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Costa's surface

3D-XplorMath-J

From Wikipedia:
� In mathematics, Costa's minimal surface is an embedded minimal surface
discovered in 1982 by the Brazilian mathematician Celso José da Costa. It is
also a surface of �nite topology, which means that it can be formed by
puncturing a compact surface. Topologically, it is a thrice-punctured torus.

Until its discovery, the plane, helicoid and the catenoid were believed to be the

http://3d-xplormath.org/
https://en.wikipedia.org/wiki/Costa's_minimal_surface


Costa's surface, continued

only embedded minimal surfaces that could be formed by puncturing a compact
surface. The Costa surface evolves from a torus, which is deformed until the
planar end becomes catenoidal. De�ning these surfaces on rectangular tori of
arbitrary dimensions yields the Costa surface. Its discovery triggered research
and discovery into several new surfaces and open conjectures in topology.
The Costa surface can be described using the Weierstrass zeta and the
Weierstrass elliptic functions.
References:
Costa, Celso José da (1982). Imersões mínimas completas em R3 de gênero um
e curvatura total �nita. Ph.D. Thesis, IMPA, Rio de Janeiro, Brazil.
Costa, Celso José da (1984). Example of a complete minimal immersion in R3

of genus one and three embedded ends. Bol. Soc. Bras. Mat. 15, 47�54.
Weisstein, Eric W. "Costa Minimal Surface."

Retrieved 2006-11-19. From MathWorld�A Wolfram Web Resource.�

WolframMathWorld � Costa Minimal Surface
Imagens de �Costa surface�: Google

Costa, C. J. Classi�cation of complete minimal surfaces in R3 with total

curvature 12π. Invent. Math. 105 (1991), no. 2, 273�303.

http://mathworld.wolfram.com/CostaMinimalSurface.html
https://www.google.com.br/search?q=costa+surface&rlz=1C1VSNC_enBR598BR614&espv=2&biw=1152&bih=620&tbm=isch&tbo=u&source=univ&sa=X&ved=0CBsQsARqFQoTCInXtqbTg8kCFUIjkAodShkEuw


Rocket fuel chambers

Titan I XLR-87 Rocket Engine
Imagens Google

Wikipedia

https://www.google.com.br/search?q=rocket+engine
https://en.wikipedia.org/wiki/LR-87


Domains with unbounded channels
Water distribution

Rhama
Sewage

Imagens Google �sewage cities
skylines�

http://www.rhama.net/areasatuacao_aguas.asp


Domains with unbounded channels, continued

Rivers and lakes



Overview

I Poiseuille �ow

I Leray problem and Amick's solution; domains with straight
cylindrical ends (channels)

I Ladyzhenskaya-Solonnikov problem; domains with ends containing
straight cylinders

I Power law �uids

I Domains with curved ends



The stationary Navier-Stokes equations for incompressible
newtonian �uids

(NS)

{
−∆v + v∇v +∇P = 0 Navier-Stokes system

div v = 0 incompressibility equation

P: pressure
v = (v1, v2, v3): velocity,

v∇v : convective term
( v∇v =

∑
3

j=1
vj∂jv)



Poiseuille �ow
Let C be a straight (unbounded) cylinder in R3, i.e.

C = Σ× R

where Σ is a bounded C∞ simply connected open set in R2.
We denote by n the orthonormal vector to Σ pointing toward +∞. Then
we can write

C = {(x, z) ≡ x + zn ; x ∈ Σ, −∞ < z <∞},

The Poiseuille �ow in C is the �parallel �ow� with
(velocity, pressure) ≡ (vP ,P) solving (NS) with the boundary condition
vP |∂C = 0, i.e. is the �ow of a �uid in C having velocity vP of the form

vP = v(x)n

for some scalar function v(x) such that v |∂Σ = 0 and (v ,P), for some
scalar function (pressure) P, solves the system (NS), i.e.

(P)

{
−∆v = c in Σ

v = 0 on ∂Σ .

for some constant c (the �pressure drop�; ∇P = −cn).



Poiseuille �ow cont'ed

Remark. The constant c can be determined by the �ux
Φ :=

∫
Σ
vP · n =

∫
Σ

v . Indeed,

Φ = c

∫
Σ

|∇v1|2

where v1 is the solution of (P) when c = 1.

As a consequence, we also have that∫
Σ

|∇v |2 = c2
∫

Σ

|∇v1|2 =

(
Φ/

∫
Σ

|∇v1|2
)2 ∫

Σ

|∇v1|2 = Φ2/

∫
Σ

|∇v1|2,

i.e. ∫
Σ

|∇v |2 = const.Φ2



Leray problem

Domain with straight cylindrical ends
Let Ω be an open connect set in R3 with a C∞ boundary such that

Ω = Ω0 ∪ C1 ∪ C2

where Ω0 is a bounded subset of R3 and Ci , i = 1, 2, is a straight
cylinder, i.e., in di�erent cartesian coordinate systems,

Ci = Σi × [0,∞)

where Σi is a bounded C∞ simply connected open set in R2.
Notation. Σ will denote any cross section of Ω and n will denote the
orthonormal vector �eld on Σ pointing from C1 toward C2.

Leray problem
Let v i

P be the Poiseuille �ow in Ci . Then, the Leray problem is the
following:

Find a solution (v ,P) of (NS) such that v
∣∣∂Ω = 0 and

v → v i
P as |x| → ∞ in Ci .



Amick's theorem, 1977
The Leray problem (for newtonian �uids, i.e. (NS)) has a solution if the
�ux

∫
Σ

v i
P · n is su�ciently small.

C.J. Amick, Steady solutions of the Navier-Stokes equations in
unbounded channels and pipes, Ann. Scuola Norm. Sup. Pisa Cl.Sci.,
4(3) (1977).

In this paper Amick wrote
�This problem [Leray problem] was proposed (I believe) by Leray to
Ladyzhenskaya, who in [7] attempted an existence proof under no
restrictions on the (constant) viscosity ν. The problem is also mentioned
by Finn in a review paper ([3], p. 150).�

[7] O. A. Ladyzhenskaya, Stationary motion of a viscous incompressible �uid in
a pipe, Dokl. Akad. Nauk. SSSR, 124 (1959).

[3] R. Finn, Stationary solutions of the Navier-Stokes equations, Amer. Math.

Soc., Proc. Symposia Appl. Math., 17 (1965).

Remark. For arbitrary �ux, the solution of Leray problen is an open
question.



�Ladyzhenskaya-Solonnikov problem�
Domain with ends containing straight cylinders
Let Ω be an open connect set in R3 with a C∞ boundary such that

Ω = Ω0 ∪ Ω1 ∪ Ω2

where Ω0 is a bounded subset of R3 and, in di�erent cartesian coordinate
system,

Ω1 = {(x, z) ∈ R3; z < 0, x ∈ Σ1(z)}
and

Ω2 = {(x, z) ∈ R3; z > 0, x ∈ Σ2(z)},

with Σi (z), i = 1, 2, the cross sections, being a bounded C∞ simply
connected open sets in R2 such that

supz,i=1,2 diamΣi (z) <∞
and Ωi , i = 1, 2, contains some straight cylinder

C i
l = {x = (x, z) ∈ R3; (−1)iz > 0 e |x| < l}, (l > 0)

(in particular, infz,i=1,2 diamΣi (z) > 0).

We will denote by n the orthonormal vector to Σi (z), or to any cross
section Σ of Ω, pointing from Ω1 toward Ω2.



Ladyzhenskaya-Solonnikov problem
Given Φ ∈ R, �nd a solution (v ,P) of (NS) such that

v = 0 on ∂Ω ,

the flux ≡
∫

Σ

v · n = Φ,

and

sup
t>0

t−1
∫

Ωt

|∇v |2 <∞ ,

where Ωt := Ω0 ∪ Ωt
1
∪ Ωt

2
, Ωt

i := {(x, z) ∈ Ωi ; 0 < (−1)iz < t},
i = 1, 2.

This is Problem 1.1 in
[LS] O.A. Ladyzhenskaya and V.A. Solonnikov, Determination of the
Solutions of Boundary Value Problems for Steady-State Stokes and
Navier-Stokes Equations in Domains Having an Unbounded Dirichlet
Integral (1980). English transl. in J. Soviet Math. 21 (1983).



Ladyzhenskaya-Solonnikov's theorem, 1980

The problem above has a solution for any �ux Φ.

This is Theorem 5.1 in [LS].



Some related results

Many authors have studied steady �ows for newtonian incompressible
�uids in domains with unbounded boundaries, including unbounded cross
sections, e.g.

K. Pileckas, Nazarov, Kapitanskii, ...

See e.g.
G.P. Galdi, An Introduction to the Mathematical Theory o f the
Navier-Stokes Equations, Springer-Verlag (1994).
- - - - - - - - - - - - - - - - - -

Others:

�, F. Ammar-Khodja: Leray and Ladyzhenskaya-Solonnikov problems for
Newtonian �uids in 2D with non-constant density;
Methods Appl. Anal. 13 (2006)
Progr. Nonlinear Di�erential Equations Appl. 66 (2006).

Fábio V. Silva: micropolar �uids;
J. Math. Anal. Appl. 306(2) (2005)
Nonlinear Anal. 64(4) (2006)



Power law �uid (model)

(NS)p

{
− div(|D(v)|p−2D(v)) + v∇v +∇P = 0

div v = 0

D(v) = 1

2
(∇v + (∇v)t)

i.e. the viscous stress tensor, S, is given by
S = |D(v)|p−2D(v).

or,
viscosity = |D(v)|p−2

power law or Ostwald-de Waele law/model

See e.g. R. Bird, W. Stewart and E. Lightfoof, Transport Phenomena,
Johh Wiley & Sons, Inc. (2007).
In the classical book by O. Ladyzhenskaya, The Mathematical Theory of
Viscous Incompressible Flow, 2nd ed. (1969), after the last chapter, there
is a description of some models including power laws.



Transport Phenomena (book)
Wikipedia, https://en.wikipedia.org/wiki/Transport−Phenomena−(book):

�Transport Phenomena is the �rst textbook about transport phenomena. It is
speci�cally designed for chemical engineering students. The �rst edition was
published in 1960, two years after having been preliminarily published under the
title Notes on Transport Phenomena based on mimeographed notes prepared
for a chemical engineering course taught at the University of
Wisconsin-Madison during the academic year 1957-1958. The second edition
was published in August 2001. A revised second edition was published in 2007.
This text is often known simply as BSL after its authors' initials.�
Paper on this book:
Thirty-Five Years of BSL, Gianni Astarita, Julio Ottino. Ind. Eng. Chem. Res.,
1995, 34 (10), pp 3177�3184

Abstract: Few engineering books remain in�uential for 35 years; even fewer can

be said to have a�ected undergraduate and graduate education. Transport

Phenomena (BSL) accomplished both and it brought fundamental changes to

the way chemical engineers think: BSL can be arguably regarded as the most

important book in chemical engineering ever published. In this essay we place

BSL in the context of its times and surrounding paradigms, review and

comment on the early reception of the book, o�er comments on style, and

speculate on its possible revision.



|D(v)|: shear rate

p = 2: newtonian �uids (e.g. water, oil)
p < 2: shear-thinning (or plastic and pseudo-plastic, e.g.

most polymer melts and solutions)
- the viscosity is decreasing with respect the shear rate
(viscosity =∞ when shear rate = 0)

p > 2: shear-thickening (or dilatant, e.g. mud, clay, cement)
- the viscosity is increasing

See e.g. E. Marusic-Paloka, Steady Flow of a Non-Newtonian Fluid in
Unbounded Channels and Pipes, Mathematical Models and Methods in
Applied Sciences, 10(9) (2000).



Parallel �uids

The velocity �eld is of the form

v(x)n

where n is a constant vector and v(x) is a scalar function.

In this case, the Navier-Stokes equations (NS)p become the p -Laplacian
equation

− div(|∇v |p−2∇v) = c

for some constant c , related to �pressure drop�, i.e. ∇P = −cn.



�Ladyzhenskaya-Solonnikov problem for power law �uids�
Given Φ ∈ R, �nd a solution (v ,P) of (NS)p such that

v |∂Ω = 0 , the flux ≡
∫

Σ

v · n = Φ and sup
t>0

t−1
∫

Ωt

|∇v |p <∞ .

Theorem. ( �, Gilberlandio Dias, J.D.E. 2012)
Let p ≥ 2. Then, for any �ux Φ, the Ladyzhesnkaya-Solonnikov problem
for power-law �uids (NS)p has a weak solution (v ,P) in

W 1,p

loc
(Ω)× Lp′

loc
(Ω), p′ = p/(p − 1), i.e. there exist a (v ,P) belonging to

this space such that
∫

Ω

|D(v)|p−2D(v) : ∇Ψ = −
∫

Ω

(v∇v) ·Ψ +

∫
Ω

PdivΨ , ∀ Ψ∈C∞c (Ω;R3)∫
Ω

v · ∇ψ = 0 , ∀ ψ ∈ C∞c (Ω;R)

v |∂Ω = 0,

∫
Σ

v · n = Φ and sup
t>0

t−1
∫

Ωt

|∇v |p <∞ .

Remark. The case p = 2 (newtonian �uid) is due to Ladyzhenskaya and
Solonnikov [LS].



Results for non newtonian �uids (NS)p

There are several results for bounded domains - boundary value problem
for (NS)p, e.g.
J.L. Lions, Quelques Méthods de Resolution des Problémes Aux Limites
Non Linéaires, Dunod, Gauthier-Villars (1969), Ch. 2, Remark 5.5:

p ≥ 3n/(n + 2).

W. Sadowski, On the Stationary Flow of the Power Law Fluid in 2D,
J. Appl. Analysis, 8, 2002: 1 < p < 2.

In unbounded domains there are few results, e.g.

E. Marusic-Paloka, 2000: Leray problem, p > 2.



Proofs

Amick's solution of Leray's problem for newtonian �uids, with
small �ux:

v = u + a; u ∈ H1

0
(Ω), divu = 0,

a ∈ H1

loc
(Ω), diva = 0, a

∣∣Ci = v i
P , a

∣∣∂Ω = 0.

Notice that the Poiseuille �ows v i
P are not in H1(Ω) (they are constant

with respect to z); v i
P ∈ H1

loc
(Ω).

A divergence free vector �eld u in H1

0
(Ω) = C∞c (Ω)

H1(Ω)
carries no �ux,

i.e.
∫

Σ
u · n = 0, for any cross section Σ of Ω. Indeed, if ψ ∈ C∞c (Ω)

then
∫

Σ(z)
ψ · n = 0 for all su�ciently large |z |.

NS-equations become
−∆u + u∇u + l(u) +∇P = 0,

where
l(u) = a∇u + u∇a + a∇a−∆a .

Method: compactness method, with Galerkin approximations.



Estimate of the nonlinear term
∫

(a∇u)u by
∫
|∇u|2 (a priori estimate):∫

|(a∇u)u| ≤
(∫
|∇u|2

)1/2 (∫ |a|2 |u|2)1/2∫
Ωi
|a|2 |u|2 =

∫
Ωi
|u|2 |v i

P |2

= |
∫ ±∞
0

∫
Σ
|v i

P |2 |u|2|
≤ |

∫ ±∞
0

(∫
Σ
|v i

P |4
)1/2 (∫

Σ
|u|4
)1/2 |

= |
∫ ±∞
0
‖v i

P‖2L4(Σ) ‖u‖
2

L4(Σ)|
≤ c |

∫ ±∞
0
‖∇v i

P‖2L2(Σ) ‖∇u‖2L2(Σ)|
= c ‖∇v i

P‖2L2(Σ)|
∫ ±∞
0

‖∇u‖2L2(Σ)|
= c Φ2

∫
Ωi
|∇u|2

Similarly, we can estimate
∫

(u∇a)u.

The terms
∫

Ωi
(−∆a)u and

∫
Ωi

(a∇a)u vanish, since a∇a = 0, because

a = v i
P in Ωi is �parallel�, and −∆a = (−∆v i

P)n = cn in Ωi , so∫
Ωi

(−∆a)u = |c
∫ ±∞
0

∫
Σ

u · n| = 0.



Ladyzhenskaya-Solonnikov's solution, for newtonian �uids
(NS) with arbitrary �ux

v = u + a; u ∈ H1

loc(Ω), divu = 0, u
∣∣∂Ω = 0

and a is given by the following lemma:

Lemma [LS]. For any δ > 0 there exists a vector �eld a such that

a1) a ∈ H1

loc
(Ω), diva = 0, a|∂Ω = 0,

a2)
∫

Σ
a · n = Φ for any cross section Σ of Ω,

a3)
∫

Ωt−1,t
i
|∇a|2 ≤ cΦ2 for i = 1, 2 and all t ≥ 1, where

Ωt−1,t
i = {(x, z) ∈ Ωi ; t − 1 < |z | < t},

and

a4)
∫

Ωt |a|2|u|2 ≤ cδΦ2
∫

Ωt |∇u|2 for all t > 0 and u ∈ C∞c (Ω),

where, in a3) and a4), c is a constant depending only on Ω.

Now a
∣∣Ωi might not be the Poiseuille v i

P , but the compactness method
still works, by truncating the domain and long computations:



Let ut be a solution of the NS-equations

−∆ut + ut∇ut + l(ut) +∇P t = 0

in H1

0
(Ωt) (joint with some pressure function P t ∈ L2

loc
(Ωt) ).

Now, let t ′ > t . Multiplying the equation

−∆ut′ + ut′∇ut′ + l(ut′) +∇P t′ = 0 by ut′ and integrating by parts in
Ωt , we obtain ∫

Ωt

|∇ut′ |2 ≤ ct +

∫
Σ(t)

(bound. terms),

for all t < t ′. Integrating in t, from η − 1 to η ≤ t ′, we get

z(η) :=

∫ η

η−1

(∫
Ωt

|∇ut′ |2
)

dt ≤ cη − 1

2
+

∫
Ωη−1,η

(bound. terms) .

Using the equation, is possible to estimate
∫

Ωη−1,η
(bound. terms) by a

linear combinations of powers of
∫

Ωη−1,η
|∇ut′ |2. But∫

Ωη−1,η
|∇ut′ |2 = z ′(η) !



Thus,

z(η) :=

∫ η

η−1

(∫
Ωt

|∇ut′ |2
)

dt ≤ cη + g(z ′(η)), ∀ η ≤ t ′,

for some function g : R→ R. Besides,

z(t ′) ≤
∫

Ωt′
|∇ut′ |2 ≤ ct ′.

Then, by a kind of �reverse Gronwall lemma� [LS], we have

z(η) ≤ cη,

which implies ∫
Ωη−1

|∇ut′ |2 ≤ cη, ∀ η ≤ t ′.

So, �xing t (arbitrary), {ut′}t′>t is bounded in H1(Ωt), by c(t + 1).



Construction of a in [LS]
In Ωi , the �eld a is given by

a =
1

2π
∇× (ζb) =

1

2π
∇ζ × b

where

b(x) =

(
− x2
|x|2

,
x1
|x|2

, 0

)
, x = (x1, x2),

and ζ is the �truncating E. Hopf's function�:

ζ(x) = ψ

(
ε log

σ(|x|)
ρ(x)

)
;

ρ(x): the regularized distance to ∂Ω
σ, ψ : R→ R: smooth nondecreasing functions,

σ(s) =

{
l
4
, s ≤ l

4

t , s > l
2

ψ(s) =

{
0 , s ≤ 0
1 , s > 1

ε = ε(δ).



Construction of a for non newtonian �uids (NS)p, p > 2

Let a be a smooth divergence free vector �eld, which is bounded
and has bounded derivatives in Ω, vanishes on ∂Ω, and has �ux Φ,
i.e.

∫
Σ
a = Φ over any cross section Σ of Ω. Then, for some constant

c depending only on a, p and Ω:

i)
∫

Ωt
|a|p′ |ϕ|p′ ≤ c |Φ|p′ t(p−2)/(p−1)‖∇ϕ‖p

′

Lp(Ωt)
,

∀ t > 0, ∀ ϕ ∈ D(Ω);
ii)
∫

Ωi,t−1,t
|∇a|p ≤ c |Φ|p, ∀ t ≥ 1, i = 1, 2;

iii)
∫

Ωt
|∇a|p ≤ c |Φ|p(t + 1) , ∀ t ≥ 1.



Estimate of the nonlinear terms
We want to estimate all the nonlinear terms by

∫
|∇u|p.

Now we have two main nonlinear terms:∫
(a∇u)u and

∫
|D(v)|p−2D(v) : D(u), v = u + a .

Known inequalities:

〈|x |p−2x − |y |p−2y , x − y〉 ≥ c |x − y |p, ∀ x , y ∈ Rn, (p > 2)∫
|∇u|p ≤ c

∫
|D(u)|p (Korn's inequality1).

The argument in the truncated (bounded) domain Ωt :

Taking x = D(v t′) = D(ut′) + D(a), t ′ > t, and y = D(a)
(⇒ x − y = D(ut′)) in the �rst inequality and using Korn's inequality, we
get � writing u = ut′ , v = v t′ ,∫

Ωt

|D(v)|p−2D(v) : D(u) ≥ c

∫
Ωt

|∇u|p +

∫
Ωt

|D(a)|p−2D(a) : D(u) .

1Patrizio Ne�, Proc. Royal Soc. Edinb. 132A (2002);
V.A. Kondrat'ev and O.A. Oleinik, Russian Math. Surveys 43 (5) (1988)



By Young inequality and a3),

|
∫

Ωt

|D(a)|p−2D(a) : D(u) | ≤
∫

Ωt

|D(a)|p−1|D(u)|

≤
∫

Ωt

(ε|D(u)|p + cε|D(a)|p)

≤ ε
∫

Ωt

|∇u|p + cεct .



Regarding the term
∫

(a∇u)u, by Hölder inequality, a4) and Young
inequality, we have

|
∫

Ωt

(a∇u)u | ≤
(∫

Ωt

|∇u|p
)1/p (∫

Ωt

|a|p′ |u|p′
)1/p′

≤
(∫

Ωt

|∇u|p
)1/p

(
c t(p−2)/(p−1)

(∫
Ωt

|∇u|p
)1/(p−1)

)1/p′

=

(∫
Ωt

|∇u|p
)2/p

(c)1/p
′

t(p−2)/p

≤ ε

∫
Ωt

|∇u|p + ct .



To pass to the limit from approximate solutions, the compactness
method is not enough due to the nonlinear term

A(u) := −div
(
|D(u) + D(a)|p−2(D(u) + D(a))

)
.

But the inequality

〈|x |p−2x − |y |p−2y , x − y〉 ≥ c |x − y |p

implies that the operator A : W 1,p
0

(Ω)→ (W 1,p
0

(Ω))′ is monotone and
the method of Browder and Minty enables us to pass to the limit. (See
e.g. § 9.1 of L.C. Evans, Partial Di�erential Equations.)



Some important features in the case of
non newtonian �uids (NS)p, p > 2

• The construction of the vector �eld a can be simpli�ed.
It is enough that a be a bounded vector �eld of divergence zero and
vanishing on ∂Ω!

• Extra non linear term
|D(v)|p−2D(v)

Monotonicity, Browder-Minty method

• Inequalities:

〈|x |p−2x − |y |p−2y , x − y〉 ≥ c |x − y |p, ∀ x , y ∈ Rn, (p > 2)

∫
Ωt

|∇ut′ |p ≤ c

∫
Ωt

|D(ut′)|p

Korn inequality, with ut′ vanishing only on a part of ∂Ωt :

I Patrizio Ne�, Proc. Royal Soc. Edinb. A 132 (2002).



Some important features in the case of
non newtonian �uids, continued

• There is no regularity for the generalized solution of the system (NS)p .

To get regularity we needed to modify |D(v)|p−2D(v) to

(ε+ |D(v)|)p−2 D(v), ε > 0

and adapt the proof of

I Beirão da Veiga, Kaplický and R·ºi£ka, Boundary regularity of
shear thickening �ows. J. Math. Fluid Mech. (2011).
Abridged version: C. R. Math. Acad. Sci. Paris (2010).

I 2D: Kaplický, Málek and Stará C 1,α-solutions to a class of nonlinear
�uids in two dimensions � stationary Dirichlet problem, J. Math.
Sci. (2002).



Domain with nozzles

https://en.wikipedia.org/wiki/Nozzle

https://en.wikipedia.org/wiki/Nozzle


Domain with curved ends

In this section we propose a de�nition for domains with unbounded
channels not necessarily containing straight cylinders and give an idea
how to show the existence of steady �ow for incompressible �uids with
arbitrary �uxes in such domains. More precisely, using some concepts
from Geometry, we argue below that the following statement is true:

Let Ω be a smooth 3-manifold with boundary in R3di�eomorphic to a
compact smooth 3-manifold with boundary in R3 with k �holes�
removed from its boundary. Suppose that the volumes of the cut domains
Ωt (de�ned below) are of order t. Then, given any set of real numbers
Φi , i = 1, · · · , k , such that Φ1 + · · ·Φk = 0, the Navier-Stokes equations
(NS)p, with p > 2, and Ω = Ω− ∂Ω, have a weak solution v in W 1,p

loc (Ω)
having �ux Φi in each end Ω(i) (de�ned below), for each i = 1, · · · , k ,
and satisfying the Dirichlet homogeneous boundary condition v|∂Ω = 0.

Next we give more details about this statement and then give an idea for
its proof.



De�nition of Ω and ends

Let Ω be a smooth 3-manifold with boundary such that there is a
compact smooth 3-manifold with boundary B in R3 and a
di�eomorphism H : B − {p̃1, · · · , p̃k} → Ω, where p̃1, · · · , p̃k are
neighborhoods in ∂B of given points p1, · · · , pk in ∂B (k <∞). Denote
B = B − ∂B,M = ∂B − {p̃1, · · · , p̃k} and S = ∂Ω = ∂Ω, where
Ω = Ω− ∂Ω. Then h := H|M is a di�eormorphism fromM onto S, so
S is a punctured surface (punctured 2-manifold), or, a 2-manifold with a
�nite number of ends. We de�ne an end Ω(i) of Ω as follows: Ω(i) is the
image by H of the intersection of B with an open ball Bε(pi ) in R3

centered at pi with radius εi , su�ciently small such that B ∩ Bε(pi ) is a
simply connected set. We denote this intersection by Vεi (pi ). Thus,
Ω(i) := H(Vεi (pi )) = H(B ∩ Bε(pi )). In particular, Ω(i) is an open and
simply connected set in R3. Similarly, we de�ne an end S(i) of S as the
image by h ofM∩ ∂Vεi (pi ). S(i) is a connected smooth surface
(possibly unbounded).



De�nition of cross sections and cut domains Ωt

Now we de�ne cross sections of Ω(i) and the cut domains Ωt of Ω, for
t ≥ 1. We de�ne a cross section Σ(t) ≡ Σi (t) of Ω(i), as the image of
B ∩ ∂Vt−1εi (pi ) by H. Notice that Vt−1εi (pi ) ⊂ Vεi (pi ), since t ≥ 1, and
Σ(t) is a simply connected smooth (n−1)-manifold in Ω(i) (without
boundary). The boundary of a cross section Σ(t) is a smooth simple
closed curve in S(i) = ∂Ω(i) which turns around Ω(i). In particular, it is
not homotopic to a point, as it is not its preimage by h inM. Indeed,
this preimage is a loop (i.e. a smooth simple closed curve) inM around
pi , i.e. with pi in its interior.
Finally, regarding the cut domain Ωt we de�ne it as being the following
set: Ωt = H(B − ∪ki=1

Vt−1εi (pi )). Notice that the sets Ωt are bounded
and smooth open sets in R3 (i.e. with smooth boundaries), they satisfy
Ωt1 ⊂ Ωt2 if t1 < t2, and Ω = ∪t≥1Ωt .



Construction of a; de Rham theorem

Now that we have set terminologies, we give the idea for a proof on the
existence of steady �ow in the described set Ω. Analogously to [LS] (see
above), we search a velocity v in the form v = u + a, where a is a given
vector �eld de�ned in Ω such that it is divergence free, a|∂Ω = 0, it is
bounded and has bounded derivatives in Ω, and has �ux Φi in each end
Ω(i), i.e.

∫
Σi
a = Φi , for i = 1, · · · , k . The construction of such vector

�eld a, as we have seen, is an important step. LetM be oriented by a
normal vector �eld Ñ pointing to the exterior of B. Considering the class
of homotopic loops around the point pi , i = 1, · · · , k , which we denote
by [γi ], and assuming that any loop inM is positively oriented with

respect to Ñ, let li be a linear functional (de�ned on the space of singular
1-chains omM) such that li ([γj ]) = Φiδij (where δij is the Kronecker
delta), i , j = 1, · · · , k . Then by the de Rham theorem (see e.g. [8,
�4.17]) there exists a closed vector �eld (i.e. a closed 1-form) bi onM
such that li can be identi�ed to bi through the formula li ([γ]) =

∫
γ
bi , for

any class [γ] of a loop γ inM.



Construction of a cont'ed

Then if we take b̃ :=
∑k−1

i=1
bi and let b be the pullback of b̃ by h−1, we

obtain a tangent vector �eld b on ∂Ω such that its integral on the
boundary of any cross section of the outlet Ω(i) is equal to Φi , for
i = 1, · · · , k . Next, we can extend b to Ω, �rst by extending it to a
tubular neighborhood V of ∂Ω inside Ω, by setting
b(y , s) = b(y) + sN(y), for (y , s) ∈ V (i.e. y ∈ ∂Ω and s in some
interval (−εy , 0) ), where N is the unit normal vector �eld to ∂Ω pointing
to the exterior of Ω. Then we extend b to the entire set Ω by multiplying
it by a smooth bounded function ζ : Rn → R such that it is equal to 1
on V . Finally, we de�ne a to be the curl of the vector ζb.



Then a is divergence free and if Σi (t) is a cross section of the outlet Ω(i)

with a normal vector �eld ni pointing to in�nity, by Stokes theorem and
the construction of a, we have∫

Σi (t)

a · ni =

∫
∂Σi (t)

ζb =

∫
∂Σi (t)

b =

∫
∂Vt−1εi

(pi )

b̃

=
∑k−1

j=1

∫
∂Vt−1εi

(pi )

bj =
∑k−1

j=1
lj([∂Vt−1εi (pi )])

= Φi

for i = 1, · · · , k − 1. For i = k this also holds true, due to the divergence
theorem, the condition

∑k
i=1

Φi = 0 and the fact that a is divergence
free.



Besides, since, by hypothesis, the volumes of the cut domains Ωt are of
order t, i.e.

∫
Ωt
≤ ct for some constant c , and the vector �eld a is

bounded, the estimate i) in Section ?? holds true. Indeed, for new
constants c , we have∫

Ωt

|ϕ|p′ |a|p′ ≤ c

∫
Ωt

|ϕ|p′ ≤ c

∫
Ωt

|∇ϕ|p′

≤ c t1−p
′/p

(∫
Ωt

|∇ϕ|p
)p′/p

= c t(p−2)/(p−1)‖∇ϕ‖p
′

Lp(Ωt)

for all ϕ ∈ D(Ω). Thus, the proof for our statement stated at the
beginning of this section can be done by following all steps in the proof
of [3, Theorem 2.2].



The case of genus zero; stereographic projection and angle
forms

Remark. In the case that the compact surface ∂B is of genus zero, the

construction of the vector �eld b̃ above can be simpli�ed. Indeed, in this
case we can assume, without loss of generality, that B is the unit ball in

R3, i.e. ∂B is the sphere S2, and we can take b̃ as the pullback by a
stereographic projection of a linear combinations of angle forms in the
plane. More precisely, let Π : S2 − {pk} → R2 be the stereographic
projection with projection point (�north pole�) pk (we can take any point
p1, · · · , pk as the projection point) and ωi be the 1-form

ωi (x , y) =
Φi/2π

(x − ai )2 + (y − bi )2
(−(y − bi )dy + (x − ai )dx)

in R2 − {Π(pi )}, i = 1, · · · , k − 1, where (ai , bi ) = Π(pi ). Then

b̃ =
∑k−1

i=1
Π∗ωi has the required properties.
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