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1. INTRODUCTION (MOTIVATION)



Let Ω denote an open set in Rn and I, an open interval in R. As
we know, a vector fied v in Ω (i.e. a map v : Ω→ Rn) is said to

be lipschitzian when there is a constant C such that

|v(x1)− v(x2)| ≤ C|x1 − x2| (1)

for all x1, x2 ∈ Ω. If the field v is bounded then this condition is
equivalent to

sup
0 < |x1 − x2| ≤ 1

x1, x2 ∈ Ω

|v(x1)− v(x2)|
|x1 − x2|

<∞.



Particle trajectory

If the field v depends also on a real variable t ∈ I (physically,
this second variable denotes time), the

Picard theorem says that if v = v(x , t) : Ω× I → Rn is a
continuous map and lipschitzian with respect to x ∈ Ω,

uniformly with respect to t ∈ I, i.e. if for some constant C,

|v(x1, t)− v(x2, t)| ≤ C|x1 − x2| (2)

for all x1, x2 ∈ Ω and for all t ∈ I, then for any pair
(x0, t0) ∈ Ω× I, there exist a unique solution to the problem

x ′ = v(x , t), x(t0) = x0, (3)

where x ′ ≡ ∂x/∂t is defined in some open open interval
I0 ≡ I(x0, t0) ⊂ I.



Particle trajectory cont’d

We shall denote the above solution by X (· ; x0, t0).
The map t ∈ I0 7→ X (t ; x0, t0) is said to be an integral curve of
the field v , passing by the point x0 at the time t0 or, physically

speaking, in fluid dynamics, the particle trajectory/the trajectory
of the particle that at time t0 is at the point x0, if v(x , t)

represents the velocity of a fluid particle that at time t is at the
point x .

The map (t ; x0, t0) 7→ X (t ; x0, t0) is called the the flux of the field
v .

Remark: If v is bounded, then I0 = I, for all (x0, t0) ∈ Ω× I.



Definition

When for all (x0, t0) ∈ Ω× I, the problem

x ′ = v(x , t), x(t0) = x0,

has one and only one solution X (· ; x0, t0), defined is some
open interval I0, we say that the vector field v has a lagrangian

structure.



First example

Question: Is the Lipschitz condition (2)
(|v(x1, t)− v(x2, t)| ≤ C|x1 − x2|) necessary in order that the
field v has a lagrangian structure?

Answer: NO!

Example
The function (scalar vector field) defined by v(x , t) = x log |x |, if
x 6= 0 and v(0, t) = 0, with t ∈ R, has a lagrangian structure but
it does not satisfies the Lipschitz condition (2).
Proof. For x 6= 0, we have that

∂v/∂x = log |x |+ 1→ −∞, when x → 0,

i.e. this partial derivative is not bounded.



Note

The Lipschitzian condition (2) (|v(x1, t)− v(x2, t)| ≤ C|x1 − x2|)
implies that

|∇xv(x , t)| ≤ C

for every point (x , t) where this derivative exists. In fact, for who
knows Measure Theory and Weak Derivatives, we can say that
the condition (2) is equivalent to the following conditions: there
exists the partial derivatives ∂v/∂xi , as weak derivatives, they

belong to the space L∞(Ω) and ‖∇xv(·, t)‖L∞(Ω) ≤ C for all
t ∈ I. This statement is the Rademacher theorem. See e.g. the

book Partial Differential Equations, by Lawrence C. Evans.



The (scalar) field v(x , t) = x log |x | has a lagrangian
structure, i.e.

the problem

x ′ = x log |x |, x(t0) = x0

has a unique solution.
Proof. For x0 6= 0, this is a consequence of Picard theorem. In
fact, we can compute this solution explicitly by separation of

variables, which is (Exercise/Home Work!):

X (t ; x0, t0) = (sgnx0)|x0|e
(t−t0)

,

where sgnx0 = 1 if x0 > 0 and sgnx0 = −1 if x0 < 0.



Proof cont’d: the case x0 = 0

In the case x0 = 0, it is clear that x(t) ≡ 0 is a solution. This
solution is unique, since if another solution ϕ(t) ≡ X (· ; 0, t0)

were not null in some point t1, setting x1 = ϕ(t1), we would have

ϕ(t) = X (t ; x1, t1), ∀ t ∈ R,

and this is a contradiction, since ϕ(t0) = 0 but X (t ; x0, t0) 6= 0
for all t ∈ R if x0 6= 0.



Remarks

• There are many non lipschitizian fields with lagrangian structure.
Another example is v(x) = 1 + 2x2/3. See Example 1.2.1 in the book

Uniqueness and Nonuniqueness Criteria for Ordinary Differential
Equations by R. P. Agarwal and V. Lakshmikantham.

• The function −x log x is used in Information Theory to define the
so-called Shannon entropy. See the seminal paper Shannon, C. E. A

mathematical theory of communication. Bell System Technical Journal,
27 (1948) or Section 4.1 of the book Yockey, Hubert P. Information

theory, evolution, and the origin of life.

• The function x log x is also used in Optimization. See e.g. the works
Lopes, Marcos Vinı́cius. Trajetória Central Associada à Entropia e o

Método do Ponto Proximal em Programação Linear. Masters
dissertation - Federal University of Goiás, Brazil, 2007. Advisor: Orizon

Pereira Ferreira
and

Ferreira, O. P.; Oliveira, P. R.; Silva, R. C. M. On the convergence of the
entropy-exponential penalty trajectories and generalized proximal point

methods in semidefinite optimization. J. Global Optim. 45 (2009).



The field v(x) ≡ v(x , t) = x log |x | satisfies the
following property:

|v(x1)− v(x2)| ≤ C|x1 − x2| (1− log |x1 − x2|) (4)
(Lipschitz condition modified)

for all x1, x2 ∈ (−1,1) such that 0 < |x1 − x2| ≤ 1.

Notice that − log |x1 − x2| > 0 !



Proof

For x1, x2 ∈ (0,1), assuming x1 < x2, without loss of generality,
we have

|v(x1)− v(x2)| = |
∫ 1

0
d
ds v (x1 + s(x2 − x1)) ds|

= |(x2 − x1)
∫ 1

0 v ′ (x1 + s(x2 − x1)) ds|
= |(x2 − x1)

∫ 1
0 (1 + log(x1 + s(x2 − x1))) ds|

≤ |x2 − x1|(1−
∫ 1

0 log(x1 + s(x2 − x1)) ds)

≤ |x2 − x1|(1−
∫ 1

0 log s(x2 − x1)ds)

= |x2 − x1|(1−
∫ 1

0 (log s + log(x2 − x1)) ds)

= |x2 − x1|(1−
∫ 1

0 log s ds −
∫ 1

0 log |x2 − x1|ds)
= |x2 − x1|(2− log |x2 − x1|) ≤ 2|x2 − x1|(1− log |x2 − x1|)



Proof cont’d

For x1, x2 ∈ (−1,0), we can conclude the same inequality as
above by using that v(x) = x log |x | is an odd function.

Next, let x1 ∈ (−1,0) and x2 ∈ (0,1).
If |x1 − x2| = x2 − x1 ≤ e−1 , using that ψ := −x log |x | is

increasing in the interval [−e−1,e−1], we have the following
estimates:

|v(x1)− v(x2)| = x1 log |x1| − x2 log |x2| = ψ(−x1) + ψ(x2)
≤ ψ(−x1 + x2) + ψ(x2 − x1) = 2ψ(x2 − x1)
= −2(x2 − x1) log(x2 − x1) < 2 (1− (x2 − x1) log(x2 − x1)) .



Proof cont’d

On the other hand, if |x1 − x2| > e−1 , using that v(x) = x log x
is bounded in the interval (−1,1), we have

|v(x1)− v(x2)| = |v(x1)−v(x2)|
|x1−x2| |x1 − x2|

≤ 2(max |v |)e|x1 − x2|
≤ 2(max |v |)e|x1 − x2| (1− log |x1 − x2|) .

Finally, we observe that if x1 = 0 or x2 = 0, the condition (4) is
trivial, since v(0) = 0.
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Remark

As we can see from the last argument, to show (4), i.e.
|v(x1)− v(x2)| ≤ C|x1 − x2| (1− log |x1 − x2|), it is enough to

consider this inequality for |x1 − x2| less than a certain
constant, since v is bounded.



2. LOG-LIPSCHIZIAN VECTOR FIELDS



Definition

A vector field v in Ω (an open set in Rn) is called log-lipschitzian
if it is bounded (for convenience) and satisfies the inequality (4),

i.e.

|v(x1)− v(x2)| ≤ C|x1 − x2| (1− log |x1 − x2|)

for all x1, x2 ∈ Ω such that 0 < |x1 − x2| ≤ 1 i.e.

sup
0 < |x1 − x2| ≤ 1

x1, x2 ∈ Ω

|v(x1)− v(x2)|
|x1 − x2|(1− log |x1 − x2|)

<∞. (5)



Remarks

• The set of log-lipschitizian vector fields is a normed
vector space with the norm

‖v‖LL ≡ ‖v‖LL(Ω) := ‖v‖L∞(Ω) + 〈v〉LL (6)

where 〈v〉LL is the seminorm defined in (5) i.e.

〈v〉LL := sup
0 < |x1 − x2| ≤ 1

x1, x2 ∈ Ω

|v(x1)− v(x2)|
|x1 − x2|(1− log |x1 − x2|)

and ‖v‖L∞(Ω) = ‖v‖sup := supx∈Ω |v(x)|.
• We denote this space by LL or, more precisely, by

LL(Ω).
• It is not difficult to show that LL is a Banach space.



3. PICARD THEOREM



Lagrangian structure

The Picard Theorem (Cauchy-Lipschitz theorem) holds for
log-lipschtizian vector fields. More precisely, if v : Ω× I → Rn is

a continuous map such that, for some constant C,

|v(x1, t)− v(x2, t)| ≤ C|x1 − x2|(1− log |x1 − x2|) (7)

for all x1, x2 ∈ Ω with 0 < |x1 − x2| ≤ 1, i.e. if
supt∈I〈v(·, t)〉LL := sup

0 < |x1 − x2| ≤ 1
x1, x2 ∈ Ω

|v(x1)−v(x2)|
|x1−x2|(1−log |x1−x2|) <∞ then

the field v has a lagrangian structure, i.e. the problem
x ′ = v(x , t), x(t0) = x0

has a unique solution X (·; x0, t0), defined in some interval
I0 ≡ I(x0, t0), for all (x0, t0) ∈ Ω× I.

Let us discuss a proof for this theorem.



In the paper
Chemin, J. Y.; Lerner, N. Flot de champs de vecteurs non
lipschitziens et équations de Navier-Stokes, J. Differential

Equations, 121 (1995), no. 2, 314-328
or in the book

Chemin, J. Y. Perfect incompressible fluids. Oxford Lecture
Series in Mathematics and its Applications, 14. The Clarendon

Press (1998)
we can find a proof which is also valid in infinite dimensional

space, i.e. with Ω being an open set of a Banach space E and
v : Ω× I → E as above.

Comparing this proof with the classical proof of Picard theorem,
the difference is the way of showing that the Picard iteration is

convergent.



Picard iteration

ϕ0 = x0, ϕk (t) = x0 +

∫ t

t0
v(ϕk−1(s), s)ds,

k = 1,2, · · ·
Convergence: Let I0 be an open interval such that t0 ∈ I0,

I0 ⊂ I and sufficiently small such that ϕk (t) ∈ Br (x0) ⊂ Ω, for
some closed ball Br (x0) and for all t ∈ I0.

To facilitate the notation, here and in the sequel, we introduce
the function

m(r) =

{
r(1− log r), if 0 < r < 1

r , if r ≥ 1 .
(8)

(Notice that we also can write r(1− log r) = r log(1/r).)



Convergence of Picard iteration cont’d

Observe that, for k , l ∈ {1,2, · · · }, we have the inequality

|ϕk+l(t)− ϕk (t)| ≤ |
∫ t

t0
〈v(·, s)〉LLm(|ϕk+l−1(s)− ϕk−1(s)|)ds|,

(9)
for t ∈ I0. Then, setting ρk (t) = supl |ϕk+l(t)− ϕk (t)| and using

that m(r) is an increasing function, we obtain

ρk (t) ≤ C|
∫ t

t0
m(ρk−1(s))ds|, ∀ t ∈ I0.

and, taking the lim sup with respect to k , it follows that

ρ(t) ≤ C|
∫ t

t0
m(ρ(s))ds| , ∀ t ∈ I0, (10)

where ρ(t) := lim supk ρk (t).



Remark

To pass the above lim sup over the integral we used that
lim supk ρk is the limit of the sequence ζk := supk{ϕk , ϕk+1, · · · },

then, since m is increasing, we have
ρk (t) ≤ C|

∫ t
t0

m(ζk−1(s))ds|, and therefore, by the “reverse
Fatou lemma”∗, it follows that

lim supk ρk (t) ≤ C|
∫ t

t0
lim supk m(ζk−1(s))ds| =

C|
∫ t

t0
limk m(ζk−1(s))ds| = C|

∫ t
t0

limk m(ρ(s))ds|.

——————————–
∗V. e.g. Wikipedia. Notice that {m(ζk−1)} is uniformly bounded in I0, since

ϕk (t) ∈ Br (x0) for all k = 1, 2, · · · and t ∈ I0



• The inequality (10) implies that ρ is null (next slide).
• Let ϕ(t) = limk ϕk (t), t ∈ I0.

• To conclude that ϕ(t) is a solution to the problem (3),
we can use the Lebesgue Dominated Convergence
Theorem and take the limk→∞ in the Picard iteration

ϕk (t) = x0 +
∫ t

t0
v(ϕk−1(s), s)ds.



4. OSGOOD LEMMA



Osgood lemma

Let γ : R→ R+ := [0,∞) a locally integrable function and
ω : R+ → R+, continuous non decreasing and such that
ω(r) > 0 if r > 0. Assume that a continuous non negative
function ρ satisfies the inequality

ρ(t) ≤ a +

∫ t

t0
γ(s)ω(ρ(s))ds,

for a real number a ≥ 0, t0 ∈ R, and all t ≥ t0 in an interval J
containing t0. If a > 0 then

−M(ρ(t)) + M(a) ≤
∫ t

t0
γ(s)ds, t ∈ J ∩ [t0,∞)

where M(x) :=
∫ 1

x
dr
ω(r) , x > 0. If a = 0 and

∫ 1
0

1
ω(r)dr =∞,

then ρ(t) = 0 for all t ∈ J ∩ [t0,∞).



Proof

Letting R(t) = a +
∫ t

t0
γ(s)ω(ρ(s))ds, t ∈ J ∩ [t0,∞), we have

ρ(t) ≤ R(t) and R′(t) = γ(t)ω(ρ(t)) ≤ γ(t)ω(R(t)), a.e.
In the case a > 0, R(t) > 0, then

− d
dt

M(R(t)) =
1

ω(R(t))
R′(t) ≤ γ(t).

Therefore, integrating from t0 to t , we obtain the inequality
−M(ρ(t)) + M(a) ≤

∫ t
t0
γ(s)ds.

In the case a = 0, we have ρ(t) ≤ a′ +
∫ t

t0
γ(s)ω(ρ(s))ds, for all

a′ > 0, then, by the case a > 0, we obtain

M(a′) ≤
∫ t

t0
γ(s) ds + M(ρ(t))

for all a′ > 0. Therefore, droping a′ to zero, it follows that∫ 1
0

1
ω(r)dr <∞ if ρ(t) > 0 for some t ∈ J ∩ [t0,∞). 2



Remarks

1. If ω = id. (i.e. ω(r) = r , ∀ r ∈ R+), Osgood lemma =
Gronwall lemma.

2. M is a strictly decreasing function
(M ′(x) = −1/ω(x) < 0). Then it has an inverse M−1,
with domain (−

∫∞
1

dr
ω(r)

,
∫ 1

0
dr
ω(r)

).

3. In the case that M(a)−
∫ t

t0
γ(s)ds ∈ Dom.M−1, the

above inequality when a > 0 is equivalent to

ρ(t) ≤ M−1
(

M(a)−
∫ t

t0
γ(s)ds

)
.



Remars cont’d

4. For the function ω = m given in (8),

M(x) =

{
ln(1− ln x), if 0 < x ≤ 1
− ln x , if x ≥ 1

M−1(y) =

{
e−y , if y ≤ 0
e(1−exp(y)), if y ≥ 0 .

Then, if M(a)−
∫ t

t0
γ(s)ds ≥ 0 and a ≤ 1, i.e.

a ≤ min{1,e(1−exp(
∫ t

t0
γ(s)ds))}, we have the inequality

ρ(t) ≤ e1−exp(M(a)−
∫ t

t0
γ(s)ds)

= e1−(1−ln a) exp(−
∫ t

t0
γ(s)ds)

,

i.e.
ρ(t) ≤ aexp(−

∫ t
t0
γ(s)ds)e1−exp(−

∫ t
t0
γ(s)ds)

. (11)



Uniqueness of trajectories

Let ψ1 and ψ2 be solutions to the problem (3). Similarly to (9),
we have

|ψ1(t)− ψ2(t)| ≤
∫ t

t0
〈v(·, s)〉LLm(|ψ1(s)− ψ2(s))|)ds,

then by Osgood lemma, it follows that ψ1 = ψ2.



Continuous dependence on the initial point

|X (t ; x1, t0)− X (t ; x2, t0)|
≤ |x1 − x2|+

∫ t
t0
〈v(·, s)〉LLm(|X (s; x1, t0)− X (s; x2, t0)|)ds,

thus, from (11), we have

|X (t ; x1, t0)− X (t ; x2, t0)| ≤ |x1 − x2|
exp(−

∫ t
t0
γ(s)ds)e1−exp(−

∫ t
t0
γ(s)ds)

,
(12)

for 0 < |x1 − x2| ≤ min{1,e1−exp(
∫ t

t0
γ(s)ds)}, if γ(s) := 〈v(·, s)〉LL

is locally integrable, e.g. if v is uniformly log-lipschitzian, as in
(7).



Theorem

The constant C in (7) can be replaced by a locally integrable
function in t , i.e. a vector field v in Ω× I has a lagrangian

structure if the seminorm 〈v(·, s)〉LL(Ω) is locally integrable in I.
More precisely, we have the following theorem:

Let v : Ω× I → Rn be a map in L1
loc(I; LL(Ω)). Then, for any

t0 ∈ I, there exists a unique continuous map
X (· ; ·, t0) : I × Ω→ Ω such that

X (t ; x , t0) = x +

∫ t

t0
v(X ((s; x , t0), s)ds, (t , x) ∈ I × Ω. (13)

In addition, we have the estimate (12), with γ(s) = 〈v(·, s)〉LL,
for any x1, x2 ∈ Ω such that

0 < |x1 − x2| ≤ min{1,e1−exp(
∫ t

t0
γ(s)ds)}.



Remark

The estimate (12) means that for each t ∈ I, the map
x ∈ Ω 7→ X (t ; x , t0) is Hölder continuous, with exponent given

by α = exp(−
∫ t

t0
〈v(·, s)〉LLds).



2 comments

• The relation between the space of lipschitzian
functions, log-lipschitzian functions and Hölder
continuous functions:

Lip ⊂ LL ⊂ Cα

• The inclusion LL ⊂ Cα has been used to obtain better
regularity than Cα in problems of free boundaries or
fully nonlinear equations, cf. the papers
Leitão, Raimundo; de Queiroz, Olivaine S.; Teixeira, Eduardo.
Regularity for degenerate two-phase free boundary problems,
Ann. l’Inst. H. Poincare (C) Non Linear An., 32 (2015), no. 4,
741-762;
———–
Teixeira, Eduardo. Universal moduli of continuity for solutions to
fully nonlinear elliptic equations. Arch. Ration. Mech. Anal. 211
(2014), no. 3, 911-927.



An interesting remark

The Sobolev space H
n
2 +1(Rn) is immerse in

the space LL(Rn).



AN USEFUL EXAMPLE



Let Γ be the fundamental solution of the laplacian in Rn, i.e.

Γ(x) =

{
− 1

2π log |x |, if n = 2
1

(2−n)ωn
|x |2−n, if n ≥ 3,

where ωn is the area of the unit sphere unitária in Rn, and g be
a function in Lp(Rn) ∩ L∞(Rn), where 1 ≤ p < n. Then it is

possible to show that the vector field

v = ∇Γ ∗ g =

∫
Rn
∇Γ(x − y)g(y)dy

is a log-lipschitzian vector field in Rn and satisfies the inequality

‖∇Γ ∗ f‖LL(Rn) ≤ C(‖f‖Lp(Rn) + ‖f‖L∞(Rn))

where C = C(n,p).



5. APPLICATION TO COMPRESSIBLE FLUIDS



Compressible fluids (Navier-Stokes) equations:

ρt + div(ρv) = 0
(ρv j)t + div(ρv jv) + P(ρ)xj = µ∆v j + λ div vxj + ρf j



Solution obtained by David Hoff:

• Hoff, David. Global solutions of the Navier-Stokes
equations for multidimensional, compressible flow with
discontinuous initial data. J. Diff. Eqns. 120, no. 1 (1995),
215-254.
• Hoff, David. Discontinuous solutions of the Navier-Stokes

equations for multidimensional, heat-conducting flow.
Archive Rational Mech. Ana. 139 (1997), 303–354.

• Hoff, David. Compressible Flow in a Half-Space with
Navier Boundary Conditions. J. Math. Fluid Mech. 7
(2005), 315–338.



Distinguished properties

• P(ρ) ∈ L2(Rn) ∩ L∞(Rn), n = 2,3
• The quantities ωj ,k = v j

xk − vk
xj

and
F = (µ + λ)div v − P(ρ) are Hölder

continuous.



Decomposition of the velocity field

∆v j = v j
xk xk

= vk
xk xj

+ (v j
xk
− vk

xj
)xk

= div vxj + ωj,k
xk

= (µ+ λ)−1Fxj + ωj,k
xk

+ (µ+ λ)−1P(ρ)xj

(14)

thus, we can write

v = vF ,ω + vP

where

vF ,ω = (µ+ λ)−1∇Γ ∗ F + Γxk ∗ ω·,k

vP = ∇Γ ∗ P(ρ) .



Last slide

• From the ‘‘useful example’’, we can conclude that vP ∈ LL.
• Since F and ωj,k are Hölder continuous, we can conclude

that vF ,ω ∈ Lip.
• Theorem (Hoff- –, ARMA, 2008). 〈v(·, t)〉LL ∈ L1

loc .

Thank you!!


