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Overview

I Description of the problem and statement of the main theorem
I History and some related results
I Some idea on the proof



Power law model

(NS){
− div(|D(v)|p−2D(v)) + v∇v +∇P = 0 Navier-Stokes system

div v = 0 incompress. equation

P: pressure
v : velocity, D(v) = ∇v + (∇v)t

v∇v : convective term
( v∇v =

∑n
j=1 vj

∂v
∂xj

)

The viscous stress tensor, S, is given by
|D(v)|p−2D(v).

or, viscosity = |D(v)|p−2

power law or Ostwald-de Waele law/model
See e.g. R. Bird, W. Stewart and E. Lightfoof, Transport Phenomena,
Johh Wiley & Sons, Inc. (2007).
In the classical book by O. Ladyzhenskaya, The Mathematical Theory of
Viscous Incompressible Flow, 2nd ed. (1969), after the last chapter, there
is a description of some models including power laws.



Transport Phenomena (book)

“Transport Phenomena is the first textbook that is about transport
phenomena. It is specifically designed for chemical engineering students.
The first edition was published in 1960, two years after having been
preliminarily published under the title Notes on Transport Phenomena
based on mimeographed notes prepared for a chemical engineering course
taught at the University of Wisconsin-Madison during the academic year
1957-1958. The second edition was published in August 2001. A revised
second edition was published in 2007. This text is often known simply as
BSL after its authors’ initials.” Wikipedia



|D(v)|: shear rate

p = 2: Newtonian fluids (e.g. water, oil)
p < 2: shear-thinning (or plastic and pseudo-plastic, e.g.

most polymer melts and solutions)
- the viscosity is decreasing with respect the shear rate
(viscosity =∞ when shear rate = 0)

p > 2: shear-thickening (or dilatant, e.g. mud, clay, cement)
- the viscosity is increasing

See e.g. E. Marusic-Paloka, Steady Flow of a Non-Newtonian Fluid in
Unbounded Channels and Pipes, Mathematical Models and Methods in
Applied Sciences, 10(9) (2000).

We consider p ≥ 2.



Parallel fluids

The velocity field is of the form

~v(x) ≡ v(x̄)~e

where ~e is a constant vector, x = (x̄ , x ′) ≡ x̄ ⊕ x ′~e and v(x̄) is a scalar
function.

In this case, the convection term v∇v vanishes, and the Navier-Stokes
equations become the p -Laplacian equation

− div(|∇v |p−2∇v) = c

for some constant c , related to “pressure drop”, i.e. ∇P = −c~e.



The domain, Ω

Ω =
2⋃

i=0

Ωi

is an open connect set set in Rn, n = 2, 3, with a C∞ boundary, where
Ω0 is a bounded subset of Rn and, in possibly different cartesian
coordinate system,

Ω1 = {x = (x̄ , x ′) ∈ Rn; x ′ < 0, x̄ ∈ Σ1(x ′)}
and

Ω2 = {x = (x̄ , x ′) ∈ Rn; x ′ > 0, x̄ ∈ Σ2(x ′)},
with Σi (x ′), i = 1, 2, the cross sections, being C∞ simply connected
domains in Rn−1 such that

supx′,i=1,2 diamΣi (x ′) <∞
and Ωi , i = 1, 2, contains some cylinder

C i
l = {x ∈ Rn; (−1)ix ′ > 0 e |x̄ | < l}, (l > 0)

(in particular, infx′,i=1,2 diamΣi (x ′) > 0).

We will denote by n the ortonormal vector to Σ(x ′), or to any cross
section of Ω, pointing from Ω1 toward Ω2.



“Ladyzhenskaya-Solonnikov problem”

Given any Φ ∈ R, find a solution (v ,P) of (NS) such that

v = 0 on ∂Ω ,

the flux ≡
∫

Σ(x′)
v · n = Φ

and
sup
t>0

t−1
∫

Ωt
|∇v |p <∞ ,

where Ωt := Ω0 ∪ Ωt
1 ∪ Ωt

2, Ωt
i := {(x̄ , x ′) ∈ Ωi ; 0 < (−1)ix ′ < t},

i = 1, 2.

Cf. “Problem 1.1” in
[LS] O.A. Ladyzhenskaya and V.A. Solonnikov, Determination of the
Solutions of Boundary Value Problems for Steady-State Stokes and
Navier-Stokes Equations in Domains Having an Unbounded Dirichlet
Integral (1980). English transl. in J. Soviet Math. 21 (1983).



Theorem
( –, Gilberlandio Dias, J.D.E. 2012)
Let p ≥ 2 e n = 2, 3. Then the Ladyzhesnkaya-Solonnikov problem for
power-law fluids has a weak solution (v ,P) in W 1,p

loc
(Ω)× Lp′

loc
(Ω),

p′ = p/(p − 1), i.e.
∫

Ω

|D(v)|p−2D(v) : ∇ψ = −
∫

Ω

(v∇v) · ψ +

∫
Ω

Pdivψ , ∀ ψ∈C∞c (Ω;Rn)∫
Ω

v · ∇ψ = 0 , ∀ ψ ∈ C∞c (Ω;R)

( (NS) equations are satisfied in the sense of distributions ),

v = 0 on ∂Ω ,∫
Σ

v · n = Φ

(with v
∣∣∂Ω and v

∣∣Σ in the sense of the trace)
and

sup
t>0

t−1
∫

Ωt
|∇v |p <∞ .

Remark: The case p = 2 (newtonian fluid) is due to Ladyzhenskaya and
Solonnikov [LS].



History and Related Results

Leray Problem

Let ~vP(x) = vP(x̄)~e be the parallel velocity field of a Newtonian fluid
(p = 2) in a straight (unbounded) cylinder

C = {(x̄ , x ′) ≡ x̄ ⊕ x ′~e ; x̄ ∈ Σ, 0 < |x ′| <∞},

(Σ here is independent of x ′) such that vP
∣∣∂Σ = 0, i.e.{

−∆vP = c in Σ
vP = 0 on ∂Σ .

The vector field ~vP is called Poiseuille flow.

The constant c can be determined by the flux Φ =
∫

Σ
vP :

Φ = c
∫

Σ
|∇v1|2

where v1 is the solution corresponding to c = 1.
As a consequence, we also have that∫

Σ
|∇vP |2 = c2

∫
Σ
|∇v1|2 =

(
Φ/
∫

Σ
|∇v1|2

)2 ∫
Σ
|∇v1|2 = Φ2/

∫
Σ
|∇v1|2,

i.e. ∫
Σ
|∇vP |2 = const.Φ2



Leray problem

Suppose that Ωi , i = 1, 2, are straight cylinders and let v i
P be the

Poiseuille flow in Ωi . Then, Leray problem is the following:

Find a solution (v ,P) of (NS) such that v
∣∣∂Ω = 0 and

v → v i
P as |x ′| → ∞ in Ωi .



Amick’s theorem, 1977
Leray problem for Newtonian fluids (p = 2) has a solution if the flux∫

Σ
v i
P · n is sufficiently small.

C.J. Amick, Steady solutions of the Navier-Stokes equations in
unbounded channels and pipes, Ann. Scuola Norm. Sup. Pisa Cl.Sci.,
4(3) (1977).

In this paper Amick wrote
“This problem was proposed (I believe) by Leray to Ladyzhenskaya, who
in [7] attempted an existence proof under no restrictions on the
[constant] viscosity ν. The problem is also mentioned by Finn in a review
paper ([3], p. 150).”

[7] O. A. Ladyzhenskaya, Stationary motion of a viscous incompressible fluid in
a pipe, Dokl. Akad. Nauk. SSSR, 124 (1959).
[3] R. Finn, Stationary solutions of the Navier-Stokes equations, Amer. Math.
Soc., Proc. Symposia Appl. Math., 17 (1965).

Remark: For arbitrary flux, the solution of Leray problen is an open
question.



Ladyzhenskaya-Solonnikov’s theorem, 1980

For arbitrary flux, “Ladyzhenskaya-Solonnikov problem” has a solution,
in the case of a newtonian fluid (p = 2).



Some related results

Many authors have studied steady flows for newtonian fluids in domains
with unbounded boundaries, including unbounded cross sections, e.g.
K. Pileckas, Nazarov, Kapitanskii, ...

See e.g.
G.P. Galdi, An Introduction to the Mathematical Theory o f the
Navier-Stokes Equations, Springer-Verlag (1994).
- - - - - - - - - - - - - - - - - -

Some others:
—, F. Ammar-Khodja: Leray and Ladyzhenskaya-Solonnikov problems for
Newtonian fluids in 2D with non-constant density;
Methods Appl. Anal. 13 (2006)
Progr. Nonlinear Differential Equations Appl. 66 (2006).

Fábio V. Silva: micropolar fluids;
J. Math. Anal. Appl. 306(2) (2005)
Nonlinear Anal. 64(4) (2006)



Results for non newtonian fluids

Several results for bounded domains - Boundary Value Problem for (NS),
e.g.
J.L. Lions, Quelques Méthods de Resolution des Problémes Aux Limites
Non Linéaires, Dunod, Gauthier-Villars (1969), Ch. 2, Remark 5.5:

p ≥ 3n/(n + 2).

W. Sadowski, On the Stationary Flow of the Power Law Fluid in 2D,
J. Appl. Analysis, 8, 2002: 1 < p < 2.

In unbounded domains there are few results, e.g.
E. Marusic-Paloka, 2000: Leray problem, p > 2.



Proofs

Amick’s solution of Leray’s problem for newtonian fluids, with
small flux:

v = u + a; u ∈ H1
0 (Ω), divu = 0,

a ∈ H1
loc(Ω), diva = 0, a

∣∣Ωi = v i
P , a

∣∣∂Ω = 0.

Notice that the Poiseuille flows v i
P are not in H1(Ω) (they are constant

with respect to x ′); v i
P ∈ H1

loc(Ω).

A divergence free vector field u in H1
0 (Ω) = C∞c (Ω)

H1(Ω)
carries no flux,

i.e.
∫

Σ
u · n = 0, for any cross section Σ of Ω. Indeed, if ψ ∈ C∞c (Ω)

then
∫

Σ(x′) ψ · n = 0 for all sufficiently large |x ′|.

NS-equations become
−∆u + u∇u + l(u) +∇P = 0,

where
l(u) = a∇u + u∇a + a∇a−∆a .

Method: compactness method, with Galerkin approximations.



Estimate of the nonlinear term
∫

(a∇u)u by
∫
|∇u|2 (a priori estimate):∫

|(a∇u)u| ≤
(∫
|∇u|2

)1/2 (∫ |a|2 |u|2)1/2∫
Ωi
|a|2 |u|2 =

∫
Ωi
|u|2 |v i

P |2

= |
∫ ±∞
0

∫
Σ
|v i

P |2 |u|2|
≤ |

∫ ±∞
0

(∫
Σ
|v i

P |4
)1/2 (∫

Σ
|u|4
)1/2 |

= |
∫ ±∞
0 ‖v i

P‖2L4(Σ) ‖u‖
2
L4(Σ)|

≤ c |
∫ ±∞
0 ‖∇v i

P‖2L2(Σ) ‖∇u‖
2
L2(Σ)|

= c ‖∇v i
P‖2L2(Σ)|

∫ ±∞
0 ‖∇u‖2L2(Σ)|

= c Φ2
∫

Ωi
|∇u|2

Similarly, we can estimate
∫

(u∇a)u.
The terms

∫
Ωi

(−∆a)u and
∫

Ωi
(a∇a)u vanish, since a∇a = 0, because

a = v i
P in Ωi is “parallel”, and −∆a = (−∆v i

P)n = cn in Ωi , so∫
Ωi

(−∆a)u = |c
∫ ±∞
0

∫
Σ
u · n| = 0.



Ladyzhenskaya-Solonnikov’s solution,
for newtonian fluids with arbitrary flux

v = u + a; u ∈ H1
loc

(Ω), divu = 0, u
∣∣∂Ω = 0

and a is given by the following lemma:

Lemma [LS]. For any δ > 0 there exists a vector field a such that
a1) a ∈ H1

loc
(Ω), diva = 0, a|∂Ω = 0,

a2)
∫

Σ
a · n = 1 for any cross section Σ of Ω,

a3)
∫

Ωt−1,t
i
|∇a|2 ≤ c for i = 1, 2 and all t ≥ 1, where

Ωt−1,t
i = {(x̄ , x ′) ∈ Ωi ; t − 1 < |x ′| < t},

and
a4)

∫
Ωt |a|2|u|2 ≤ cδ

∫
Ωt |∇u|2 for all t > 0 and u ∈ C∞c (Ω),

where, in a3) and a4), c is a constant depending only on Ω.

Remark: Given any Φ ∈ R, multiplying a by Φ, we obtain a vector field
having flux Φ.

Now a
∣∣Ωi might not be the Poiseuille v i

P , but the compactness method
still works, by truncating the domain and long computations:



Let ut be a solution of the NS-equations

−∆ut + ut∇ut + l(ut) +∇Pt = 0

in H1
0 (Ωt) (joint with some pressure function Pt ∈ L2

loc
(Ωt) ).

Now, let t ′ > t . Multiplying the equation
−∆ut′ + ut′∇ut′ + l(ut′) +∇Pt′ = 0 by ut′ and integrating by parts in
Ωt , we obtain ∫

Ωt
|∇ut′ |2 ≤ ct +

∫
Σ(t)

(bound. terms),

for all t < t ′. Integrating in t, from η − 1 to η ≤ t ′, we get

z(η) :=

∫ η

η−1

(∫
Ωt
|∇ut′ |2

)
dt ≤ cη − 1

2
+

∫
Ωη−1,η

(bound. terms) .

Using the equation, is possible to estimate
∫

Ωη−1,η (bound. terms) by a
linear combinations of powers of

∫
Ωη−1,η |∇ut′ |2. But∫

Ωη−1,η
|∇ut′ |2 = z ′(η) !



Thus,

z(η) :=

∫ η

η−1

(∫
Ωt
|∇ut′ |2

)
dt ≤ cη + g(z ′(η)), ∀ η ≤ t ′,

for some function g : R→ R. Besides,

z(t ′) ≤
∫

Ωt′
|∇ut′ |2 ≤ ct ′.

Then, by a kind of “reverse Gronwall lemma” [LS], we have

z(η) ≤ cη,

which implies ∫
Ωη−1

|∇ut′ |2 ≤ cη, ∀ η ≤ t ′.

So, fixing t (arbitrary), {ut′}t′>t is bounded in H1(Ωt), by c(t + 1).



Construction of a
Consider n = 3. In Ωi , the field a is given by

a =
1
2π
∇× (ζb) =

1
2π
∇ζ × b

where

b(x) =

(
− x2

|x̄ |2
,
x1

|x̄ |2
, 0
)
, x̄ = (x1, x2),

and ζ is the “truncating E. Hopf’s function”:

ζ(x) = ψ

(
ε log

σ(|x̄ |)
ρ(x)

)
;

ρ(x): the regularized distance to ∂Ω
σ, ψ : R→ R: smooth nondecreasing functions,

σ(s) =

{ l
4 , s ≤ l

4
t , s > l

2

ψ(s) =

{
0 , s ≤ 0
1 , s > 1

ε = ε(δ).



Non newtonian fluids, p > 2

The above vector field a satisfies

Lemma.
a1) a ∈W 1,p

loc
(Ω), div a = 0, a|∂Ω = 0,

a2)
∫

Σ
a · n = 1,

a3)
∫

Ωt−1,t
i
|∇a|p ≤ c

and
a4)

∫
Ωt |a|p

′ |u|p′ ≤ cδt(p−2)/(p−1)
(∫

Ωt |∇u|p
)1/(p−1).



Estimate of the nonlinear terms
We want to estimate all the nonlinear terms by

∫
|∇u|p.

Now we have two main nonlinear terms:∫
(a∇u)u and

∫
|D(v)|p−2D(v) : D(u), v = u + a .

Known inequalities:

〈|x |p−2x − |y |p−2y , x − y〉 ≥ c |x − y |p, ∀ x , y ∈ Rn, (p > 2)∫
|∇u|p ≤ c

∫
|D(u)|p (Korn’s inequality1).

The argument in the truncated (bounded) domain Ωt :

Taking x = D(v t′) = D(ut′) + D(a), t ′ > t, and y = D(a)
(⇒ x − y = D(ut′)) in the first inequality and using Korn’s inequality, we
get – writing u = ut′ , v = v t′ ,∫

Ωt
|D(v)|p−2D(v) : D(u) ≥ c

∫
Ωt

|∇u|p +

∫
Ωt

|D(a)|p−2D(a) : D(u) .

1Patrizio Neff, Proc. Royal Soc. Edinb. 132A (2002);
V.A. Kondrat’ev and O.A. Oleinik, Russian Math. Surveys 43 (5) (1988)



By Young inequality and a3),

|
∫

Ωt

|D(a)|p−2D(a) : D(u) | ≤
∫

Ωt

|D(a)|p−1|D(u)|

≤
∫

Ωt

(ε|D(u)|p + cε|D(a)|p)

≤ ε
∫

Ωt

|∇u|p + cεct .



Regarding the term
∫

(a∇u)u, by Hölder inequality, a4) and Young
inequality, we have

|
∫

Ωt

(a∇u)u | ≤
(∫

Ωt

|∇u|p
)1/p (∫

Ωt

|a|p′ |u|p′
)1/p′

≤
(∫

Ωt

|∇u|p
)1/p

(
cδ t(p−2)/(p−1)

(∫
Ωt

|∇u|p
)1/(p−1)

)1/p′

=

(∫
Ωt

|∇u|p
)2/p

(cδ)1/p′ t(p−2)/p

≤ ε

∫
Ωt

|∇u|p + ct .

We do not need δ small !



To pass to the limit from approximate solutions, the compactness
method is not enough due to the nonlinear term

A(u) := −div
(
|D(u) + D(a)|p−2(D(u) + D(a))

)
.

But the inequality

〈|x |p−2x − |y |p−2y , x − y〉 ≥ c |x − y |p

implies that the operator A : W 1,p
0 (Ω)→ (W 1,p

0 (Ω))′ is monotone and
the method of Browder and Minty enables us to pass to the limit. (See
e.g. § 9.1 of L.C. Evans, Partial Differential Equations.)



Some important features in the case of
non newtonian fluids i.e. p > 2

• The construction of the vector field a can be simplified.
It is enough that a be a bounded vector field of divergence zero and
vanishing on ∂Ω!

• Extra non linear term
|D(v)|p−2D(v)

Monotonicity, Browder-Minty method

• Inequalities:

〈|x |p−2x − |y |p−2y , x − y〉 ≥ c |x − y |p, ∀ x , y ∈ Rn, (p > 2)

∫
Ωt
|∇ut′ |p ≤ c

∫
Ωt
|D(ut′)|p

Korn inequality, with ut′ vanishing only on a part of ∂Ωt :

I Patrizio Neff, Proc. Royal Soc. Edinb. A 132 (2002).



Some important features in the case of
non newtonian fluids, continued

• There is not regularity for the generalized solution of the system (NS)p
.
To get regularity we needed to modify |D(v)|p−2D(v) to

(ε+ |D(v)|)p−2 D(v), ε > 0

and adapt the proof of

I Beirão da Veiga, Kaplický and Růžička, Boundary regularity of
shear thickening flows. J. Math. Fluid Mech. (2011).
Abridged version: C. R. Math. Acad. Sci. Paris (2010).

I 2D: Kaplický, Málek and Stará C 1,α-solutions to a class of nonlinear
fluids in two dimensions — stationary Dirichlet problem, J. Math.
Sci. (2002).


