infty} \left(||\mathbf{f}(\cdot, \mathbf{t})||_{2} + ||\mathbf{f}(\cdot, \mathbf{t})||_{2}^{2} + \sigma(\mathbf{t})^{\gamma} ||\mathbf{f}_{\mathbf{t}}(\cdot, \mathbf{t})||_{2}^{2} \right) d\mathbf{t}$$
$$+ \sup_{\mathbf{t} \ge 0} ||\mathbf{f}(\cdot, \mathbf{t})||_{\mathbf{p}} \leq \mathbf{C}_{\mathbf{f}} < \infty$$
$$\boxed{\mathbf{some } \mathbf{p} > \mathbf{n}}, \quad \overline{\sigma(\mathbf{t}) := \min\{\mathbf{1}, \mathbf{t}\}}, \quad \gamma = \begin{cases} 3, \ \mathbf{n} = \mathbf{2} \\ 5, \ \mathbf{n} = \mathbf{3} \end{cases}$$

$$\left\{ \begin{array}{l} \lambda,\,\mu > \mathbf{0}\,,\,\,\mathbf{n} = \mathbf{2}\\ \mathbf{0} < \lambda < \frac{5}{4}\mu\,,\,\,\mathbf{n} = \mathbf{3} \end{array} \right.$$

$$egin{array}{ll} \int_{\mathbb{R}^n} \left[egin{array}{ccc}
ho_0 |\mathbf{u}_0|^2 + |
ho_0 - ilde{
ho}|^2 \end{array}
ight] \, \mathbf{d} \mathbf{x} &\leq \mathbf{C_0} &< \infty \ & \
ho_0 \ \geq \ \mathbf{0} \quad \mathbf{a.e.} \ , \quad ||
ho_0||_{\infty} \ < \ ar{
ho} \end{array}$$

EXISTENCE OF SOLUTION (D. HOFF 1995, 1997, 2005):

Given $\rho_1 \in (\tilde{\rho}, \bar{\rho})$, there are positive numbers ε and C depending on $\tilde{\rho}, \rho_1, \bar{\rho}, \mathbf{P}, \lambda, \mu$, and p, and there is a universal positive constant θ such that, given initial data (ρ_0, \mathbf{u}_0) and external force f satisfying

 $\mathbf{0} \leq \operatorname{ess\,inf} \rho_{\mathbf{0}} \leq \operatorname{ess\,sup} \rho_{\mathbf{0}} \leq \rho_{\mathbf{1}},$

and

$$\mathbf{C_0} + \mathbf{C_f} \le \varepsilon \,,$$

the above initial-value problem has a global weak solution (ρ, \mathbf{u}) with the following properties:

$$\begin{array}{l} \bullet \ (energy \ estimate) \\ & \sup_{\mathbf{t} > \mathbf{0}} \int_{\mathbb{R}^{\mathbf{n}}} \ \left[\begin{array}{c} \rho(\mathbf{x}, \mathbf{t}) | \mathbf{u}(\mathbf{x}, \mathbf{t}) |^{2} + |\rho(\mathbf{x}, \mathbf{t}) - \tilde{\rho}|^{2} \\ & + \sigma(\mathbf{t}) | \nabla \mathbf{u}(\mathbf{x}, \mathbf{t}) |^{2} \right] \mathbf{dx} \end{array} \\ & \quad + \int_{\mathbf{0}}^{\infty} \int_{\mathbb{R}^{\mathbf{n}}} \left[\ |\nabla \mathbf{u}|^{2} + \sigma(\mathbf{t})^{\mathbf{n}} |\nabla \dot{\mathbf{u}}|^{2} \ \right] \mathbf{dx} \mathbf{dt} \\ & \quad \leq \ \mathbf{C} \left(\mathbf{C}_{\mathbf{0}} + \mathbf{C}_{\mathbf{f}} \right)^{\theta} < \infty \end{array}$$

 $\dot{\mathbf{u}}$ is the 'convective (material) derivative': $\dot{\mathbf{u}^j} := \mathbf{u}^j_t + \mathbf{u} \cdot \nabla \mathbf{u}^j.$

•
$$\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \sigma(\mathbf{t}) \rho |\dot{\mathbf{u}}|^{2} \, \mathbf{dx} \mathbf{dt} \leq \mathbf{C} \, (\mathbf{C}_{0} + \mathbf{C}_{f})^{\theta}$$
$$\underline{if \quad \inf \rho_{0} > 0} \qquad (\text{ inf } \equiv \text{ ess inf })$$

•
$$\mathbf{C}^{-1} \inf \rho_0 \leq \rho \leq \overline{\rho}$$
 a.e. $(\mathbf{C} > \mathbf{0})$

• Hölder continuity: For any au > 0, we have that \mathbf{u} ,

$$\mathbf{F} := (\mu + \lambda) \mathbf{div} \, \mathbf{u} \ - \ (\mathbf{P}(\rho) - \mathbf{P}(\tilde{\rho}))$$

and

$$\omega^{\mathbf{j},\mathbf{k}} = \mathbf{u}_{\mathbf{x}_{\mathbf{k}}}^{\mathbf{j}} - \mathbf{u}_{\mathbf{x}_{\mathbf{j}}}^{\mathbf{k}}$$
 (vorticity matrix)

- are Hölder continuous in $\mathbb{R}^{n} \times [\tau, \infty)$.
- The solution (ρ, \mathbf{u}) is obtained as the limit as $\delta \to \mathbf{0}$ of smooth approximate solutions $(\rho^{\delta}, \mathbf{u}^{\delta})$ satisfying the above estimates with constants which are independent of δ , $\rho_{\mathbf{0}}^{\delta} = \mathbf{j}_{\delta} * \rho_{\mathbf{0}} + \delta$, $\mathbf{u}_{\mathbf{0}}^{\delta} = \mathbf{j}_{\delta} * \mathbf{u}_{\mathbf{0}}$.

Weak solution:

$$\int_{\mathbb{R}^{\mathbf{n}}} \rho(\mathbf{x}, \cdot) \varphi(\mathbf{x}, \cdot) d\mathbf{x} \bigg|_{\mathbf{t}_{1}}^{\mathbf{t}_{2}} = \int_{\mathbf{t}_{1}}^{\mathbf{t}_{2}} \int_{\mathbb{R}^{\mathbf{n}}} (\rho \varphi_{\mathbf{t}} + \rho \mathbf{u} \cdot \nabla \varphi) d\mathbf{x} d\mathbf{t}$$

and

$$\begin{split} &\int_{\mathbb{R}^{n}} (\rho \mathbf{u}^{\mathbf{j}})(\mathbf{x}, \cdot) \varphi(\mathbf{x}, \cdot) d\mathbf{x} \Big|_{\mathbf{t}_{1}}^{\mathbf{t}_{2}} \\ &= \int_{\mathbf{t}_{1}}^{\mathbf{t}_{2}} \int_{\mathbb{R}^{n}} [\rho \mathbf{u}^{\mathbf{j}} \varphi_{\mathbf{t}} + \rho \mathbf{u}^{\mathbf{j}} \mathbf{u} \cdot \nabla \varphi + \mathbf{P}(\rho) \varphi_{\mathbf{x}_{\mathbf{j}}}] d\mathbf{x} dt \\ &- \int_{\mathbf{t}_{1}}^{\mathbf{t}_{2}} \int_{\mathbb{R}^{n}} [\mu \nabla \mathbf{u}^{\mathbf{j}} \cdot \nabla \varphi + \lambda (\operatorname{div} \mathbf{u}) \varphi_{\mathbf{x}_{\mathbf{j}}}] d\mathbf{x} dt \\ &+ \int_{\mathbf{t}_{1}}^{\mathbf{t}_{2}} \int_{\mathbb{R}^{n}} \rho \mathbf{f}^{\mathbf{j}} \varphi \, d\mathbf{x} dt \end{split}$$

for all $\,t_2\geq t_1\geq 0\,$ and all $\,\,\varphi\in C^1(\mathbb{R}^n\times [t_1,t_2])\,$ with compact support.

<u>Motivation for the definition of F/Piecewise monoth weak</u> solution:</u>

Let S be a hypersurface in $\mathbf{x} - \mathbf{t}$ space and suppose that (ρ, \mathbf{u}) is a weak solution that is C^1 in the complement of S, it has a uniquely defined flux $\mathbf{X}(\mathbf{t}, \mathbf{x})$ $(\partial \mathbf{X}/\partial \mathbf{t} = \mathbf{u}(\mathbf{X}, \mathbf{t}), \mathbf{X}(\mathbf{0}, \mathbf{x}) = \mathbf{x})$, and such that it has one-sided limits with respect to S. (Recall that \mathbf{u} is continuous (in fact Hölder continuous) for $\mathbf{t} > 0$.) Then

$$\mathcal{S} \cap \{\mathbf{t} = \mathbf{t_0}\} = \mathbf{X}(\mathbf{t_0}, \cdot)(\mathcal{S} \cap \{\mathbf{t} = \mathbf{0}\}),$$

and the following jump conditions hold along S:

$$\begin{split} [\mathbf{u}_{\mathbf{x}_{\mathbf{k}}}^{\mathbf{j}}] &= [\mathbf{u}_{\mathbf{x}_{\mathbf{j}}}^{\mathbf{k}}] \quad \text{and} \quad [\mathbf{P}(\rho)] &= (\lambda + \mu)[\mathbf{divu}] \\ \\ & \underline{\mathbf{Rankine-Hugoniot\ conditions}} \end{split}$$

i.e.

$$[\omega] = [\mathbf{F}] = \mathbf{0}.$$

Questions

For Hoff solutions we ask the following questions:

• Does u have a flux and it is unique ?? i.e. Is there a unique map $(t, x) \in [0, \infty) \times \mathbb{R}^n \mapsto X(t, x) \in \mathbb{R}^n$ such that

$$\begin{cases} \frac{\partial}{\partial t} \mathbf{X}(\mathbf{t}, \mathbf{x}) = \mathbf{u}(\mathbf{X}(\mathbf{t}, \mathbf{x}), \mathbf{t}), & \mathbf{t} > \mathbf{0}, \ \mathbf{x} \in \mathbb{R}^{\mathbf{n}} \\ \mathbf{X}(\mathbf{0}, \mathbf{x}) = \mathbf{x}, & \mathbf{x} \in \mathbb{R}^{\mathbf{n}} \end{cases}?$$

- Given \mathcal{M} a continuous hypersurface in \mathbb{R}^n , is $\mathcal{M}^t := \mathbf{X}(\mathbf{t}, \cdot)(\mathcal{M})$ a continuous hypersurface?
- If ρ_0 has a one-sided limit with respect to \mathcal{M} at a point \mathbf{x}_0 , does $\rho(\cdot, \mathbf{t})$ have a one-sided limit at $\mathbf{X}(t, \mathbf{x}_0)$ with respect to $\mathcal{M}^{\mathbf{t}}$?

2 Results

Theorem 1 (Hoff-Santos) – Lagrangean structure: Assume also that

$$\sup_{0\leq t\leq \tau_0}\int_{\mathbb{R}^n}|\nabla f(x,t)|^2dx+\int_0^{\tau_0}\int_{\mathbb{R}^n}|f_t(x,t)|^2dxdt<\infty$$

and

 $\boxed{u_0\in H^s(\mathbb{R}^n) \hspace{0.3cm}\textit{where} \hspace{0.3cm} s>0 \hspace{0.3cm}\textit{for} \hspace{0.3cm} n=2 \hspace{0.3cm}\textit{and} \hspace{0.3cm} s>1/2 \hspace{0.3cm}\textit{for} \hspace{0.3cm} n=3}.$

Let V be an open set in \mathbb{R}^n and assume that

$$\inf \rho_{\mathbf{0}}|_{\mathbf{V}} \geq \underline{\rho} > \mathbf{0}.$$

Then

a) For each $y \in V$ there is a unique curve $X(\cdot, y)$,

$$\mathbf{X}(\mathbf{t}, \mathbf{y}) = \mathbf{y} + \int_{\mathbf{0}}^{\mathbf{t}} \mathbf{u}(\mathbf{X}(\tau, \mathbf{y}), \tau) \mathbf{d}\tau.$$

b) For each t > 0, $V^t \equiv X(t, \cdot)V$ is open and the map $y \mapsto X(t, y)$ is a homeomorphism of V onto V^t , and it is locally Hölder continuous.

c) Let $\mathcal{M} \subset \subset V$ be a C^{α} hypersurface, $\alpha \in [0, 1)$. Then for any t > 0, $\mathcal{M}^t \equiv X(t, \cdot)\mathcal{M}$ is a C^{β} hypersurface, $\beta = \alpha e^{-Ct^{\gamma}}$.

d) There is a positive number $\widetilde{\underline{\rho}}$ such that, for all t > 0,

$$\inf |\rho(\cdot, \mathbf{t})|_{\mathbf{V}^{\mathbf{t}}} \geq \widetilde{\underline{\rho}} > \mathbf{0}.$$

Theorem 2 (Hoff-Santos) – One-sided limits:

If ρ_0 has a one-sided limit at \mathbf{x}_0 from a side of \mathcal{M} , then for each $\mathbf{t} > \mathbf{0}$, $\rho(\cdot, \mathbf{t})$ and $\operatorname{div} \mathbf{u}(\cdot, \mathbf{t})$ have one-sided limits at $\mathbf{X}(\mathbf{t}, \mathbf{x}_0)$ from the same side of $\mathbf{X}(\mathbf{t}, \cdot)\mathcal{M}$.

If both one-sided limits $\rho_0(\mathbf{x_0}\pm)$ of ρ_0 at $\mathbf{x_0}$ with respect to \mathcal{M} exist, then for each t > 0 the jumps in $\mathbf{P}(\rho(\cdot, t))$ and $\operatorname{div} \mathbf{u}(\cdot, t)$ at $\mathbf{X}(t, \mathbf{x_0})$ satisfy the Rankine-Hugoniot condition

 $[\mathbf{P}(\rho(\mathbf{X}(\mathbf{t}, \mathbf{x_0}), \mathbf{t}))] = [(\mu + \lambda) \operatorname{div} \mathbf{u}(\mathbf{X}(\mathbf{t}, \mathbf{x_0}), \mathbf{t})].$

(Indeed,

$$\mathbf{F} := (\mu + \lambda) \operatorname{div} \mathbf{u} - (\mathbf{P}(\rho) - \mathbf{P}(\tilde{\rho}))$$

is (Hölder) continuous.)

Theorem 3 (Hoff-Santos) – Time evolution of discontinuities:

The map $\mathbf{t} \mapsto \rho(\mathbf{X}(\mathbf{t}, \mathbf{x_0})+, \mathbf{t})$ is in $\mathbf{C}([\mathbf{0}, \infty)) \cap \mathbf{C}^1((\mathbf{0}, \infty))$ and the map $\mathbf{t} \mapsto \operatorname{div} \mathbf{u}(\mathbf{X}(\mathbf{t}, \mathbf{x_0})+, \mathbf{t})$ is locally Hölder continuous on $(\mathbf{0}, \infty)$.

If both one-sided limits $\rho_0(\mathbf{x}_0\pm)$ of ρ_0 at \mathbf{x}_0 with respect to \mathcal{M} exist, then the jump in the logarithm of ρ satisfies the representation

$$\left[\log \rho(\mathbf{X}(\mathbf{t}, \mathbf{x_0}), \mathbf{t})\right] = \exp\left(-(\mu + \lambda)^{-1} \int_0^t \mathbf{a}(\tau) d\tau\right) \left[\log \rho_0(\mathbf{x_0})\right]$$

where

$$\mathbf{a}(\tau) = \frac{\left[\mathbf{P}(\rho(\mathbf{X}(\tau, \mathbf{x_0}), \tau))\right]}{\left[\log \rho(\mathbf{X}(\tau, \mathbf{x_0}), \tau)\right]}.$$

3 "Proofs"

Theorem 1 – Lagrangean structure:

A vector field **u** in \mathbb{R}^n is said to be <u>log-Lipschitzian</u> (LL) if

$$\langle \mathbf{u} \rangle_{LL} \equiv \sup_{\mathbf{0} < |\mathbf{x} - \mathbf{y}| \le 1} \frac{|\mathbf{u}(\mathbf{x}) - \mathbf{u}(\mathbf{y})|}{|\mathbf{x} - \mathbf{y}| - |\mathbf{x} - \mathbf{y}| \log |\mathbf{x} - \mathbf{y}|} < \infty.$$

$$\begin{split} \langle \nabla \mathbf{\Gamma} * \mathbf{w} \rangle_{\mathbf{LL}} &\leq \mathbf{C}(||\mathbf{w}||_{\mathbf{p}} + ||\mathbf{w}||_{\infty}) \\ \textit{where} \quad \mathbf{C} = \mathbf{C}(\mathbf{n}, \mathbf{p}). \quad \textit{If} \quad p < n, \quad \textit{we also have} \\ ||\nabla \mathbf{\Gamma} * \mathbf{w}||_{\infty} &\leq \mathbf{C}(||\mathbf{w}||_{\mathbf{p}} + ||\mathbf{w}||_{\infty}) \,. \end{split}$$

Lagrangean structure of log-Lipschtzian vector fields ("Generalized Picard's theorem"):

If for each $t \ge 0$, $\mathbf{u}(\mathbf{x},t)$ is a vector field in \mathbb{R}^n such that

$$\langle \mathbf{u}(\cdot,t) \rangle_{\boldsymbol{LL}} \in L^1_{\boldsymbol{loc}}([0,\infty))$$

then for every $\mathbf{x} \in \mathbb{R}^n$ there exists a unique map $\mathbf{X}(\cdot, \mathbf{x}) \in \mathbf{C}([\mathbf{0}, \mathbf{t_x}); \mathbb{R}^n)$, $\mathbf{t_x} > \mathbf{0}$, such that

$$\mathbf{X}(\mathbf{t}, \mathbf{x}) = \mathbf{x} + \int_{\mathbf{0}}^{\mathbf{t}} \mathbf{u}(\mathbf{X}(\tau, \mathbf{x}), \tau) \, \mathbf{d}\tau, \qquad (\mathbf{0} \le \mathbf{t} < \mathbf{t}_{\mathbf{x}}).$$

Gronwall type inequality (Osgood's lemma):

Let $\eta \geq 0$ be a mensurable function and locally bounded in $[0,\infty)$, $\mathbf{a} \geq \mathbf{0}$, and $\mathbf{0} \leq \mathbf{g} \in \mathbf{L}^1_{\mathrm{loc}}([\mathbf{0},\infty))$, such that

$$\eta(\mathbf{t}) \leq \mathbf{a} + \int_{\mathbf{0}}^{\mathbf{t}} \mathbf{g}(\tau) \, \mathbf{m}(\eta(\tau)) \, \mathbf{d}\tau, \qquad \mathbf{t} \in [\mathbf{0}, \infty),$$

where

$$m(r) = \begin{cases} r(1 - \log r), & 0 < r \le 1 \\ r, & 1 \le r < \infty \end{cases}.$$

Assume that $\eta \leq 1$. Then

$$|\eta(\mathbf{t})| \le \exp\left(\mathbf{1} - \mathbf{e}^{-\int_{\mathbf{0}}^{\mathbf{t}} \mathbf{g} \, \mathbf{d}\tau}\right) \mathbf{a}^{\exp\left(-\int_{\mathbf{0}}^{\mathbf{t}} \mathbf{g} \, \mathbf{d} au
ight)}$$

in the case that $a \neq 0$, and $\eta(t) \equiv 0$ if a = 0.

Decompose the velocity u by writing

$$\begin{split} \boldsymbol{\Delta}\mathbf{u}^{\mathbf{j}} &= \mathbf{u}_{\mathbf{x}_{\mathbf{k}},\mathbf{x}_{\mathbf{k}}}^{\mathbf{j}} = \ \mathbf{u}_{\mathbf{x}_{\mathbf{k}},\mathbf{x}_{\mathbf{j}}}^{\mathbf{k}} + (\mathbf{u}_{\mathbf{x}_{\mathbf{k}}}^{\mathbf{j}} - \mathbf{u}_{\mathbf{x}_{\mathbf{j}}}^{\mathbf{k}})_{\mathbf{x}_{\mathbf{k}}} \\ &= \ \operatorname{div}\mathbf{u}_{\mathbf{x}_{\mathbf{j}}} + \omega_{\mathbf{x}_{\mathbf{k}}}^{\mathbf{j},\mathbf{k}} \\ &= \ (\mu + \lambda)^{-1}\mathbf{F}_{\mathbf{x}_{\mathbf{j}}} + \omega_{\mathbf{x}_{\mathbf{k}}}^{\mathbf{j},\mathbf{k}} + (\mu + \lambda)^{-1}\mathbf{P}(\rho)_{\mathbf{x}_{\mathbf{j}}} \\ &\equiv \ \boldsymbol{\Delta}\mathbf{u}_{\mathbf{F},\omega}^{\mathbf{j}} + \boldsymbol{\Delta}\mathbf{u}_{\mathbf{P}}^{\mathbf{j}} \ , \end{split}$$

so that

$$\mathbf{u} = \mathbf{u}_{\mathbf{F},\omega} + \mathbf{u}_{\mathbf{P}}$$

where $u_{F,\omega}$, u_P are defined by

$$\begin{split} \mathbf{\Delta}\mathbf{u}_{\mathbf{F},\omega}^{\mathbf{j}} &= (\mu + \lambda)^{-1} \, \mathbf{F}_{\mathbf{x}_{\mathbf{j}}} + \, (\omega^{\mathbf{j}\,,\,\mathbf{k}})_{\mathbf{x}_{\mathbf{k}}}, \\ \mathbf{\Delta}\mathbf{u}_{\mathbf{P}}^{\mathbf{j}} &= (\mu + \lambda)^{-1} \, (\, \mathbf{P}(\rho) - \mathbf{P}(\tilde{\rho}) \,)_{\mathbf{x}_{\mathbf{j}}} \\ \mathbf{u}_{\mathbf{p}} &= \, (\mu + \lambda)^{-1} \, \nabla \mathbf{\Gamma} * (\mathbf{P}(\rho) - \mathbf{P}(\tilde{\rho})) \end{split}$$

Then

$$\mathbf{u}_{\mathbf{P}}(\cdot, \mathbf{t}) \in \mathbf{L}\mathbf{L}$$
 ($\mathbf{P}(
ho(\cdot, \mathbf{t})) - \mathbf{P}(ilde{
ho}) \in \mathbf{L}^2 \cap \mathbf{L}^\infty$)
 $\mathbf{u}_{\mathbf{F},\omega}(\cdot, \mathbf{t}) \in \mathbf{Lip}$ ($\mathbf{F}(\cdot, \mathbf{t}) \in \omega(\cdot, \mathbf{t})$ são Hölder contínuas).

Besides,

$$\langle \mathbf{u}_{\mathbf{P}}(\cdot,\mathbf{t}) \rangle_{\scriptscriptstyle \mathbf{LL}} \leq \mathbf{C} ||\mathbf{P}(\rho(\cdot,\mathbf{t})) - \mathbf{P}(\tilde{\rho})||_{\mathbf{L}^2 \cap \mathbf{L}^\infty} \in \mathbf{L}^1_{\mathbf{loc}}([0,\infty)).$$

$$\underline{\text{Question}}: \quad \langle \mathbf{u}_{\mathbf{F},\omega}(\cdot,\mathbf{t}) \rangle_{\text{Lip}} \in \mathbf{L}^1_{\text{loc}}([\mathbf{0},\infty)) ?$$

Notice that

$$\langle \mathbf{u}_{\mathbf{F},\,\omega} \rangle_{\scriptscriptstyle \mathbf{Lip}} \leq \mathbf{C} \, || \nabla \mathbf{F} + \nabla \omega ||_{\mathbf{p}}$$

On the other hand, the momentum equation can be written as

$$\rho \mathbf{\dot{u}^{j}} = \mathbf{F_{x_{j}}} + \mu \omega_{\mathbf{x_{k}}}^{\mathbf{j,k}} + \rho \mathbf{f^{j}} \, .$$

so, taking div e rot we obtain the equations

$$\Delta \mathbf{F} = \mathbf{div}(\rho \mathbf{\dot{u}} - \rho \mathbf{f}) \qquad \mu \Delta \omega^{\mathbf{j},\mathbf{k}} = \mathbf{rot}(\rho \mathbf{\dot{u}} - \rho \mathbf{f})^{-\mathbf{j},\mathbf{k}}$$

Therefore

$$||\nabla \mathbf{F}||_{\mathbf{p}}, ||\mathbf{D}\omega||_{\mathbf{p}} \leq \mathbf{C}(||\rho \mathbf{\dot{u}}||_{\mathbf{p}} + ||\rho \mathbf{f}||_{\mathbf{p}}).$$

$$||(\rho \mathbf{\dot{u}})(\cdot, \mathbf{t})||_{\mathbf{p}} \in \mathbf{L}^{1}_{loc}([\mathbf{0}, \infty))$$
 ??

Suppose $\inf \rho_0 > 0$.

$\begin{array}{ll} \underline{\mathrm{finite}}, & \mathrm{since} \ \ s > \left\{ \begin{array}{ll} 0, & \mathbf{n} = \mathbf{2} \\ \mathbf{1}/2, & \mathbf{n} = \mathbf{3} \end{array} \right. \mathbf{e} \quad \mathbf{u}_0 \in \mathbf{H}^{\mathbf{s}}(\mathbb{R}^{\mathbf{n}}), & \mathrm{due} \ \mathrm{to} \\ \\ [\mathrm{Hoff}] \ \mathrm{and} \ \inf_{\mathbf{p} > \mathbf{n}} \kappa = \kappa \big|_{\mathbf{p} = \mathbf{n}} = \mathbf{n} (\frac{\mathbf{1}}{2} - \frac{\mathbf{1}}{\mathbf{n}}) = \left\{ \begin{array}{ll} 0, & \mathbf{n} = \mathbf{2} \\ \mathbf{1}/2, & \mathbf{n} = \mathbf{3}. \end{array} \right. \end{array}$

Since it may occur $\left.
ho_0 \right|_{\mathbf{V}^{\mathbf{C}}} = 0 \;\; \mathrm{we \; do \; not \; know \; if}$

$$\langle \mathbf{u}(\cdot,\mathbf{t}) \rangle_{\scriptscriptstyle \mathrm{LL}} \in \ \mathbf{L}^1_{\mathbf{loc}}(\,[\mathbf{0},\infty)\,)$$

but

$$\begin{aligned} &|\mathbf{X_1}(\mathbf{t}, \mathbf{y}) - \mathbf{X_1}(\mathbf{t}, \mathbf{y})| \\ &\leq \int_0^{\mathbf{t}} \mathbf{g}(\tau) \mathbf{m}(|\mathbf{X_2}(\tau, \mathbf{y}) - \mathbf{X_1}(\tau, \mathbf{y})|) d\tau \end{aligned}$$

$$\mathbf{g}(\mathbf{t}) := \frac{|\mathbf{u}(\mathbf{X}_2(\mathbf{t}, \mathbf{y}), \mathbf{t}) - \mathbf{u}(\mathbf{X}_1(\mathbf{t}, \mathbf{y}), \mathbf{t})|}{\mathbf{m}(|\mathbf{X}_2(\mathbf{t}, \mathbf{y}_2) - \mathbf{X}_1(\mathbf{t}, \mathbf{y}_1)|)} \in \ \mathbf{L}_{\mathsf{loc}}^1(\ [\mathbf{0}, \infty)\)$$

In fact

$$\mathbf{g}(\mathbf{t}) \leq \mathbf{g}_{\mathbf{r}}(\mathbf{t}) := \left\{ \begin{array}{ll} \langle \mathbf{u}(\cdot\,,\mathbf{t}) \rangle_{\mathbf{LL},\ \mathbf{B}_{\mathbf{r}}(\mathbf{X}(\mathbf{t},\mathbf{y}))}, & \mathbf{0} \leq \mathbf{t} \leq \mathbf{t}_{\mathbf{r}} << \mathbf{1} \\ \langle \mathbf{u}(\cdot\,,\mathbf{t}) \rangle_{\mathbf{LL},\ \mathbb{R}^{\mathbf{n}},} & \mathbf{t} > \mathbf{t}_{\mathbf{r}} \end{array} \right.$$

and $\mathbf{g_r}\in \mathbf{L^1_{loc}}(\,[0,\infty)\,)$ where $\mathbf{r}>0\,;\,\overline{\mathbf{B_r}(\mathbf{y})}\subset \mathbf{V}.$ Indeed,

$$\int_0^t ||\mathbf{u}(\cdot,\tau)||_\infty \, \mathrm{d}\tau \leq \mathbf{C} \, \mathbf{t}^\gamma \, .$$

Theorem 2 – One-sided limits

Recall that $\rho \equiv \rho(\cdot, t)$ has a one-sided limit at $\mathbf{x} \in \mathcal{M}^t$ from the "plus" side \mathcal{M}^t_+ of \mathcal{M}_t if

$$\operatorname{osc}(\rho; \mathbf{x}, \mathcal{M}_{+}^{\mathbf{t}}) := \lim_{\mathbf{r} \to \mathbf{0}} \left[\operatorname{ess\,sup} \rho |_{\mathcal{M}_{+}^{\mathbf{t}} \cap \mathbf{B}_{\mathbf{r}}(\mathbf{x})} - \operatorname{ess\,inf} \rho |_{\mathcal{M}_{+}^{\mathbf{t}} \cap \mathbf{B}_{\mathbf{r}}(\mathbf{x})} \right]$$
$$= \mathbf{0}.$$

In this case

$$\rho(\mathbf{x}+,\mathbf{t}) := \lim_{\mathbf{r}\to\mathbf{0}} \operatorname{ess\,sup} \rho(\cdot,\mathbf{t})|_{\mathcal{M}^{\mathbf{t}}_{+}\cap\mathbf{B}_{\mathbf{r}}(\mathbf{x})}$$
$$= \lim_{\mathbf{r}\to\mathbf{0}} \operatorname{ess\,inf} \rho(\cdot,\mathbf{t})|_{\mathcal{M}^{\mathbf{t}}_{+}\cap\mathbf{B}_{\mathbf{r}}(\mathbf{x})}.$$

Write the conservation of mass
$$\rho_{\mathbf{t}} + \operatorname{div}(\rho \mathbf{u}) = \mathbf{0}$$
 as
 $\dot{\rho} = -\rho \operatorname{divu} = -\rho (\lambda + \mu)^{-1} [\mathbf{F} + (\mathbf{P}(\rho) - \mathbf{P}(\tilde{\rho}))]$
 $(\lambda + \mu)\dot{\rho} = -\rho [\mathbf{F} + (\mathbf{P}(\rho) - \mathbf{P}(\tilde{\rho}))]$

$$(\lambda + \mu) \frac{\mathbf{d}}{\mathbf{dt}} \log \rho(\mathbf{X}(\mathbf{t}, \mathbf{y}), \mathbf{t}) + \mathbf{P}(\rho(\mathbf{X}(\mathbf{t}, \mathbf{y}), \mathbf{t})) - \mathbf{P}(\tilde{\rho})$$
$$= -\mathbf{F}(\mathbf{X}(\mathbf{t}, \mathbf{y}), \mathbf{t}) .$$
19

Then for $y_1, y_2 \in V$,

$$\begin{aligned} (\lambda + \mu) \frac{\mathbf{d}}{\mathbf{dt}} \log \rho(\mathbf{X}(\mathbf{t}, \cdot), \mathbf{t}) \Big|_{\mathbf{y}_1}^{\mathbf{y}_2} + \mathbf{a}(\mathbf{t}) \log \rho(\mathbf{X}(\mathbf{t}, \cdot), \mathbf{t}) \Big|_{\mathbf{y}_1}^{\mathbf{y}_2} \\ &= -\mathbf{F}(\mathbf{X}(\mathbf{t}, \cdot), \mathbf{t}) \Big|_{\mathbf{y}_1}^{\mathbf{y}_2} , \\ \mathbf{a}(\mathbf{t}) = \frac{\mathbf{P}(\rho(\mathbf{X}(\mathbf{t}, \cdot), \mathbf{t})) \Big|_{\mathbf{y}_1}^{\mathbf{y}_2}}{\log \rho(\mathbf{X}(\mathbf{t}, \cdot), \mathbf{t}) \Big|_{\mathbf{y}_1}^{\mathbf{y}_2}} .\end{aligned}$$

Then (writing $\sup \equiv \operatorname{ess\,sup}$ and $\inf \equiv \operatorname{ess\,inf}$)

$$\begin{aligned} &(\sup - \inf) \log \rho(\cdot, \mathbf{t}) \big|_{\mathbf{X}(\mathbf{t}, \cdot)(\mathbf{B}_{\mathbf{r}}(\mathbf{x}_{0}) \cap \mathcal{M}_{+})} \\ &\leq \mathbf{e}^{-(\lambda + \mu)^{-1} \int_{0}^{\mathbf{t}} \mathbf{a}(\tau) d\tau} (\sup - \inf) \log \rho_{0} \big|_{\mathbf{B}_{\mathbf{r}}(\mathbf{x}_{0}) \cap \mathcal{M}_{+}} \\ &+ \int_{0}^{\mathbf{t}} \mathbf{e}^{-(\lambda + \mu)^{-1} \int_{\tau}^{\mathbf{t}} \mathbf{a}(\xi) d\xi} (\sup - \inf) \mathbf{F}(\cdot, \tau) \big|_{\mathbf{X}(\tau, \cdot)(\mathbf{B}_{\mathbf{r}}(\mathbf{x}_{0}) \cap \mathcal{M}_{+})} d\tau \end{aligned}$$

The first term on the right goes to zero as $\mathbf{r} \to \mathbf{0}$ by the assumption that ρ_0 has a one-sided limit at \mathbf{x}_0 and the second goes to zero by the Hölder continuity of $\mathbf{F}(\cdot, \tau)$ for $\tau > \mathbf{0}$.

Theorem 3 – Time evolution of discontinuites

 $\begin{array}{lll} \mbox{Let } r>0 \mbox{ such that } r<\mbox{dist}(x_0,\partial V), & \{x_h\}_{h>0}\in \mathcal{M}_+ \mbox{ and } \\ \{r_h\}>0 \mbox{ such that } x_h\rightarrow x_0, \ r_h\rightarrow 0 \mbox{ as } h\rightarrow 0, \mbox{ and } \\ B_{2r_h}(x_h)\subset \mathcal{M}_+\cap B_r(x_0), \mbox{ for all } 0< h<<1. \end{array}$

Define $\varphi^{\delta,h}$, satisfying the transport equation

$$\varphi_{\mathbf{t}}^{\boldsymbol{\delta},\mathbf{h}} + \operatorname{div}(\varphi^{\boldsymbol{\delta},\mathbf{h}}\mathbf{u}^{\boldsymbol{\delta}}) = \mathbf{0}$$

with initial datum

$$\varphi^{\delta,\mathbf{h}}|_{\mathbf{t}=\mathbf{0}} = \varphi^{\mathbf{h}}_{\mathbf{0}},$$

where φ_0^{h} is a smooth function with support in $B_{r_h}(x_h)$, $\int \varphi_0^{h}(x) dx = 1$, and $0 \leq \varphi_0^{h} \leq C^{h}$, for some positive number C^{h} .

Then $\varphi^{\delta,\mathbf{h}}$ has support in $\mathbf{X}^{\delta}(\mathbf{t},\cdot)\mathbf{B}_{\mathbf{r_h}}(\mathbf{x_h})$, $\int \varphi^{\delta,\mathbf{h}}(\mathbf{x},\mathbf{t})d\mathbf{y} = \mathbf{1}$ for every $\mathbf{t} \geq \mathbf{0}$, and $\mathbf{0} \leq \varphi^{\delta,\mathbf{h}} \leq \mathbf{C}^{\mathbf{h}}(\mathbf{T})$ if $\mathbf{0} \leq \mathbf{t} \leq \mathbf{T}$ for some positive number $C^h(T)$. This is a consequence of the fact that

$$\begin{split} &\int_{\mathbf{0}}^{\mathbf{T}} ||\mathbf{F}^{\delta}(\cdot,\mathbf{t})||_{\mathbf{L}^{\infty}\left(\mathbf{X}^{\delta}(\mathbf{t},\cdot)\mathbf{B}_{\mathbf{r}}(\mathbf{x}_{0})\right)} \,\, \mathbf{dt} \leq \mathbf{C}(\mathbf{T}+\mathbf{T}^{\gamma}), \\ & \text{where } \gamma = \gamma(r) > 0. \end{split}$$

Write $\mathbf{L}^{\delta} \equiv \log \rho^{\delta}$, $\mathbf{L} \equiv \log \rho$ and the mass equation in the form

$$\mathbf{L}_{\mathbf{t}}^{\delta} + \nabla \mathbf{L}^{\delta} \cdot \mathbf{u}^{\delta} = -(\lambda + \mu)^{-1} (\mathbf{F}^{\delta} + \mathbf{P}(\rho^{\delta}) - \mathbf{P}(\tilde{\rho}))$$

$$\int \varphi^{\delta,\mathbf{h}} \mathbf{L}^{\delta} \, \mathbf{dx} \, \big|_{\mathbf{0}}^{\mathbf{t}} = -(\lambda + \mu)^{-1} \int_{\mathbf{0}}^{\mathbf{t}} \int \left(\mathbf{F}^{\delta} + \mathbf{P}(\rho^{\delta}) - \mathbf{P}(\tilde{\rho}) \right) \varphi^{\delta,\mathbf{h}} \, \mathbf{dxds}.$$

We want to take the limits as $\delta \to 0$ and then $h \to 0$. To do that we use that X^{δ} converges to X in $[0,t] \times B_r(x_0)$ uniformly with respect to δ and that for each h > 0 there is a $\delta_0(h) > 0$ such that

$$X^{\delta}(s,\cdot)B_{r_h}(x_h) \subset X(s,\cdot)B_{2r_h}(x_h)$$

for all $\delta \leq \delta_0(h)$ and $s \in [0, t]$.

For fixed t, we write

$$\int arphi^{\delta,\mathbf{h}} \mathbf{L}^{\delta} \mathbf{dx} = \int arphi^{\delta,\mathbf{h}} (\mathbf{L}^{\delta} - \mathbf{L}) \mathbf{dx} + \int arphi^{\delta,\mathbf{h}} \mathbf{L} \mathbf{dx} \equiv \mathbf{I} + \mathbf{II}$$

and notice that $I \to 0$ as $\delta \to 0$ because its integrand tends to zero a.e. and it is bounded by some constant $C^{h}(t)$. Thus given h, there is a $\delta_{0}(h)$ such that $I \leq h$ if $\delta \leq \delta_{0}(h)$. Regarding II, we have

$$\mathbf{II} \leq \mathrm{ess\,sup} \mathbf{L}(\cdot, \mathbf{t}) | \mathbf{X}(\mathbf{t}, \cdot) \mathbf{B_{2r_h}}(\mathbf{x_h})$$

if $\delta \leq \delta_0(\mathbf{h})$ for some $\delta_0(\mathbf{h}) > 0$. Then, there is a $\delta_0(\mathbf{h}) > 0$ such that $\delta \leq \delta_0(\mathbf{h})$ implies

$$\int \varphi^{\delta,\mathbf{h}} \mathbf{L}^{\delta} \mathbf{dx} \leq \mathrm{ess\,sup} \mathbf{L}(\cdot,\mathbf{t}) | \mathbf{X}(\mathbf{t},\cdot) \mathbf{B}_{\mathbf{2r_h}}(\mathbf{x_h}) + \mathbf{h}.$$

Similarly,

$$\operatorname{ess\,inf} \mathbf{L}(\cdot, \mathbf{t}) | \mathbf{X}(\mathbf{t}, \cdot) \mathbf{B_{2r_h}}(\mathbf{x_h}) - \mathbf{h} \leq \int \varphi^{\delta, \mathbf{h}} \mathbf{L}^{\delta} \mathbf{dx}$$

 $\leq \operatorname{ess\,sup} \mathbf{L}(\cdot,\mathbf{t}) | \mathbf{X}(\mathbf{t},\cdot) \mathbf{B_{2r_h}}(\mathbf{x_h}) + \mathbf{h}.$ for all $\delta \leq \delta_0(\mathbf{h})$.

Also, we write

$$\begin{split} \int_{0}^{t} \int \varphi^{\delta,\mathbf{h}} \mathbf{F}^{\delta} d\mathbf{x} d\mathbf{s} \ &= \int_{0}^{t} \int \varphi^{\delta,\mathbf{h}} (\mathbf{F}^{\delta} - \mathbf{F}) d\mathbf{s} d\mathbf{x} + \int_{0}^{t} \int \varphi^{\delta,\mathbf{h}} \mathbf{F} d\mathbf{x} d\mathbf{s} \\ &\equiv \mathbf{I} + \mathbf{II}. \end{split}$$

I tends to zero as $\delta \to 0$: $\operatorname{supp} \varphi^{\delta, \mathbf{h}}(\cdot, \mathbf{s}) \subset \mathbf{X}^{\delta}(\mathbf{s}, \cdot) \mathbf{B}_{\mathbf{r_h}}(\mathbf{x_h}) \subset \mathbf{X}^{\delta}(\mathbf{s}, \cdot) \mathbf{B}_{\mathbf{2r_h}}(\mathbf{x_0}) \subset \mathbf{X}(\mathbf{s}, \cdot) \mathbf{B}_{\mathbf{r}}(\mathbf{x_0})$ and

for some positive constants \tilde{C}, γ , and any sufficiently small $\tau > 0$, where |K| is the Lebesgue measure of the compact set $K = X([0, t] \times \overline{B_r(x_0)})$. On the other hand,

$$|\varphi^{\delta,\mathbf{h}}(\mathbf{F}^{\delta}-\mathbf{F})| \leq \mathbf{C}^{\mathbf{h}}(\mathbf{t})|\mathbf{F}^{\delta}-\mathbf{F}|$$

converges to zero a.e. and, for $s \in [\tau, t]$ and χ being the characteristic function of the set K, we have

$$\begin{aligned} |\varphi^{\delta,\mathbf{h}}(\mathbf{F}^{\delta}-\mathbf{F})| &\leq \mathbf{C}^{\mathbf{h}}(\mathbf{t})\chi(\mathbf{x})(||\mathbf{F}^{\delta}||_{\infty}+\liminf_{\delta\to\mathbf{0}}||\mathbf{F}^{\delta}||_{\infty})\\ &\leq \mathbf{2C}^{\mathbf{h}}(\mathbf{t})\chi(\mathbf{x})\sup_{\delta}||\mathbf{F}^{\delta}||_{\infty}\leq \mathbf{C}_{\tau}\mathbf{C}^{\mathbf{h}}(\mathbf{t})\chi(\mathbf{x}).\end{aligned}$$

Thus, similarly to above, there is a $\delta_0(\mathbf{h})$ such that for $\delta \leq \delta_0(\mathbf{h}),$

$$\begin{split} &\int_{0}^{t} \mathop{\mathrm{ess\,inf}} \mathbf{F}(\cdot,\mathbf{s}) | \mathbf{X}(\mathbf{s},\cdot) \mathbf{B}_{2\mathbf{r_h}}(\mathbf{x_h}) \, \mathbf{ds} \ - \ \mathbf{h} \ \leq \int_{0}^{t} \int \varphi^{\delta,\mathbf{h}} \mathbf{F}^{\delta} \mathbf{dxds} \\ &\leq \int_{0}^{t} \mathop{\mathrm{ess\,sup}} \mathbf{F}(\cdot,\mathbf{s}) | \mathbf{X}(\mathbf{s},\cdot) \mathbf{B}_{2\mathbf{r_h}}(\mathbf{x_h}) \, \mathbf{ds} \ + \ \mathbf{h}. \end{split}$$

Analogously, we have a similar estimate w.r.t. $\mathbf{P} - \mathbf{P}(\tilde{\rho})$:

$$\begin{split} &\int_{0}^{t} \mathrm{ess\,inf}\,[\mathbf{P}(\rho(\cdot,\mathbf{s})) - \mathbf{P}(\tilde{\rho})] \big| \mathbf{X}(\mathbf{s},\cdot) \mathbf{B}_{2\mathbf{r_h}}(\mathbf{x_h})\,\mathbf{ds} - \mathbf{h} \\ &\leq \int_{0}^{t} \int \varphi^{\delta,\mathbf{h}} [\mathbf{P}(\rho^{\delta}) - \mathbf{P}(\tilde{\rho})] \mathbf{dxds} \\ &\leq \int_{0}^{t} \mathrm{ess\,sup}\,[\mathbf{P}(\rho(\cdot,\mathbf{s})) - \mathbf{P}(\tilde{\rho})] \big| \mathbf{X}(\mathbf{s},\cdot) \mathbf{B}_{2\mathbf{r_h}}(\mathbf{x_h})\,\mathbf{ds} + \mathbf{h}. \end{split}$$

Now,

$$\begin{split} \mathbf{L}(\mathbf{x_0^t}, \mathbf{t}) &= \lim_{\mathbf{r'} \to \mathbf{0}} \operatorname{ess\,sup} \mathbf{L}(\cdot, \mathbf{t}) | (\mathbf{B_{r'}}(\mathbf{x_0^t}) \cap \mathcal{M}_+^t) \\ &= \lim_{\mathbf{r'} \to \mathbf{0}} \operatorname{ess\,inf} \mathbf{L}(\cdot, \mathbf{t}) | (\mathbf{B_{r'}}(\mathbf{x_0^t}) \cap \mathcal{M}_+^t), \end{split}$$

and for each $r^\prime>0$ there is a $h_{r^\prime}>0$ such that

$$\mathbf{X}(\mathbf{t},\cdot)\mathbf{B_{2r_h}}(\mathbf{x_h}) \subset \mathbf{B_{r'}}(\mathbf{x_0^t}) \cap \mathcal{M}_+^t$$

 $\text{ for all } h \leq h_{r'}.$

Thus, for each r' > 0 and all $h \le h_{r'}$,

$$\begin{split} & \operatorname{ess\,inf} \mathbf{L}(\cdot, \mathbf{t}) | (\mathbf{B}_{\mathbf{r}'}(\mathbf{x}_0) \cap \mathcal{M}_+^{\mathbf{t}}) \leq \operatorname{ess\,inf} \mathbf{L}(\cdot, \mathbf{t}) | \mathbf{X}(\mathbf{t}, \cdot) \mathbf{B}_{\mathbf{2r}_h}(\mathbf{x}_h) \\ & \leq \operatorname{ess\,sup} \mathbf{L}(\cdot, \mathbf{t}) | (\mathbf{B}_{\mathbf{r}'}(\mathbf{x}_0) \cap \mathcal{M}_+^{\mathbf{t}}). \end{split}$$

Then, taking here first the liminf and lim sup as $h \rightarrow 0$, and then the limit as $r' \rightarrow 0$, we see that there exists the

 $\lim_{h\to 0} \, \mathrm{ess} \inf \mathbf{L}(\cdot, \mathbf{t}) | \mathbf{X}(\mathbf{t}, \cdot) \mathbf{B_{2r_h}}(\mathbf{x_h}) = \mathbf{L}(\mathbf{x_0^t} +, \mathbf{t}).$

Analogously,

$$\lim_{\mathbf{h}\to\mathbf{0}}\,\mathrm{ess\,sup}\,\mathbf{L}(\cdot,\mathbf{t})|\mathbf{X}(\mathbf{t},\cdot)\mathbf{B_{2r_h}}(\mathbf{x_h})=\mathbf{L}(\mathbf{x_0^t}+,\mathbf{t}).$$

Hence,

$$\lim_{\mathbf{h}\to\mathbf{0}}\lim_{\delta\to\mathbf{0}}\int(\varphi^{\delta,\mathbf{h}}\mathbf{L}^{\delta})(\mathbf{x},\mathbf{t})\mathbf{dx}=\mathbf{L}(\mathbf{x_0^t}+,\mathbf{t}).$$

Similarly,

$$\begin{split} \lim_{\mathbf{h}\to\mathbf{0}}\lim_{\delta\to\mathbf{0}}\int(\varphi^{\delta,\mathbf{h}}\mathbf{L}^{\delta})(\mathbf{x},\mathbf{0})\mathbf{dx} &= \mathbf{L}_{\mathbf{0}}(\mathbf{x}_{\mathbf{0}}+),\\ \lim_{\mathbf{h}\to\mathbf{0}}\lim_{\delta\to\mathbf{0}}\int_{\mathbf{0}}^{\mathbf{t}}\int\varphi^{\delta,\mathbf{h}}\mathbf{F}^{\delta}\mathbf{dxds} &= \int_{\mathbf{0}}^{\mathbf{t}}\mathbf{F}(\mathbf{X}(\mathbf{s},\mathbf{x}_{\mathbf{0}})+,\mathbf{s})\mathbf{ds} \end{split}$$

and

$$\begin{split} \lim_{\mathbf{h}\to\mathbf{0}} \lim_{\delta\to\mathbf{0}} \int_{\mathbf{0}}^{\mathbf{t}} \int \varphi^{\delta,\mathbf{h}} [\mathbf{P}(\rho^{\delta}) - \mathbf{P}(\tilde{\rho})] \mathbf{d}\mathbf{x} \mathbf{d}\mathbf{s} \\ &= \int_{\mathbf{0}}^{\mathbf{t}} [\mathbf{P}(\rho(\mathbf{X}(\mathbf{s},\mathbf{x}_{\mathbf{0}})+,\mathbf{s})) - \mathbf{P}(\tilde{\rho})] \mathbf{d}\mathbf{s}. \end{split}$$

From all the above, it follows that

$$\begin{split} \mathbf{L}(\mathbf{x_0^t}, \mathbf{t}) &- \mathbf{L}(\mathbf{x_0}+) \\ &= -(\lambda + \mu)^{-1} \int_0^t \left[\mathbf{F}(\mathbf{X}(\mathbf{s}, \mathbf{x_0})+, \mathbf{s}) + \mathbf{P}\left(\, \rho(\mathbf{X}(\mathbf{s}, \mathbf{x_0})+, \mathbf{s}) \, \right) - \mathbf{P}(\tilde{\rho}) \, \right] \, \mathbf{ds}. \end{split}$$

This shows that the map $t \in [0,\infty) \mapsto L(x_0^t+,t)$ is in $C([0,\infty)) \cap C^1((0,\infty))$, hence so it is $t \in [0,\infty) \mapsto \rho(x_0^t+,t)$. Next, write the same relation for $L(x_0^t-,t)$ and subtract to get

$$[\mathbf{L}(\mathbf{x_0^t}, \mathbf{t})] - [\mathbf{L}(\mathbf{x_0})] = -(\lambda + \mu)^{-1} \int_0^{\mathbf{t}} [\mathbf{P}\left(\rho(\mathbf{X}(\mathbf{s}, \mathbf{x_0}), \mathbf{s})\right)] \, \mathbf{ds}.$$

Then,

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{t}}[\mathbf{L}(\mathbf{x_0^t},\mathbf{t})] = -(\lambda + \mu)^{-1}[\mathbf{P}\left(\rho(\mathbf{X}(\mathbf{x_0^t},\mathbf{t}),\mathbf{t})\right)] \equiv \mathbf{a}(\mathbf{t})[\mathbf{L}(\mathbf{x_0^t},\mathbf{t})],$$

so integranting this equation we finish the proof.

References

- [Chemin] J.Y. Chemim, Perfect incompressible fluids, Oxford: Clarendon Press, New York: Oxford University Press (1987).
- [Bahouri-Chemin] H. Bahouri e J.Y. Chemin, Equations de transport relatives des champs de vecteurs non-Lipschitziens et mecanique des fluides, Arch. Rational Mech. Anal. 127(no. 2) (1994) 159-181.
- [Hoff-Santos] D. Hoff and M.M. Santos, Lagrangean structure and propagation of singularities in multidimensional compressible flow, accepted in Arch. Rational Mech. Anal. (2007).
- [Hoff 1995] David Hoff, Global solutions of the Navier-Stokes equations for multidimensional, compressible flow with discontinuous initial data, J. Diff. Eqns. 120(no. 1) (1995), 215-254.
- [Hoff 1997] David Hoff, Discontinuous solutions of the Navier-Stokes equations for multidimensional, heatconducting flow, Archive Rational Mech. Ana. 139 (1997), 303–354.

- [Hoff 2002] David Hoff, Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions, Comm. Pure Appl. Math. LV (2002) 1365–1407.
- [Hoff 2005] David Hoff, Compressible Flow in a Half-Space with Navier Boundary Conditions, J. Math. Fluid Mech. 7 (2005) 315–338.
- [Zuazua] E. Zuazua, Log-Lipschitz regularity and uniqueness of the flow for a field in $(W_{\text{loc}}^{n/p+1,p}(\mathbb{R}^n))^n$, C. R. Math. Acad. Sci. Paris 335 (2002), no. 1, 17–22.