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1. INTRODUCTION (MOTIVATION)




Let © denote an open set in R™ and /, an open interval in R. As
we know, a vector fied v in Q (i.e. amap v : Q — R") is said to
be lipschitzian when there is a constant C such that

[v(x1) — vxe)| < Clx1 — xe (1)

for all x4, x> € Q. If the field v is bounded then this condition is
equivalent to
Sup vixi) = vOe)| _

0< X — %] <1 X1 — Xo
X1, X € Q



Particle trajectory

If the field v depends also on a real variable t € / (physically,
this second variable denotes time), the
Picard theorem says thatif v = v(x,f) : Qx| - R"isa
continuous map and lipschitzian with respect to x € Q,
uniformly with respect to t € /, i.e. if for some constant C,

[v(x1,t) — v(xe, t)| < C|x1 — Xo| (2)

for all x1, x> € Q2 and for all t € /, then for any pair
(X0, Io) € Q x [, there exist a unique solution to the problem

X' =v(x,t), x(t) = Xo, ®))

where x’ = dx/0t is defined in some open open interval
= /(Xo, to) c Il



Particle trajectory contd

We shall denote the above solution by X(-; xp, f).
Themap t € Iy — X(t; xo, fp) is said to be an integral curve of
the field v, passing by the point x; at the time f; or, physically

speaking, in fluid dynamics, the particle trajectory/the trajectory
of the particle that at time {; is at the point xo, if v(x, t)
represents the velocity of a fluid particle that at time t is at the
point x.

The map (t; xo, fp) — X(t; Xo, lp) is called the the flux of the field
V.

Remark: If v is bounded, then Iy = /, for all (xo, ) € Q x I.



Definition

When for all (xo, ty) € Q x I, the problem

/

x =v(x,t), x(t) = Xo,

has one and only one solution X(-; xo, ty), defined is some
open interval Iy, we say that the vector field v has a lagrangian
structure.




First example

Question: Is the Lipschitz condition (2)
(Jv(x1,t) — v(x2, t)| < C|x1 — x2|) necessary in order that the
field v has a lagrangian structure?

Answer: NO!

Example

The function (scalar vector field) defined by v(x,t) = x log |x|, if
x #0andv(0,t) =0, witht € R, has a lagrangian structure but
it does not satisfies the Lipschitz condition (2).

Proof. For x # 0, we have that
ov/ox =log|x|+1 — —oo, when x — 0,

i.e. this partial derivative is not bounded.



The Lipschitzian condition (2) (Jv(x1, t) — v(x2, t)| < C|x1 — x2|)
implies that

IVxv(x,t)| < C

for every point (x, t) where this derivative exists. In fact, for who

knows Measure Theory and Weak Derivatives, we can say that

the condition (2) is equivalent to the following conditions: there

exists the partial derivatives dv/0x;, as weak derivatives, they
belong to the space L>°(Q2) and ||V V(:, t)|| = (q) < C for all

t € I. This statement is the Rademacher theorem. See e.g. the
book Partial Differential Equations, by Lawrence C. Evans.



The (scalar) field v(x, t) = x log|x| has a lagrangian

structure, i.e.

the problem
X' = xlog|x|, x(t) = xo

has a unique solution.
Proof. For xg # 0, this is a consequence of Picard theorem. In
fact, we can compute this solution explicitly by separation of
variables, which is ( ):

X(t: X0, o) = (sgnxo)|xo®"

where sgnxg = 1 if xo > 0 and sgnxg = —1 if xo < 0.



Proof cont'd: the case xo = 0

In the case xp = 0, it is clear that x(t) = 0 is a solution. This
solution is unique, since if another solution ¢(t) = X(-;0, ty)
were not null in some point ¢, setting x; = ¢(t;), we would have

o(t) = X(t; x1,t), VteR,

and this is a contradiction, since ¢(fp) = 0 but X(t; xo, ty) # 0
forall t € Rif xg # 0.



e There are many non lipschitizian fields with lagrangian structure.
Another example is v(x) = 1 4 2x?/3. See Example 1.2.1 in the book
Uniqueness and Nonuniqueness Criteria for Ordinary Differential
Equations by R. P. Agarwal and V. Lakshmikantham.

e The function —x log x is used in Information Theory to define the
so-called Shannon entropy. See the seminal paper Shannon, C. E. A
mathematical theory of communication. Bell System Technical Journal,
27 (1948) or Section 4.1 of the book Yockey, Hubert P. Information
theory, evolution, and the origin of life.

e The function x log x is also used in Optimization. See e.g. the works
Lopes, Marcos Vinicius. Trajetoria Central Associada a Entropia e o
Meétodo do Ponto Proximal em Programacgéo Linear. Masters
dissertation - Federal University of Goias, Brazil, 2007. Advisor: Orizon
Pereira Ferreira
and
Ferreira, O. P; Oliveira, P. R.; Silva, R. C. M. On the convergence of the
entropy-exponential penalty trajectories and generalized proximal point
methods in semidefinite optimization. J. Global Optim. 45 (2009).



The field v(x) = v(x, t) = x log | x| satisfies the

following property:

[v(x1) = v(xe)| < Clxy — x| (1 — log [X1 — X2|) (4)
(Lipschitz condition modified)

forall x;,x2 € (—1,1) suchthat 0 < |x; — xo| < 1.

’Notice that — log|xy — x| >0 !‘




Proof

For x4, x> € (0,1), assuming x; < X2, without loss of generality,
we have

\V(X1)— (Xz)\—ffo gV (X1 + 8(x2 — x1)) ds|

— X2—X1)f V/ X1 +SX2—X1))dS‘

x2—x1)f0( + log(x1 + s(x2 — x1))) ds
X2 — x1|(1 — fo log(x1 4 S(X2 — X1)) ds)

‘Xg*X1|(1 ffo |OgS 2*X1)dS)

(

(

(2

A A I

|Xo — Xxq| 1—]0 Iogs+|og(x2—x1))ds)
|Xo — X4 1—f0 Iogsds—fO log |X2 — Xq| dS)
X2 — Xq|

—log X2 — x1]) < 2[x2 — x4[(1 — log [X2 — X4])



Proof cont'd

For x1, x2 € (—1,0), we can conclude the same inequality as
above by using that v(x) = x log|x| is an odd function.

Next, let x; € (—1,0) and xo € (0, 1).

If X1 — xo| = X2 — x; < e~ '}, using that 1) :== —xlog|x] is
increasing in the interval [-e~', e~], we have the following
estimates:

[V(x1) — v(x2)| = X1 log [x1] — X2 log [X2| = ¥(—X1) + 1(X2)
Y(—x1 + X2) + Y(x2 — X1) = 2¢(X2 — X1)
—2(x2 — x1) log(X2 — x1) <2(1 — (X2 — x1) log(X2 — X1)) .

I IA



Proof cont'd

On the other hand, |if |x; — x| > e~ |, (x) = xlog x
is bounded in the interval (—1, 1), we have

V(x1) = v(xp)| = =100l xy — x|

2(max |v])e|x1 — X2
2(max|v|)e[x1 — Xz| (1 — log X1 — X2|).

Finally, we observe that if x; = 0 or x» = 0, the condition (4) is
trivial, since v(0) = 0.




Remark

As we can see from the last argument, to show (4), i.e.
[v(x1) — v(x2)| < Clx1 — x2| (1 — log |x1 — X2|), it is enough to

consider this inequality for |x; — x| less than a certain
constant, since v is bounded.




2. LOG-LIPSCHIZIAN VECTOR FIELDS




Definition

A vector field v in Q (an open set in R") is called log-lipschitzian
if it is bounded (for convenience) and satisfies the inequality (4),
i.e.

[v(x1) — v(x2)| < Clx1 — X2 (1 — log[X1 — X2[)
forall x1,x2 € Qsuchthat 0 < |x; — xo| < 1i.e.

V(Xq) — V(X
o Vo) —vbe) g
0< X — x| <1 ’X1 *Xg‘(dl *lOg‘X1 *X2’)

X1, X2 € Q




e The set of log-lipschitizian vector fields is a normed
vector space with the norm

[VIle = Vi) = V=@ + (V)i ()

where (v),; is the seminorm defined in (5) i.e.

[v(x1) — v(x2)|
"4 = su
W= 28 T el(1 —Tog Pt — )
and [|V]| (@) = [[V]sp == Supxeq [V(X)].
e We denote this space by LL or, more precisely, by
LL(Q).
e |t is not difficult to show that LL is a Banach space.



3. PICARD THEOREM




Lagrangian structure

The Picard Theorem (Cauchy-Lipschitz theorem) holds for
log-lipschtizian vector fields. More precisely, if v: Q x | — R" is
a continuous map such that, for some constant C,

[v(xq,1) — v(xo, t)] < Clxy — x2|(1 — log |X1 — X2|) (7)

forall xi,x2 € Qwith0 < |x1 — x2| <1, i.e. if

P V(Xq)—V(X
supse/(V(+ 1)L == . IXPLJ({),lOg(‘;)Lle) < oo then
X1 =X S

X1, X2 € Q
the field v has a lagrangian structure, i.e. the problem
X' =v(x,t), x(t)=Xo
has a unique solution X(-; xo, fp), defined in some interval
o = I(xo, ), for all (xp, &) € Q@ x 1.

Let us discuss a proof for this theorem.



In the paper
Chemin, J. Y.; Lerner, N. Flot de champs de vecteurs non
lipschitziens et équations de Navier-Stokes, J. Differential
Equations, 121 (1995), no. 2, 314-328
or in the book
Chemin, J. Y. Perfect incompressible fluids. Oxford Lecture
Series in Mathematics and its Applications, 14. The Clarendon
Press (1998)
we can find a proof which is also valid in infinite dimensional
space, i.e. with 2 being an open set of a Banach space E and
v:Q x | — E as above.
Comparing this proof with the classical proof of Picard theorem,
the difference is the way of showing that the Picard iteration is
convergent.



Picard iteration

t
po =X, @k(t) =X+ /t V(¢k-1(8), 5)ds,
{0
k=12,

Convergence: Let [y be an open interval such that f € /p,
Iy ¢ I and sufficiently small such that k(1) € By(x) C Q, for
some closed ball B;(xo) and for all t € I.

To facilitate the notation, here and in the sequel, we introduce

the function

o {100 B0

(Notice that we also can write r(1 —logr) = rlog(1/r).)



Convergence of Picard iteration contd

Observe that, for k,/ € {1,2,-- -}, we have the inequality
-t
|Pk1(1) — p(B)] < | t (v(, ) em(lpri-1(8) — k-1(s)])ds],
{0]
- 9)
for t € Iy. Then, setting pk(t) = sup; |pkri(t) — k(1) and using
that m(r) is an increasing function, we obtain

t —
pk(t) < Cl t m(pk—1(s))ds|, Vt€ .
{0]

and, taking the lim sup with respect to k, it follows that

p(t) < C| .tm(ﬂ(s))dsl , Vteh, (10)

where p(t) := limsupy pk(t).



Remark

To pass the above lim sup over the integral we used that
lim supy pk is the limit of the sequence (x := supx{ ¢k, ki1, -}
then, since m is increasing, we have
) < C] ft (¢k—1(8))ds|, and therefore, by the “reverse
Fatou lemma™*, it follows that
lim sup px(t) < CI fi lim supy m(C—1(s))ds| =

Cl Jy limi m(Ci—1(8))ds| = CI f lime m(p(s))dls].

*V. e.g. Wikipedia. Notice that {m(¢x_1)} is uniformly bounded in k, since
ok(t) € B:(xo) forallk =1,2,-.. and t € Ip



e The inequality (10) implies that p is null (next slide).
o Let (,9(1') = limg gok(l‘), teb.
e To conclude that (t) is a solution to the problem (3),

we can use the Lebesgue Dominated Convergence
Theorem and take the limx_,, in the Picard iteration

wk(t) = Xo + fté v(pk_1(8), S)ds.




4. OSGOOD LEMMA




Osgood lemma

Letv: R — R, := [0, 00) a locally integrable function and
w: Ry — R4, continuous non decreasing and such that
w(r) > 0if r > 0. Assume that a continuous non negative

function p satisfies the inequality

ot
p(t) <a+ [ A(e)up(s)as,
Ji
for a real number a >0, &y € R, and all t > t, in an interval J
containing ty. If a > 0 then

_M(p(t)) + M(a) < /t‘tﬂ,r'(s)ds, t € Jn [t, 00)

where M(x) = |[! 5, x>0. Ifa=0and [01 ,W,Z—r)dr = 00,

X w(r)’
then p(t) =0 forall t € JN [fy, ).



Letting R(t) = a+ [, ¥()w(p(s))ds, t € JN [ty, o0), we have
t

p(t) < R(t) and R'(t) = y(t)w(p(t)) < y(t)w(R(1)), a-e.
In the case a > 0, R(t) > 0, then

Therefore, integrating from f; to t, we obtaln the inequality
—M(p(1)) + M(a) < [, (s
In the case a = 0, we have p(t) g a-+ f,o (p(s))ds, for all
a > 0, then, by the case a > 0, we obtain

t
M(d) < /t +(s) ds + M(p(1))

for all & > 0. Therefore, droping & to zero, it follows that
f01 ﬁdr < oo if p(t) > 0 for some t € JN [fy,0). O



1. lfw=id. (i.e. w(r) = r, Vr € R,), Osgood lemma =
Gronwall lemma.

2. M is a strictly decreasing function
(M'(x) = —1/w(x) < 0). Then it has an inverse M1,
with domain (— [ % 0 o5)-

3. In the case that M(a ft v(s)ds € Dom.M~, the
above inequality when a > 0 is equivalent to

p(t) < M~ <l\/l(a) — ./r: A,/(s)ds)



4. For the function w = m given in (8),

_J In(1—=Inx), if0O<x<1
M(X){—Inx, if x > 1

- e, ify <0
M= (y) —{ ell=oe)  ify >0 -

Then, if M(a ft s)ds>0anda<1,ie.

(1 ) ft

a<min{1,e (99D} we have the inequality

o(t) Se‘lfexp(M(a)a[};A,(s)ds):e1 (1~Ina) exp(— f; 7(s)ds)

)

i.e.
/)(f)§ exp ft ~(s)ds) e‘lfexp(fftow(s)ds). (11)



Uniqueness of trajectories

Let )¢ and v be solutions to the problem (3). Similarly to (9),
we have

t
1 () — ()] < / (V- $)) (i (s) — a(s))]) 0,

)

then by Osgood lemma, it follows that )1 = 1.




Continuous dependence on the initial point

‘X(t X1,t0) X(t X27t0)|
< xi = xel + [y (V- 8)m(IX(si xi, 1) — X(8: Xe, )]s,

thus, from (11), we have

‘X(f; X1,T0) — X(T; X2, l‘o)‘ < ‘X1 — X2‘ ]t ~(s)ds) e1 exp(= I V(s )ds),
(12)
t
for 0 < |x — xo| < min{1,e'~“PUa 1% lif 5(5) = (v(-, 8))us
is locally integrable, e.g. if v is uniformly log-lipschitzian, as in

(7).



The constant C in (7) can be replaced by a locally integrable
function in t, i.e. a vector field v in Q x [ has a lagrangian
structure if the seminorm (v(-, s))1,(q) is locally integrable in /.
More precisely, we have the following theorem:
Letv:Q x| — R"beamapinL] (I;LL(Q)). Then, for any

Io € I, there exists a unique continuous map
X(-;+ b)) - I x Q2 — Q such that

X(t; x, ) =x+ /t v(X((s; x,t),s)ds, (t,x)elxQ. (13)

fo

In addition, we have the estimate (12), with v(s) = (v(-, S)) 1L,
for any xq, xo € Q such that

't
0 < %1 — x| < min{1, '~ =PUp Y(S))y



Remark

The estimate (12) means that for each t € /, the map
x € Qw— X(t x,ty) is Holder continuous with exponent given

by a = exp(— ft ))Lds).




2 comments

e The relation between the space of lipschitzian
functions, log-lipschitzian functions and Holder
continuous functions:

Lipc LL c C*

e The inclusion LL C C* has been used to obtain better
regularity than C* in problems of free boundaries or
fully nonlinear equations, cf. the papers
Leitdo, Raimundo; de Queiroz, Olivaine S.; Teixeira, Eduardo.
Regqularity for degenerate two-phase free boundary problems,
Ann. I'lnst. H. Poincare (C) Non Linear An., 32 (2015), no. 4,
741-762;

Teixeira, Eduardo. Universal moduli of continuity for solutions to
fully nonlinear elliptic equations. Arch. Ration. Mech. Anal. 211
(2014), no. 3, 911-927.



An interesting remark

The Sobolev space Hz""(R") is immerse in

the space LL(R").




AN USEFUL EXAMPLE




Let I' be the fundamental solution of the laplacian in R”, i.e.

{ —a-log|x|, ifn=2

X", ifn >3,

r(x) =

where wj, is the area of the unit sphere unitaria in R”, and g be
a function in LP(R") N L>°(R"), where 1 < p < n. Thenitis
possible to show that the vector field

v=VIxg= - VI(x —y)g(y)ady

is a log-lipschitzian vector field in R” and satisfies the inequality
VT * £l Liwny < C>l[fllony + [ Fll oo mny)

where C = C(n, p).



5. APPLICATION TO COMPRESSIBLE FLUIDS




Compressible fluids (Navier-Stokes) equations:

pt + div(pv) =0 , .
(pV)t +div(pVV) + P(p)x = pAV + X div vy + pf!




Solution obtained by David Hoff:

o Hoff, David. Global solutions of the Navier-Stokes
equations for multidimensional, compressible flow with
discontinuous initial data. J. Diff. Egns. 120, no. 1 (1995),
215-254.

e Hoff, David. Discontinuous solutions of the Navier-Stokes

equations for multidimensional, heat-conducting flow.
Archive Rational Mech. Ana. 139 (1997), 303—-354.

e Hoff, David. Compressible Flow in a Half-Space with
Navier Boundary Conditions. J. Math. Fluid Mech. 7
(2005), 315-338.



Distinguished properties

o P(p) € L2(R") N L®(R"), n = 2,3
e The quantities w/* = v/, — vs and

F = (u+ \)divv — P(p) are Holder
continuous.




Decomposition of the velocity field

Y N J k
AV = Vyy, = Vxex, (Vi — ij)Xk

= div Vx; + wﬁ(,f (14)
= (N7 Wl (AT P(p)y

thus, we can write

’V:VF,UHFVP‘

where

VEw = (0 +A)TTVIEx F+ Ty, xwk

’ vp = VI * P(p) ‘




Last slide

e From the “useful example”, we can conclude that vp € LL.
e Since F and «/** are Hoélder continuous, we can conclude

that vg, € Lip.
.

e Theorem (Hoff- —, ARMA, 2008). (v(-. 1)) € L},

Thank you!!



