Linear Groups of Isometries with Poset Structures

Luciano Panek* Marcelo Firer ${ }^{\dagger}$ Hyun Kwang Kim ${ }^{\ddagger}$
Jong Yoon Hyun§

Abstract

Let V be an n-dimensional vector space over a finite field \mathbb{F}_{q} and $P=\{1,2, \ldots, n\}$ a poset. We consider on V the poset-metric d_{P}. In this paper, we give a complete description of groups of linear isometries of the metric space $\left(V, d_{P}\right)$, for any poset-metric d_{P}. We show that a linear isometry induces an automorphism of order in poset P, and consequently we show the existence of a pair of ordered bases of V relative to which every linear isometry is represented by an $n \times n$ upper triangular matrix.

Key words: Poset codes, poset metrics, linear isometries.
Coding theory takes place in finite dimensional linear spaces over finite fields. One of the main questions of the theory (classical problem) asks to find a k-dimensional subspace in \mathbb{F}_{q}^{n}, the space of n-tuples over the finite field \mathbb{F}_{q}, with the largest minimum distance possible. There are many possible metrics that can be defined in \mathbb{F}_{q}^{n}, the most common ones are the Hamming and Lee metrics.

In 1987 Harald Niederreiter generalized the classical problem of coding theory (see [11]). Brualdi, Graves and Lawrence (see [3]) also provided in

[^0]1995 a wider situation for the above problem: using partially ordered sets and defining the concept of poset-codes, they started to study codes with a posetmetric. This has been a fruitful approach, since many new perfect codes have been found with such poset metrics (see [1], [3], [5], [8] and [9]).

We let P be a partially ordered set (abbreviated as poset) of cardinality n with order relation denoted, as usual, by \leq. An ideal of P is a subset $I \subseteq P$ with the property that $x \in I$ and $y \leq x$ implies that $y \in I$. Given $A \subseteq P$, we denote by $\langle A\rangle$ the smallest ideal of P containing A. Without loss of generality, we assume that $P=\{1,2, \ldots, n\}$ and that the coordinates of vectors in \mathbb{F}_{q}^{n} are in one-to-one correspondence with the elements of P.

Given $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$, the support of x is the set

$$
\operatorname{supp}(x):=\left\{i \in P: x_{i} \neq 0\right\},
$$

and we define the P-weight of x to be the cardinality of the smallest ideal containing $\operatorname{supp}(x)$:

$$
w_{P}(x)=|\langle\operatorname{supp}(x)\rangle| .
$$

The function

$$
d_{P}: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \rightarrow \mathbb{N}
$$

defined by $d_{P}(x, y)=w_{P}(x-y)$ is a metric in $\mathbb{F}_{q}^{n}([3$, Lemma 1.1]), called a poset-metric or a P-poset-metric, when it is important to stress the order taken in consideration. We denote such a metric space by $\left(\mathbb{F}_{q}^{n}, d_{P}\right)$.

An $\left[n, k, \delta_{P}\right]_{q}$ poset-code is a k-dimensional subspace $C \subset \mathbb{F}_{q}^{n}$, where \mathbb{F}_{q}^{n} is endowed with a poset-metric d_{P} and

$$
\delta_{P}(C)=\min \left\{w_{P}(x): \mathbf{0} \neq x \in C\right\}
$$

is the P-minimum distance of the code C. If P is an antichain order, that is, an order with no comparable elements, P-weight, P-poset-metric and P minimum distance become the Hamming weight, Hamming metric and minimum distance of classical coding theory. Further notice that the RosenbloomTsfasman metric, introduced in [12], can be viewed as a P-poset-metric which corresponds to the poset consisting of finite disjoint union of chains of equal lengths.

A linear isometry T of the metric space $\left(\mathbb{F}_{q}^{n}, d_{P}\right)$ is a linear transformation $T: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$ that preserves P-poset-metric,

$$
d_{P}(T(x), T(y))=d_{P}(x, y),
$$

for every $x, y \in \mathbb{F}_{q}^{n}$. Equivalently, a linear transformation T is an isometry if $w_{P}(T(x))=w_{P}(x)$ for every $x \in \mathbb{F}_{q}^{n}$. A linear isometry of $\left(\mathbb{F}_{q}^{n}, d_{P}\right)$ is said
to be a P-isometry. We denote by $G L_{P}\left(\mathbb{F}_{q}^{n}\right)$ the group of linear isometries of $\left(\mathbb{F}_{q}^{n}, d_{P}\right)$. In [4], [6], [10] some authours determined the group of linear isometries of the Rosenbloom-Tsfasman space, generalized Rosenbloom-Tsfasman space and crown space.

In this work, we give a complete description of those groups, for any given poset-metric P. The property of permuting chains of same length, showed in [10], corresponds, in the case of a general poset P, to Theorem 1.1 of the first section, which assures that every linear isometry T induces an automorphism of the poset P. The key-point for these proof is Proposition 1.1, which assures that $\langle\operatorname{supp}(T(u))\rangle \subseteq\langle\operatorname{supp}(T(v))\rangle$ if $\langle\operatorname{supp}(u)\rangle \subseteq\langle\operatorname{supp}(v)\rangle, u, v \in \mathbb{F}_{q}^{n}$. The characterization of linear isometries is given in Theorem 1.2: there is an ordered base β of \mathbb{F}_{q}^{n} relative to which every $T \in G L_{P}\left(\mathbb{F}_{q}^{n}\right)$, is represented by the product $A \cdot U$ of matrices, where U is a monomial matrix corresponding to an isomorphism of the poset P and A is an upper-triangular matrix.

The second section is devoted to some examples, with a complete description of $G L_{P}\left(\mathbb{F}_{q}^{n}\right)$ where we give a detailed description of with some of the most commonly used poset-metrics: when the posets are disjoint union of chains, weak-metric and crown-metric.

1 Linear Isometries for a General Poset Structures

We will present only the concepts of the theory of partially ordered sets that are strictly necessary for this work, refereing the reader to [13] for more details.

A totally ordered set (or linearly ordered set) is a poset P in which any two elements are comparable. A subset C of a poset P is called a chain if C is a totally ordered set when regarded as a subposet of P.

Two posets P and Q are isomorphic if there exists an order-preserving bijection $\phi: P \rightarrow Q$, called of isomorphism, whose inverse is order preserving; that is,

$$
x \leq y \text { in } P \text { if and only if } \phi(x) \leq \phi(y) \text { in } Q .
$$

An isomorphism $\phi: P \rightarrow P$ is called an automorphism.
Given $x, y \in P$, we say that y covers x if $x<y$ and if no element $z \in P$ satisfies $x<z<y$. A chain $x_{1}<x_{2}<\ldots<x_{k}$ in a finite poset P is called saturated if x_{i} covers x_{i-1} for $i \in\{1,2, \ldots, k\}$.

From here on, we denote by $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ the canonical base of \mathbb{F}_{q}^{n}.
Given an order automorphism $\phi: P \rightarrow P$, we define the canonical linear P-isometry T_{ϕ} induced by ϕ as $T_{\phi}\left(\sum_{i=1}^{n} a_{i} e_{i}\right):=\sum_{i=1}^{n} a_{i} e_{\phi(i)}$.

We will show that a linear isometry $T \in G L_{P}\left(\mathbb{F}_{q}^{n}\right)$ induces an automorphism of the poset P in the following way: given $i \in\{1,2, \ldots, n\}$ we consider any saturated chain $i_{1}<i_{2}<\ldots<i_{k}$ containing i. Then there are $e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{k}}$, with j_{s+1} covering j_{s} for all $s \in\{1,2, \ldots, k-1\}$, such that $\left\langle\operatorname{supp}\left(e_{j_{l}}\right)\right\rangle=\left\langle\operatorname{supp}\left(T\left(e_{i_{l}}\right)\right)\right\rangle$ for any $l \in\{1,2, \ldots, k\}$. So, if $i=i_{l}$, we can define the order automorphism ϕ by $\phi\left(i_{l}\right)=j_{l}$.

The key to prove this is to show that $\langle\operatorname{supp}(T(u))\rangle \subseteq\langle\operatorname{supp}(T(v))\rangle$ if $\langle\operatorname{supp}(u)\rangle \subseteq\langle\operatorname{supp}(v)\rangle$, for every $T \in G L_{P}\left(\mathbb{F}_{q}^{n}\right)$.

We will start with some preliminary lemmas.
Lemma 1.1 Let $P=\{1,2, \ldots, n\}$ be a poset, $T \in G L_{P}\left(\mathbb{F}_{q}^{n}\right)$ and $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ the canonical base of \mathbb{F}_{q}^{n}. If $\left\langle\operatorname{supp}\left(e_{i}\right)\right\rangle \subseteq\left\langle\operatorname{supp}\left(e_{j}\right)\right\rangle$, then

$$
\left\langle\operatorname{supp}\left(T\left(e_{i}\right)\right)\right\rangle \subseteq\left\langle\operatorname{supp}\left(T\left(e_{j}\right)\right)\right\rangle
$$

Proof. We observe that, for any vectors $u, v \in \mathbb{F}_{q}^{n}$, if $\operatorname{supp}(u) \subseteq \operatorname{supp}(v)$ then $w_{P}(u) \leq w_{P}(v)$. Moreover, the inequality is strict if and only if $\langle\operatorname{supp}(u)\rangle \subsetneq$ $\langle\operatorname{supp}(v)\rangle$. We remember that T is a linear isometry, so that $w_{P}(v)=$ $w_{P}(T(v))$, for every vector v.

We prove the lemma by contradiction, assuming that $\left\langle\operatorname{supp}\left(T\left(e_{i}\right)\right)\right\rangle \nsubseteq$ $\left\langle\operatorname{supp}\left(T\left(e_{j}\right)\right)\right\rangle$.

Suppose $\left\langle\operatorname{supp}\left(T\left(e_{i}\right)\right)\right\rangle \cap\left\langle\operatorname{supp}\left(T\left(e_{j}\right)\right)\right\rangle=\varnothing$. Since T is linear,

$$
w_{P}\left(T\left(e_{i}+e_{j}\right)\right)=w_{P}\left(T\left(e_{i}\right)+T\left(e_{j}\right)\right)
$$

and since the ideals do not intersect, we have that

$$
w_{P}\left(T\left(e_{i}\right)+T\left(e_{j}\right)\right)=w_{P}\left(T\left(e_{i}\right)\right)+w_{P}\left(T\left(e_{j}\right)\right) .
$$

Since T is an isometry, we find that

$$
\begin{aligned}
w_{P}\left(T\left(e_{i}\right)\right)+w_{P}\left(T\left(e_{j}\right)\right) & =w_{P}\left(e_{i}\right)+w_{P}\left(e_{j}\right)>w_{P}\left(e_{j}\right) \\
w_{P}\left(T\left(e_{i}+e_{j}\right)\right) & =w_{P}\left(e_{i}+e_{j}\right) .
\end{aligned}
$$

However, we are assuming that $\left\langle\operatorname{supp}\left(e_{i}\right)\right\rangle \subseteq\left\langle\operatorname{supp}\left(e_{j}\right)\right\rangle$, so that $w_{P}\left(e_{i}+e_{j}\right)=$ $w_{P}\left(e_{j}\right)$, a contradiction.

Now we can assume that $\left\langle\operatorname{supp}\left(T\left(e_{i}\right)\right)\right\rangle \cap\left\langle\operatorname{supp}\left(T\left(e_{j}\right)\right)\right\rangle \neq \varnothing$. If we put $\operatorname{supp}\left(T\left(e_{i}\right)\right) \cap \operatorname{supp}\left(T\left(e_{j}\right)\right)=\left\{k_{1}, \ldots, k_{r}\right\}$, we have two cases to consider.

Case 1: $\left\{k_{1}, \ldots, k_{r}\right\} \neq \varnothing$.
In this case, we can write

$$
\operatorname{supp}\left(T\left(e_{i}\right)\right)=\left\{k_{1}, \ldots, k_{r}\right\} \cup\left\{i_{1}, \ldots, i_{s}\right\}
$$

and

$$
T\left(e_{i}\right)=\alpha_{k_{1}} e_{k_{1}}+\ldots+\alpha_{k_{r}} e_{k_{r}}+\beta_{i_{1}} e_{i_{1}}+\ldots+\beta_{i_{s}} e_{i_{s}} .
$$

Let

$$
y=e_{i}-\beta_{i_{1}} T^{-1}\left(e_{i_{1}}\right)-\ldots-\beta_{i_{s}} T^{-1}\left(e_{i_{s}}\right) .
$$

Then

$$
w_{P}(y) \geq w_{P}\left(e_{i}\right),
$$

unless

$$
e_{i}=\beta_{i_{1}} T^{-1}\left(e_{i_{1}}\right)+\ldots+\beta_{i_{s}} T^{-1}\left(e_{i_{s}}\right)=T^{-1}\left(\beta_{i_{1}} e_{i_{1}}+\ldots+\beta_{i_{s}} e_{i_{s}}\right),
$$

contradicting the hypothesis that $\left\{k_{1}, \ldots, k_{r}\right\} \neq \varnothing$. But $T(y)=\alpha_{k_{1}} e_{k_{1}}+$ $\ldots+\alpha_{k_{r}} e_{k_{r}}$, and since there is $i_{l} \in\left\{i_{1}, \ldots, i_{s}\right\} \subseteq \operatorname{supp}\left(T\left(e_{i}\right)\right)$ such that $i_{l} \notin \operatorname{supp}\left(T\left(e_{j}\right)\right)$, we find that $w_{P}(T(y))<w_{P}\left(T\left(e_{i}\right)\right)=w_{P}\left(e_{i}\right)$. So

$$
w_{P}(T(y))<w_{P}(y),
$$

a contradiction.
Case 2: $\left\{k_{1}, \ldots, k_{r}\right\}=\varnothing$.
This means that $\operatorname{supp}\left(T\left(e_{i}\right)\right) \cap \operatorname{supp}\left(T\left(e_{j}\right)\right)=\varnothing$. Put $T\left(e_{i}\right)=\alpha_{i_{1}} e_{i_{1}}+$ $\ldots+\alpha_{i_{t}} e_{i_{t}}$. Then there is an

$$
\begin{equation*}
l \in\left\langle\operatorname{supp}\left(T\left(e_{i}\right)\right)\right\rangle \backslash \operatorname{supp}\left(T\left(e_{i}\right)\right) . \tag{1}
\end{equation*}
$$

Let

$$
y=e_{i}-\alpha_{i_{1}} T^{-1}\left(e_{i_{1}}\right)-\ldots-\alpha_{i_{t}} T^{-1}\left(e_{i_{t}}\right)+T^{-1}\left(e_{l}\right) .
$$

Then

$$
w_{P}(y) \geq w_{P}\left(e_{i}\right),
$$

unless $e_{i}=T^{-1}\left(e_{l}\right)$, and this contradicts (1). But, $T(y)=e_{l}$ and hence

$$
w_{P}(T(y))=w_{P}\left(e_{l}\right)<w_{P}\left(e_{i}\right) \leq w_{P}(y),
$$

again a contradiction.

Lemma 1.2 Let $P=\{1,2, \ldots, n\}$ be a poset, $T \in G L_{P}\left(\mathbb{F}_{q}^{n}\right)$ and $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ the canonical base of \mathbb{F}_{q}^{n}. Then,

$$
\bigcup_{i=1}^{s}\left\langle\operatorname{supp}\left(T\left(e_{j_{i}}\right)\right)\right\rangle=\left\langle\operatorname{supp}\left(\sum_{i=1}^{s} T\left(e_{j_{i}}\right)\right)\right\rangle,
$$

for every $s \in\{1,2, \ldots, n\}$ and $j_{1}, \ldots, j_{s} \in\{1, \ldots, n\}$.

Proof. If $j \in\left\langle\operatorname{supp}\left(\sum_{i=1}^{s} T\left(e_{j_{i}}\right)\right)\right\rangle$, there is an i such that $j \in\left\langle\operatorname{supp}\left(T\left(e_{j_{i}}\right)\right)\right\rangle$, so that

$$
\left\langle\operatorname{supp}\left(\sum_{i=1}^{s} T\left(e_{j_{i}}\right)\right)\right\rangle \subseteq \bigcup_{i=1}^{s}\left\langle\operatorname{supp}\left(T\left(e_{j_{i}}\right)\right)\right\rangle .
$$

We will prove the other inclusion by induction on s. The case $s=1$ is trivial and we can assume, as the induction hypothesis that

$$
\left\langle\operatorname{supp}\left(\sum_{i=1}^{s-1} T\left(e_{j_{i}}\right)\right)\right\rangle=\bigcup_{i=1}^{s-1}\left\langle\operatorname{supp}\left(T\left(e_{j_{i}}\right)\right)\right\rangle,
$$

for every subset $\left\{j_{1}, \ldots, j_{s-1}\right\} \subseteq\{1, \ldots, n\}$.
Given $J=\left\{j_{1}, \ldots, j_{s}\right\} \subseteq\{1, \ldots, n\}$ and $t \in\{1,2, \ldots, s\}$, we can define

$$
\Theta_{J, t}=\left\langle\operatorname{supp}\left(T\left(e_{j_{t}}\right)\right)\right\rangle \backslash\left(\bigcup_{i=1, i \neq t}^{s}\left\langle\operatorname{supp}\left(T\left(e_{j_{i}}\right)\right)\right\rangle\right) .
$$

But $\Theta_{J, t}=\varnothing$ means that every $j \in\left\langle\operatorname{supp}\left(T\left(e_{j_{t}}\right)\right)\right\rangle$ we have

$$
j \in \bigcup_{i=1, i \neq t}^{s}\left\langle\operatorname{supp}\left(T\left(e_{j_{i}}\right)\right)\right\rangle
$$

so that

$$
\bigcup_{i=1}^{s}\left\langle\operatorname{supp}\left(T\left(e_{j_{i}}\right)\right)\right\rangle=\bigcup_{i=1, i \neq t}^{s}\left\langle\operatorname{supp}\left(T\left(e_{j_{i}}\right)\right)\right\rangle
$$

and by the induction hypothesis we have that

$$
\begin{equation*}
\bigcup_{i=1}^{s}\left\langle\operatorname{supp}\left(T\left(e_{j_{i}}\right)\right)\right\rangle=\left\langle\operatorname{supp}\left(\sum_{i=1, i \neq t}^{s} T\left(e_{j_{i}}\right)\right)\right\rangle . \tag{2}
\end{equation*}
$$

Since

$$
\left\langle\operatorname{supp}\left(\sum_{i=1}^{s} T\left(e_{j_{i}}\right)\right)\right\rangle \subseteq \bigcup_{i=1}^{s}\left\langle\operatorname{supp}\left(T\left(e_{j_{i}}\right)\right)\right\rangle
$$

we have that

$$
\begin{equation*}
\left\langle\operatorname{supp}\left(\sum_{i=1}^{s} T\left(e_{j_{i}}\right)\right)\right\rangle \subseteq\left\langle\operatorname{supp}\left(\sum_{i=1, i \neq t}^{s} T\left(e_{j_{i}}\right)\right)\right\rangle . \tag{3}
\end{equation*}
$$

Since T is a linear isometry, we have that

$$
\begin{aligned}
w_{P}\left(\sum_{i=1}^{s} T\left(e_{j_{i}}\right)\right) & =w_{P}\left(T\left(\sum_{i=1}^{s} e_{j_{i}}\right)\right)=w_{P}\left(\sum_{i=1}^{s} e_{j_{i}}\right), \\
w_{P}\left(\sum_{i=1, i \neq t}^{s} T\left(e_{j_{i}}\right)\right) & =w_{P}\left(T\left(\sum_{i=1, i \neq t}^{s} e_{j_{i}}\right)\right)=w_{P}\left(\sum_{i=1, i \neq t}^{s} e_{j_{i}}\right) .
\end{aligned}
$$

But

$$
\begin{equation*}
w_{P}\left(\sum_{i=1}^{s} e_{j_{i}}\right) \geq w_{P}\left(\sum_{i=1, i \neq t}^{s} e_{j_{i}}\right) \tag{4}
\end{equation*}
$$

and since by definition, we have that $w_{P}(v)=|\langle\operatorname{supp}(v)\rangle|$, considering inequality (4) in (3) we find that

$$
\left\langle\operatorname{supp}\left(\sum_{i=1}^{s} T\left(e_{j_{i}}\right)\right)\right\rangle=\left\langle\operatorname{supp}\left(\sum_{i=1, i \neq t}^{s} T\left(e_{j_{i}}\right)\right)\right\rangle
$$

and from (2) we get that

$$
\left\langle\operatorname{supp}\left(\sum_{i=1}^{s} T\left(e_{j_{i}}\right)\right)\right\rangle=\bigcup_{i=1}^{s}\left\langle\operatorname{supp}\left(T\left(e_{j_{i}}\right)\right)\right\rangle,
$$

so that the lemma holds if for every $s \geq 2$, there is $J=\left\{j_{1}, \ldots, j_{s}\right\}$ and $t \in\{1,2, \ldots, s\}$ such that $\Theta_{J, t}=\varnothing$.

The case of an antichain P is trivial, so we can assume that the poset P is not an antichain order, and hence there are $l_{1}, l_{2} \in\{1,2, \ldots, n\}$ such that l_{2} covers l_{1}. So, given $s \geq 2$, for every $J=\left\{l_{1}, l_{2}, j_{3}, \ldots, j_{s}\right\}$ we have that $\Theta_{J, l_{1}}=\varnothing$, since

$$
\left\langle\operatorname{supp}\left(e_{l_{1}}\right)\right\rangle=\left\langle l_{1}\right\rangle \subseteq\left\langle l_{2}\right\rangle=\left\langle\operatorname{supp}\left(e_{l_{2}}\right)\right\rangle .
$$

Now we can state and prove the proposition that extends Lemma 1.1 to general vectors.

Proposition 1.1 Let $P=\{1,2, \ldots, n\}$ be a poset, $T \in G L_{P}\left(\mathbb{F}_{q}^{n}\right)$. Then, for every $u, v \in \mathbb{F}_{q}^{n}$,

$$
\langle\operatorname{supp}(T(u))\rangle \subseteq\langle\operatorname{supp}(T(v))\rangle,
$$

if $\langle\operatorname{supp}(u)\rangle \subseteq\langle\operatorname{supp}(v)\rangle$.

Proof. Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the canonical base of \mathbb{F}_{q}^{n} and express u and v as a linear combination of this base:

$$
\begin{aligned}
& u=\alpha_{1} e_{u_{1}}+\alpha_{2} e_{u_{2}}+\ldots+\alpha_{r} e_{u_{r}} \\
& v=\beta_{1} e_{v_{1}}+\beta_{2} e_{v_{2}}+\ldots+\beta_{s} e_{v_{s}}
\end{aligned}
$$

with $\operatorname{supp}(u)=\left\{u_{1}, \ldots, u_{r}\right\}$ and $\operatorname{supp}(v)=\left\{v_{1}, \ldots, v_{s}\right\}$. Since $\langle\operatorname{supp}(u)\rangle \subseteq$ $\langle\operatorname{supp}(v)\rangle$ we have that $\left\langle\operatorname{supp}\left(e_{u_{i}}\right)\right\rangle \subseteq\langle\operatorname{supp}(v)\rangle$ for every $i \in\{1,2, \ldots, r\}$, so there is an $j \in\{1,2, \ldots, s\}$ such that $\left\langle\operatorname{supp}\left(e_{u_{i}}\right)\right\rangle \subseteq\left\langle\operatorname{supp}\left(e_{v_{j}}\right)\right\rangle$. But Lemma 1.1 assures that $\left\langle\operatorname{supp}\left(T\left(e_{u_{i}}\right)\right)\right\rangle \subseteq\left\langle\operatorname{supp}\left(T\left(e_{v_{j}}\right)\right)\right\rangle$. It follows that

$$
\begin{aligned}
\langle\operatorname{supp}(T(u))\rangle & =\left\langle\operatorname{supp}\left(\sum_{i=1}^{r} T\left(e_{u_{i}}\right)\right)\right\rangle \\
& \subseteq \bigcup_{i=1}^{r}\left\langle\operatorname{supp}\left(T\left(e_{u_{i}}\right)\right)\right\rangle \\
& \subseteq \bigcup_{j=1}^{s}\left\langle\operatorname{supp}\left(T\left(e_{v_{j}}\right)\right)\right\rangle
\end{aligned}
$$

and by Lemma 1.2 we have that

$$
\begin{aligned}
\langle\operatorname{supp}(T(v))\rangle & =\left\langle\operatorname{supp}\left(\sum_{j=1}^{s} T\left(\beta_{j} e_{v_{j}}\right)\right)\right\rangle \\
& =\bigcup_{j=1}^{s}\left\langle\operatorname{supp}\left(T\left(\beta_{j} e_{v_{j}}\right)\right)\right\rangle \\
& =\bigcup_{j=1}^{s}\left\langle\operatorname{supp}\left(T\left(e_{v_{j}}\right)\right)\right\rangle
\end{aligned}
$$

and we find

$$
\langle\operatorname{supp}(T(u))\rangle \subseteq\langle\operatorname{supp}(T(v))\rangle .
$$

An ideal I of a poset P is said to be a prime ideal if it contains a unique maximal element.

Lemma 1.3 Let $P=\{1,2, \ldots, n\}$ be a poset, $\beta=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the canoni cal base of \mathbb{F}_{q}^{n} and $T \in G L_{P}\left(\mathbb{F}_{q}^{n}\right)$. Then, for every $r \in\{1,2, \ldots, n\}$, we have that $\left\langle\operatorname{supp}\left(T\left(e_{r}\right)\right)\right\rangle$ is a prime ideal.

Proof. We want to prove that the ideal $\left\langle\operatorname{supp}\left(T\left(e_{r}\right)\right)\right\rangle$ is generated by a single greatest element (greater than every other element), or alternatively, it has only one maximal element (no one greater than it). Let $\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$ be a set of maximal elements in $\left\langle\operatorname{supp}\left(T\left(e_{r}\right)\right)\right\rangle$. Then we have that

$$
\begin{aligned}
\left\langle\operatorname{supp}\left(T\left(e_{r}\right)\right)\right\rangle & =\bigcup_{i=1}^{k}\left\langle j_{i}\right\rangle \\
& =\bigcup_{i=1}^{k}\left\langle\operatorname{supp}\left(e_{j_{i}}\right)\right\rangle \\
& =\left\langle\operatorname{supp}\left(\sum_{i=1}^{r} e_{j_{i}}\right)\right\rangle .
\end{aligned}
$$

But Proposition 1.1 assures that we can apply T^{-1} to both sides of the equation above preserving the equality, so that

$$
\begin{equation*}
\left\langle\operatorname{supp}\left(e_{r}\right)\right\rangle=\left\langle\operatorname{supp}\left(T^{-1} T\left(e_{r}\right)\right)\right\rangle=\left\langle\operatorname{supp}\left(T^{-1}\left(\sum_{i=1}^{r} e_{j_{i}}\right)\right)\right\rangle . \tag{5}
\end{equation*}
$$

Since T^{-1} is linear, we have that

$$
\left\langle\operatorname{supp}\left(T^{-1}\left(\sum_{i=1}^{r} e_{j_{i}}\right)\right)\right\rangle=\left\langle\operatorname{supp}\left(\sum_{i=1}^{r} T^{-1}\left(e_{j_{i}}\right)\right)\right\rangle
$$

and by Lemma 1.2, we have that

$$
\begin{equation*}
\left\langle\operatorname{supp}\left(\sum_{i=1}^{r} T^{-1}\left(e_{j_{i}}\right)\right)\right\rangle=\bigcup_{i=1}^{k}\left\langle\operatorname{supp}\left(T^{-1}\left(e_{j_{i}}\right)\right)\right\rangle . \tag{6}
\end{equation*}
$$

But looking at equations (5) and (6) we find that $\bigcup_{i=1}^{k}\left\langle\operatorname{supp}\left(T^{-1}\left(e_{j_{i}}\right)\right)\right\rangle$ is the prime ideal $\left\langle\operatorname{supp}\left(e_{r}\right)\right\rangle$. Since we are expressing a prime ideal as the union of ideals, one of them, let us say $\left\langle\operatorname{supp}\left(T^{-1}\left(e_{j_{s}}\right)\right)\right\rangle$ for some $s \in\{1,2, \ldots, r\}$, must contain the maximal element r and hence $\left\langle\operatorname{supp}\left(T^{-1}\left(e_{j_{s}}\right)\right)\right\rangle=\left\langle\operatorname{supp}\left(e_{r}\right)\right\rangle$. Using again Proposition 1.1, we find that

$$
\left\langle\operatorname{supp}\left(e_{j_{s}}\right)\right\rangle=\left\langle\operatorname{supp}\left(T\left(e_{r}\right)\right)\right\rangle
$$

so that $\left\langle\operatorname{supp} T\left(e_{r}\right)\right\rangle$ is a prime ideal and consequently $\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}=\left\{j_{s}\right\}$.
Now we can state and prove the proposition that extends Lemma 1.3 to the general case.

Proposition 1.2 Let $P=\{1,2, \ldots, n\}$ be a poset and $T \in G L_{P}\left(\mathbb{F}_{q}^{n}\right)$. Then, for every $v \in \mathbb{F}_{q}^{n}$ such that $\langle\operatorname{supp}(v)\rangle$ is a prime ideal, we have that $\langle\operatorname{supp}(T(v))\rangle$ is also a prime ideal.
Proof. Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ the canonical base of \mathbb{F}_{q}^{n} and $v \in \mathbb{F}_{q}^{n}$. Suppose that $v=\alpha_{1} e_{i_{1}}+\ldots+\alpha_{s} e_{i_{s}}$. Then

$$
\begin{aligned}
\langle\operatorname{supp}(v)\rangle & =\left\langle\operatorname{supp}\left(\alpha_{1} e_{i_{1}}+\ldots+\alpha_{s} e_{i_{s}}\right)\right\rangle \\
& =\left\langle\operatorname{supp}\left(e_{i_{1}}\right)\right\rangle \cup \ldots \cup\left\langle\operatorname{supp}\left(e_{i_{s}}\right)\right\rangle,
\end{aligned}
$$

and since $\langle\operatorname{supp}(v)\rangle$ is a prime ideal, it follows there is an $k \in\{1,2, \ldots, s\}$ such that

$$
\left\langle\operatorname{supp}\left(e_{i_{1}}\right)\right\rangle \cup \ldots \cup\left\langle\operatorname{supp}\left(e_{i_{s}}\right)\right\rangle=\left\langle\operatorname{supp}\left(e_{i_{k}}\right)\right\rangle
$$

so that $\langle\operatorname{supp}(v)\rangle=\left\langle\operatorname{supp}\left(e_{i_{k}}\right)\right\rangle$. Lemma 1.1 assures that

$$
\langle\operatorname{supp}(T(v))\rangle=\left\langle\operatorname{supp}\left(T\left(e_{i_{k}}\right)\right)\right\rangle
$$

and as $\left\langle\operatorname{supp}\left(T\left(e_{i_{k}}\right)\right)\right\rangle$ is a prime ideal (by Lemma 1.3), and we conclude that $\langle\operatorname{supp}(T(v))\rangle$ is a prime ideal.

Lemma 1.4 If k covers i and J is an ideal such that $\langle i\rangle \subseteq J \subseteq\langle k\rangle$, then $J=\langle i\rangle$ or $J=\langle k\rangle$.

Proof. If $\langle i\rangle=J$, there is nothing to be proved. So, we assume that $\langle i\rangle \nsubseteq J \subseteq\langle k\rangle$. Then, there is an $j \in J$ such that $j \nexists i$. Since $J \subseteq\langle k\rangle$ it follows that $j \leq k$. So $i \ngtr j \leq k$, and since k covers i, we have that $j=k$ and hence $J=\langle k\rangle$.

Theorem 1.1 Let $P=\{1,2, \ldots, n\}$ be a poset, $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the canonical base of \mathbb{F}_{q}^{n} and $T \in G L_{P}\left(\mathbb{F}_{q}^{n}\right)$ linear isometry. Then, for every saturated chain with a minimal element $i_{i}<i_{2}<\ldots<i_{r}$ there is a unique saturated sequence of prime ideals

$$
\left\langle\operatorname{supp}\left(e_{j_{1}}\right)\right\rangle \subset\left\langle\operatorname{supp}\left(e_{j_{2}}\right)\right\rangle \subset \ldots \subset\left\langle\operatorname{supp}\left(e_{j_{r}}\right)\right\rangle .
$$

such that

$$
\left\langle\operatorname{supp}\left(T\left(e_{i_{k}}\right)\right)\right\rangle=\left\langle\operatorname{supp}\left(e_{j_{k}}\right)\right\rangle
$$

for every $k \in\{1,2, \ldots, r\}$ and

$$
\begin{aligned}
\phi: & P \\
i_{k} & \longmapsto P \\
& \longmapsto\left(i_{k}\right):=j_{k}
\end{aligned}
$$

is a well defined poset automorphism.

Proof. Proposition 1.2 assures us that $\left\langle\operatorname{supp}\left(T\left(e_{i_{k}}\right)\right)\right\rangle$ is a prime for all $k \in$ $\{1,2, \ldots, r\}$, since $\left\langle\operatorname{supp}\left(e_{i_{k}}\right)\right\rangle$ is a prime ideal. Then for each $k \in\{1,2, \ldots, r\}$ there is just one maximal element $j_{k} \in\left\langle\operatorname{supp}\left(T\left(e_{i_{k}}\right)\right)\right\rangle$. So $\left\langle\operatorname{supp}\left(T\left(e_{i_{k}}\right)\right)\right\rangle=$ $\left\langle\operatorname{supp}\left(e_{j_{k}}\right)\right\rangle$ for all $k \in\{1,2, \ldots, r\}$. Since

$$
\left\langle\operatorname{supp}\left(e_{i_{1}}\right)\right\rangle \subset\left\langle\operatorname{supp}\left(e_{i_{2}}\right)\right\rangle \subset \ldots \subset\left\langle\operatorname{supp}\left(e_{i_{r}}\right)\right\rangle,
$$

it follows, from Proposition 1.1, that

$$
\left\langle\operatorname{supp}\left(e_{j_{1}}\right)\right\rangle \subset\left\langle\operatorname{supp}\left(e_{j_{2}}\right)\right\rangle \subset \ldots \subset\left\langle\operatorname{supp}\left(e_{j_{r}}\right)\right\rangle .
$$

We affirm now that the sequence above is saturated. Suppose that for some $k \in\{1,2, \ldots, r\}$ there is j^{\prime} such that

$$
\left\langle j_{k}\right\rangle \varsubsetneqq\left\langle j^{\prime}\right\rangle \varsubsetneqq\left\langle j_{k+1}\right\rangle .
$$

Since

$$
\begin{aligned}
& \left\langle j_{k}\right\rangle=\left\langle\operatorname{supp}\left(e_{j_{k}}\right)\right\rangle=\left\langle\operatorname{supp}\left(T\left(e_{i_{k}}\right)\right)\right\rangle, \\
& \left\langle j_{k+1}\right\rangle=\left\langle\operatorname{supp}\left(e_{j_{k+1}}\right)\right\rangle=\left\langle\operatorname{supp}\left(T\left(e_{i_{k+1}}\right)\right)\right\rangle,
\end{aligned}
$$

it follows, applying Proposition 1.1) to the linear P-isometry T^{-1}, that

$$
\begin{aligned}
\left\langle i_{k}\right\rangle & =\left\langle\operatorname{supp}\left(T^{-1} T\left(e_{i_{k}}\right)\right)\right\rangle \\
& \varsubsetneqq\left\langle\operatorname{supp}\left(T^{-1}\left(e_{j^{\prime}}\right)\right)\right\rangle \\
& \varsubsetneqq\left\langle\operatorname{supp}\left(T^{-1} T\left(e_{i_{k+1}}\right)\right)\right\rangle=\left\langle i_{k+1}\right\rangle
\end{aligned}
$$

what contradicts, by Lemma 1.4, the hypothesis that $i_{1}<\ldots<i_{r}$ is a saturated chain.

Let us now define $\phi: P \rightarrow P$ by $\phi\left(i_{l}\right)=j_{l}$. Since j_{l} is uniquely defined and does not depends on the choice of the saturated chain containing i_{l} (but only on $T\left(e_{i_{l}}\right)$), we have that ϕ is well defined. Moreover, let us suppose that $x<y$ in P, and let

$$
i_{1}<\ldots<i_{k-1}<x<i_{k+1}<\ldots<i_{l-1}<y<i_{l+1}<\ldots<i_{r}
$$

be a saturated chain containing x and y. Then there is only one saturated chain

$$
j_{1}<\ldots<j_{k-1}<j_{k}<j_{k+1}<\ldots<j_{l-1}<j_{l}<j_{l+1}<\ldots<j_{r}
$$

such that $\phi(x)=j_{k}$ and $\phi(y)=j_{l}$. Since $j_{k}<j_{l}$ we get that $\phi(x)<\phi(y)$. Therefore ϕ is an application that preserves the order on P.

Finally, we affirm that ϕ is one-to-one. In fact, suppose that $\phi(x)=\phi(y)$. As $\phi(x)=\max \left\langle\operatorname{supp}\left(T\left(e_{x}\right)\right)\right\rangle$ and $\phi(y)=\max \left\langle\operatorname{supp}\left(T\left(e_{y}\right)\right)\right\rangle$ then

$$
\left\langle\operatorname{supp}\left(T\left(e_{x}\right)\right)\right\rangle=\left\langle\operatorname{supp}\left(T\left(e_{y}\right)\right)\right\rangle
$$

and from Proposition 1.1 follows that

$$
\left\langle\operatorname{supp}\left(e_{x}\right)\right\rangle=\left\langle\operatorname{supp}\left(T^{-1} T\left(e_{x}\right)\right)\right\rangle=\left\langle\operatorname{supp}\left(T^{-1} T\left(e_{y}\right)\right)\right\rangle=\left\langle\operatorname{supp}\left(e_{y}\right)\right\rangle .
$$

As both ideals $\left\langle\operatorname{supp}\left(e_{x}\right)\right\rangle$ and $\left\langle\operatorname{supp}\left(e_{y}\right)\right\rangle$ are primes, we must have $x=y$. Being ϕ one-to-one and P finite, we find that ϕ is a bijection that preserves the order and we conclude that ϕ is an automorphism of P.

The m-th level $\Gamma^{(m)}(P)$ is the set of elements of P that generates a prime ideal with cardinality m :

$$
\Gamma^{(m)}(P)=\{i \in P:|\langle i\rangle|=m\}=\left\{i \in P: w_{P}\left(e_{i}\right)=m\right\}
$$

We now describe the main result of this work:
Theorem 1.2 Let $P=\{1,2, \ldots, n\}$ be a poset and $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the canonical base of \mathbb{F}_{q}^{n}. Then $T \in G L_{P}\left(\mathbb{F}_{q}^{n}\right)$ if and only if

$$
T\left(e_{j}\right)=\sum_{i \in\langle j\rangle} x_{i j} e_{\phi(i)}
$$

where $\phi: P \rightarrow P$ is an order automorphism and $x_{j j} \neq 0$, for any $j \in$ $\{1,2, \ldots, n\}$. Moreover, there is a pair of ordered bases β and β^{\prime} of \mathbb{F}_{q}^{n} relative to which every linear isometry $T \in G L_{P}\left(\mathbb{F}_{q}^{n}\right)$ is represented by an $n \times n$ upper triangular matrix $\left(a_{i j}\right)_{1 \leq i, j \leq n}$ with $a_{i i} \neq 0$ for every $i \in\{1,2, \ldots, n\}$.

Proof. Since $\left\langle\operatorname{supp}\left(e_{j}\right)\right\rangle$ is a prime ideal, it follows from Proposition 1.2 that $\left\langle\operatorname{supp}\left(T\left(e_{j}\right)\right)\right\rangle$ is also a prime ideal, for every $j \in\{1,2, \ldots, n\}$. Given $j \in\{1,2, \ldots, n\}$, let $j^{\prime}=\phi(j)$ be the unique maximal element of the ideal $\left\langle\operatorname{supp}\left(T\left(e_{j}\right)\right)\right\rangle$, where $\phi: P \rightarrow P$ is the order automorphism induced by the isometry T (see Theorem 1.1). Then

$$
\left\langle\operatorname{supp}\left(T\left(e_{j}\right)\right)\right\rangle=\left\langle\operatorname{supp}\left(e_{j^{\prime}}\right)\right\rangle=\left\langle\operatorname{supp}\left(e_{\phi(j)}\right)\right\rangle
$$

and since ϕ is a automorphism of order we have that

$$
\left\langle\operatorname{supp}\left(e_{\phi(j)}\right)\right\rangle=\{\phi(i): i \in\langle j\rangle\}
$$

Therefore $\left\langle\operatorname{supp}\left(T\left(e_{j}\right)\right)\right\rangle=\{\phi(i): i \in\langle j\rangle\}$. Being $\phi(j)=\max \{\phi(i): i \in\langle j\rangle\}$, we conclude that

$$
\begin{equation*}
T\left(e_{j}\right)=\sum_{i \in\langle j\rangle} x_{i j} e_{\phi(i)} \tag{7}
\end{equation*}
$$

with $x_{j j} \neq 0$. It is straightforward to verify that for a given order automorphism $\phi: P \rightarrow P$, any linear map defined as in (7) is a P-isometry.

Let $\beta_{m}=\left\{e_{i}: i \in \Gamma^{(m)}(P)\right\}$ and

$$
\beta=\beta_{1} \cup \beta_{2} \cup \ldots \cup \beta_{k} .
$$

be a decomposition of the canonical base of \mathbb{F}_{q}^{n} as a disjoint union, where $k=\max \left\{w_{P}\left(e_{i}\right): i=1,2, \ldots, n\right\}$. We order this base $\beta=\left\{e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{n}}\right\}$ in the following way (and denoted this total order by \leq_{β}): if $e_{i_{r}} \in \beta_{j_{r}}$ and $e_{i_{s}} \in \beta_{j_{s}}$ with $r \neq s$ then, $e_{i_{r}} \leq_{\beta} e_{i_{s}}$ if and only $j_{r} \leq j_{s}$. In other words, we begin enumerating the the vectors of β_{1} and after exhausting them, we enumerate the vectors of β_{2} and so on.

We define another ordered base β^{\prime} as the base induced by the order automorphism ϕ,

$$
\beta^{\prime}:=\left\{e_{\phi\left(i_{1}\right)}, e_{\phi\left(i_{2}\right)}, \ldots, e_{\phi\left(i_{n}\right)}\right\}
$$

and let A be the matrix of T relative to the basis β and β^{\prime} :

$$
[T]_{\beta, \beta^{\prime}}=A=\left(a_{k l}\right)_{1 \leq k, l \leq n}
$$

We find by the construction of the bases β and β^{\prime} that $a_{k l} \neq 0$ implies $i_{l} \in\left\langle\phi\left(i_{k}\right)\right\rangle$. But $i_{l} \in\left\langle\phi\left(i_{k}\right)\right\rangle$ and $\left\langle i_{l}\right\rangle \neq\left\langle\phi\left(i_{k}\right)\right\rangle$ implies that $l<k$ so that A is upper triangular. Since A is invertible and upper triangular, we must have $\operatorname{det}(A)=\prod_{i=1}^{n} a_{i i} \neq 0$ so that $a_{i i} \neq 0$, for every $i \in\{1,2, \ldots, n\}$.

The upper triangular matrix obtained in the previous theorem is called a canonical form of T. We note that the ordered bases chosen in the theorem is unique up to re-ordination within the linearly independent sets $\beta_{i}, i=$ $1,2, \ldots, k$.

As in [14], a monomial matrix is a matrix with exactly one nonzero entry in each row and column. Thus a monomial matrix over \mathbb{F}_{2} is a permutation matrix, and a monomial matrix over an arbitrary finite field is a permutation matrix times an invertible diagonal matrix.

Corollary 1.1 Given $T \in G L_{P}\left(\mathbb{F}_{q}^{n}\right)$ there is an ordering $\beta=\left\{e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{n}}\right\}$ of the canonical base such that $[T]_{\beta, \beta}$ is given by the product $A \cdot U$ where A
is an invertible upper triangular matrix and U is a monomial matrix obtained from the identity matrix by permutation of the columns, corresponding to the automorphism of order induced by T.

Proof. Let ϕ be the automorphism of order induced by T. Let $T_{\phi^{-1}}$ be the linear isometry defined as $T_{\phi^{-1}}\left(e_{j}\right)=e_{\phi^{-1}(j)}$, for $j \in\{1,2, \ldots, n\}$. As we saw in Theorem 1.2,

$$
T\left(e_{j}\right)=\sum_{i \in\langle j\rangle} x_{i j} e_{\phi(i)} .
$$

So,

$$
\begin{aligned}
T \circ T_{\phi^{-1}}\left(e_{j}\right) & =T\left(e_{\phi^{-1}(j)}\right) \\
& =\sum_{i \in\left\langle\phi^{-1}(j)\right\rangle} x_{i \phi^{-1}(j)} e_{\phi(i)} \\
& =x_{i \phi^{-1}(j)} e_{j}+\sum_{i \in\left\langle\phi^{-1}(j)\right\rangle, i \neq \phi^{-1}(j)} x_{i \phi^{-1}(j)} e_{\phi(i)} .
\end{aligned}
$$

It follows that the automorphism of order induced by $T \circ T_{\phi^{-1}}$ is the identity, so, when taking the base β^{\prime} as in the Theorem 1.2, we find that $\beta^{\prime}=\beta$ and the matrix of $T \circ T_{\phi^{-1}}$ relative to this base is an upper triangular matrix $A=$ $\left[T \circ T_{\phi^{-1}}\right]_{\beta}$. But $T_{\phi^{-1}}$ acts on \mathbb{F}_{q}^{n} as a permutation of the vectors in β, so that in any ordered base containing those vectors, $U^{-1}=\left[T_{\phi^{-1}}\right]$ is obtained from the identity matrix by permutation of the columns. We note that $T_{\phi}=\left(T_{\phi^{-1}}\right)^{-1}$ and it follows that

$$
\begin{aligned}
{[T]_{\beta} } & =\left[T \circ T_{\phi^{-1}} \circ T_{\phi}\right]_{\beta} \\
& =\left[T \circ T_{\phi^{-1}}\right]_{\beta}\left[T_{\phi}\right]_{\beta} \\
& =A \cdot U .
\end{aligned}
$$

Given a poset $P=\{1,2, \ldots, n\}$, we denote by $\operatorname{Aut}(P)$ the group of the order-automorphisms of P.

Corollary 1.2 Let $P=\{1, \ldots, n\}$ by a poset and $k=\max \left\{m: \Gamma^{(m)}(P) \neq \varnothing\right\}$. Then

$$
\left|G L_{P}\left(\mathbb{F}_{q}^{n}\right)\right|=(q-1)^{n} \cdot\left(\prod_{i=1}^{k} q^{(i-1)\left|\Gamma^{(i)}(P)\right|}\right) \cdot \mid \text { Aut }(P) \mid
$$

Proof. From Corollary 1.1, if $T \in G L_{P}\left(\mathbb{F}_{q}^{n}\right)$ there is an ordered base $\beta=$ $\left\{e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{n}}\right\}$ of the canonical base of \mathbb{F}_{q}^{n} such that $\left|\left\langle i_{l}\right\rangle\right| \leq l$ for all $l \in$ $\{1,2, \ldots, n\}$ and $[T]_{\beta}=A \cdot U$, being $A=\left(a_{k l}\right)_{1 \leq k, l \leq n}$ an upper triangular matrix with $a_{k l}=0$ if $i_{k} \notin\left\langle i_{l}\right\rangle$ and $U=\left[T_{\phi}\right]_{\beta}$ the matrix representing the automorphism ϕ induced by linear isometry T (see Theorem 1.2). Moreover, such base β depends only on ϕ and for every $\phi \in \operatorname{Aut}(P)$, any matrix A as in the previous Corollary defines a linear P-isometry.

Given $l \in\{1,2, \ldots, n\}$, there are $(q-1)$ possible different entries for $a_{l l}$ (since $a_{l l} \neq 0$). But A is upper triangular, given $1 \leq i<j \leq n$ we have that $a_{i j} \neq 0$ only if $i \in\langle j\rangle$, so there are at most $|\langle j\rangle|-1$ possible nonzero indices (i, j) with $1 \leq i<j \leq n$, and for each of those there are q possible different entries. Since there are exactly $\left|\Gamma^{(|\langle j\rangle|)}(P)\right|$ such indices, we find that, up to considering the order automorphism induced by the isometry, there are

$$
(q-1)^{n} \cdot\left(\prod_{i=1}^{k} q^{(i-1)\left|\Gamma^{(i)}(P)\right|}\right)
$$

linear P-isometries and we conclude counting the elements of $\operatorname{Aut}(P)$.
Let $M_{n \times n}\left(\mathbb{F}_{q}\right)$ be the set of all $n \times n$ matrices over \mathbb{F}_{q} and

As we have seen, this is the set of elements in $G L_{P}\left(\mathbb{F}_{q}^{n}\right)$ that corresponds to isometries that induces the trivial automorphism of order. So, we have the following characterization:

Corollary 1.3 With the definitions above, the group of isometries of $\left(\mathbb{F}_{q}^{n}, d_{P}\right)$ is the semi-direct product $G L_{P}\left(\mathbb{F}_{q}^{n}\right) \simeq G_{P} \rtimes A u t(P)$.

Proof. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be elements in G_{P}. Since

$$
(A B)_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}=\sum_{i \leq P}{ }_{P \leq_{P} j} a_{i k} b_{k j}
$$

we have that $A B \in G_{P}$. We note that every element in G_{P} is an upper triangular matrix with nonzero diagonal entries. Hence, such elements are invertible. Since the inverse of an element in G_{P} is a polynomial in that
element, such an element is in G_{P}. So, we see that G_{P} is a subgroup of $G L_{P}\left(\mathbb{F}_{q}^{n}\right)$. Since we already proved that $G L_{P}\left(\mathbb{F}_{q}^{n}\right)=G_{P} \cdot \operatorname{Aut}(P)$, all is left to show is that G_{P} is a normal subgroup of $G L_{P}\left(\mathbb{F}_{q}^{n}\right)$. Given $\phi \in S_{n}$, it acts on $n \times n$ matrices by permuting columns or rows. We denote by A^{ϕ} and ${ }^{\phi} A$ respectively the column and row permutation of the matrix A. It is straightforward to show that $\left({ }^{\phi} I d\right)^{-1}=I d^{\phi}([4])$. It follows that

$$
\left({ }^{\phi} I d\right) A\left({ }^{\phi} I d\right)^{-1}={ }^{\phi} A^{\phi}
$$

for every $n \times n$ matrix A. If $A=\left(a_{i j}\right) \in G_{P}$, for each $i=1,2, \ldots, n$ we have that

$$
\begin{aligned}
\left({ }^{\phi} I d\right) A\left({ }^{\phi} I d\right)^{-1}\left(e_{i}\right) & ={ }^{\phi} A^{\phi}\left(e_{i}\right)=\sum_{k=1}^{n} a_{\phi(k) \phi(i)} e_{k} \\
& =\sum_{\phi(k) \leq_{P} \phi(i)} a_{\phi(k) \phi(i)} e_{k} \\
& =\sum_{k \leq P i} a_{\phi(k) \phi(i)} e_{k}
\end{aligned}
$$

and $a_{\phi(i) \phi(i)} \neq 0$ for every i. Thus, we find that G_{P} is normal in $G L_{P}\left(\mathbb{F}_{q}^{n}\right)$ and the proposition follows.
a
Corollary 1.4 Let P and Q be order posets. Then we have

1. $G_{P \times Q}=G_{P} \otimes G_{Q}$;
2. $G_{P \cup \cap Q} \simeq G_{P} \times G_{Q}$;
3. If Q is a disjoint union of m 's posets P on $\{1,2, \ldots, n\}$, then we have $\operatorname{Aut}(Q) \simeq \operatorname{Aut}(P) S_{n}$.

Proof. All the claims follow straight from the definitions.

2 Examples

In this section, we illustrate the results of this paper with three examples, the main classes of poset-metrics: the posets that are disjoint union of chains, the weak order and the crown order.

Example 2.1 Let $D=P_{1} \stackrel{\circ}{\cup}^{P_{2}} \stackrel{\circ}{\cup}^{\circ} . \stackrel{\circ}{\cup}^{\circ} P_{s}$ be a poset consisting of a disjoint union of r chains. Denoted by μ_{i} the cardinality of the i-th chain, $i \in\{1,2, \ldots, s\}$. For every $j \in\{1,2, \ldots, n\}$ let $\nu_{j}=\left|\left\{P_{i}:\left|P_{i}\right|=j\right\}\right|$. From Corollary 1.1 follows that there is an ordered base β of \mathbb{F}_{q}^{n} relative to which every linear isometry $T \in G L_{P}\left(\mathbb{F}_{q}^{n}\right)$ is represented by the product $A \cdot U$ of $n \times n$ matrices, where U is a monomial matrix that acts exchanging coordinate subspaces with isomorphic supports and

$$
A=\left(\begin{array}{lllll}
A_{1} & 0 & 0 & \cdots & 0 \\
0 & A_{2} & 0 & \cdots & 0 \\
0 & 0 & A_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & A_{s}
\end{array}\right)
$$

where each A_{i} is a $\mu_{i} \times \mu_{i}$ upper triangular matrix with non zero diagonal entries. If $P=\{1,2, \ldots, n\}$ be a totally ordered set, then there is an ordered base β of \mathbb{F}_{q}^{n} relative to which every linear isometry $T \in G L_{P}\left(\mathbb{F}_{q}^{n}\right)$ is represented by the $n \times n$ upper triangular matrix with $x_{i i} \neq 0$ for every $i \in\{1,2, \ldots, n\}$.

If R consisting of finite disjoint union of chains of equal lengths, then w_{R} become the Rosenbloom-Tsfasman weight defined on the linear space $M_{n \times m}\left(\mathbb{F}_{q}\right)$ of all $n \times m$ matrices over $\mathbb{F}_{q}:$ if $\left(a_{i j}\right) \in M_{n \times m}\left(\mathbb{F}_{q}\right)$, then

$$
w_{R}\left(\left(a_{i j}\right)\right)=\sum_{j=1}^{m}\left|\left\langle\operatorname{supp}\left(a_{1 j}, a_{2 j}, \ldots, a_{n j}\right)\right\rangle\right|
$$

From Corrollary 1.3 ([10, Theorem 1]) it follows that

$$
G L_{P}\left(M_{n \times m}\left(\mathbb{F}_{q}\right)\right) \simeq\left(T_{n}\right)^{m} \rtimes \mathbf{S}_{m}
$$

where $\left(T_{n}\right)^{m}$ denotes the direct product of m copies of the group T_{n} of all upper triangular matrices of size n over \mathbb{F}_{q} with nonzero diagonal elements.

Remark 2.1 For the case of modular rings \mathbb{Z}_{n}, we observed that if $n \neq 2$, there is no partial order $P=\{1,2, \ldots, m\}$ such that the poset-weight w_{P} coincide with the Lee weight $w_{\text {Lee }}$: if $x=\left(\overline{x_{1}}, \ldots, \overline{x_{m}}\right) \in \mathbb{Z}_{n}^{m}$ then

$$
w_{\text {Lee }}(x)=\sum_{i=1}^{m} \min \left\{\left|x_{i}\right|, m-\left|x_{i}\right|\right\}
$$

with $0 \leq x_{i} \leq n$ the representative integer of the class $\overline{x_{i}}$. If $n=2$ then $w_{\text {Lee }}=\bar{w}_{H}$. Therefore, if P is antichain and $n=2$, then $w_{P}=w_{\text {Lee }}$. Now, if
$n \neq 2$, taking $y=\left(\overline{\left\lfloor\frac{n}{2}\right\rfloor}, \ldots, \overline{\left\lfloor\frac{n}{2}\right\rfloor}\right) \in \mathbb{Z}_{n}^{m}$, where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x, follows that $w_{P}(x)=m$ and $w_{\text {Lee }}(x)=m \cdot\left\lfloor\frac{n}{2}\right\rfloor>m$. Hence $w_{P}(x) \neq w_{\text {Lee }}(x) \quad\left(w_{P}(x)<w_{\text {Lee }}(x)\right)$. In summary: if $n \neq 2$ is a positive integer, then there is no partial order P such that $w_{P}=w_{\text {Lee }}$ over \mathbb{Z}_{n}^{m}.

Example 2.2 Let n_{1}, \ldots, n_{t} be positive integers with $n_{1}+\ldots+n_{t}=n$. Then $W=n_{1} \mathbf{1} \oplus \ldots \oplus n_{t} \mathbf{1}$ will denote the weak order given by the ordinal sum of the antichains $n_{i} \mathbf{1}$ with n_{i} elements (see [7才). Explicitly, $W=n_{1} \mathbf{1} \oplus \ldots \oplus n_{t} \mathbf{1}$ is the poset whose underlying set and order relation are given by

$$
\begin{gathered}
\{1,2, \ldots, n\}=n_{1} \mathbf{1} \cup n_{2} \mathbf{1} \cup \ldots \cup n_{t} \mathbf{1}, \\
n_{i} \mathbf{1}=\left\{n_{1}+\ldots+n_{i-1}+1, n_{1}+\ldots+n_{i-1}+2, \ldots, n_{1}+\ldots+n_{i-1}+n_{i}\right\}
\end{gathered}
$$

and

$$
x<y \text { if and only if } x \in n_{i} \mathbf{1}, y \in n_{j} \mathbf{1} \text { for some } i, j \text { with } i<j .
$$

Notice that if $n_{1}=\ldots=n_{t}=1$, then $W=1 \mathbf{1} \oplus \ldots \oplus 11$ is totally ordered with $1<2<\ldots<t$ and if $t=1$ then $W=n \mathbf{1}$ is antichain.

For a weak order $W=n_{1} \mathbf{1} \oplus \ldots \oplus n_{t} \mathbf{1}$ we have that $\Gamma^{(m)}(W)=n_{s} \mathbf{1}$ if $m=n_{1}+n_{2}+\ldots+n_{s-1}+1$, for any $s \in\{1,2, \ldots, t\}$ and $\Gamma^{(m)}(W)=\varnothing$ otherwise. The group of the automorphism of order Aut (W) is isomorphic to the cartesian product $\mathbf{S}_{n_{1}} \times \mathbf{S}_{n_{2}} \times \ldots \times \mathbf{S}_{n_{t}}$ (Aut (W) is just the group of the applications ϕ that permutes only the elements of each m-th level). Corollary 1.2 assures us then that

$$
\left|G L_{W}\left(\mathbb{F}_{q}^{n}\right)\right|=(q-1)^{n} \cdot\left(\prod_{i=2}^{t} q^{n_{i}\left(n_{1}+n_{2}+\ldots+n_{i-1}+1\right)}\right) \cdot n_{1}!\cdot n_{2}!\cdot \ldots \cdot n_{t}!
$$

From Theorem 1.2 follows that there are bases β and β^{\prime} of \mathbb{F}_{q}^{n} such that the matrix $[T]_{\beta, \beta^{\prime}}$ is equal

$$
\left(\begin{array}{ccccc}
D_{n_{1} \times n_{1}} & * & * & \cdots & * \\
0 & D_{n_{2} \times n_{2}} & * & \cdots & * \\
0 & 0 & D_{n_{3} \times n_{3}} & \cdots & * \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & D_{n_{t} \times n_{t}}
\end{array}\right)
$$

where

$$
D_{n_{s} \times n_{s}}=\operatorname{diag}\left(a_{\Sigma n_{s-1}+1, \Sigma n_{s-1}+1}, a_{\Sigma n_{s-1}+2, \Sigma n_{s-1}+2}, \ldots, a_{\Sigma n_{s-1}+n_{s}, \Sigma n_{s-1}+n_{s}}\right)
$$

is a diagonal matrix for each $s=1,2, \ldots, t$, and $\Sigma n_{j-1}:=n_{1}+n_{2}+\ldots+n_{j-1}$.
Considering the particular weak order $W=4 \mathbf{1} \oplus 4 \mathbf{1} \oplus 4 \mathbf{1}$ (Hasse diagram illustrated in Figure 1), the matrix of a linear P-isometry $[T]_{\beta, \beta^{\prime}}$ of $T \in$ $G L_{W}\left(\mathbb{F}_{q}^{12}\right)$ is an upper triangular matrix as bellow:

Figure 1: Weak order $W=4 \mathbf{1} \oplus 4 \mathbf{1} \oplus 41$.

$$
\left(\begin{array}{|cccc|cccc|cccc|}
\hline a_{1,1} & 0 & 0 & 0 & a_{1,5} & a_{1,6} & a_{1,7} & a_{1,8} & a_{1,9} & a_{1,10} & a_{1,11} & a_{1,12} \\
0 & a_{2,2} & 0 & 0 & a_{2,5} & a_{2,6} & a_{2,7} & a_{2,8} & a_{2,9} & a_{2,10} & a_{2,11} & a_{2,12} \\
0 & 0 & a_{3,3} & 0 & a_{3,5} & a_{3,6} & a_{3,7} & a_{3,8} & a_{3,9} & a_{3,10} & a_{3,11} & a_{3,12} \\
0 & 0 & 0 & a_{4,4} & a_{4,5} & a_{4,6} & a_{4,7} & a_{4,8} & a_{4,9} & a_{4,10} & a_{4,11} & a_{4,12} \\
\hline 0 & 0 & 0 & 0 & a_{5,5} & 0 & 0 & 0 & a_{5,9} & a_{5,10} & a_{5,11} & a_{5,12} \\
0 & 0 & 0 & 0 & 0 & a_{6,6} & 0 & 0 & a_{6,9} & a_{6,10} & a_{6,11} & a_{6,12} \\
0 & 0 & 0 & 0 & 0 & 0 & a_{7,7} & 0 & a_{7,9} & a_{7,10} & a_{7,11} & a_{7,12} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{8,8} & a_{8,9} & a_{8,10} & a_{8,11} & a_{8,12} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{9,9} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{10,10} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{11,11} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{12,12} \\
\hline
\end{array}\right)
$$

Example 2.3 The crown is a poset with elements $C=\{1,2, \ldots, 2 n\}, n>1$, in which $i<n+i, i+1<n+i$ for each $i \in\{1,2, \ldots, n-1\}$, and $1<2 n$, $n<2 n$ and these are the only strict comparabilities ([1]). The Hasse diagram of crown poset P with $n=4$ is illustrated in Figure 2.

Given a crown $C=\{1,2, \ldots, 2 n\}$, we have that Aut (C) is isomorphic to the dihedral group D_{n}, consisting of the orthogonal transformations which preserve a regular n-sided polygon centered at the origin of the euclidian plane. Considering the usual inclusion $\iota: D_{n} \rightarrow \mathbf{S}_{n}$, the action of D_{n} on C is defined

Figure 2: Crown poset $P=\{1,2,3,4,5,6,7,8\}$.
by

$$
g(k)=\left\{\begin{array}{cc}
\iota \circ g(k) & \text { for } k=1,2, \ldots, n \\
\iota \circ g(k-n) & \text { for } k=n+1, \ldots, 2 n
\end{array}\right.
$$

We note that $\Gamma^{(1)}(C)=\{1,2, \ldots, n\}, \Gamma^{(3)}(C)=\{n+1, \ldots, 2 n\}$, and $\Gamma^{(k)}(C)=\varnothing$, for $k \neq 1,3$. So, it follows from Corollary 1.2 that

$$
\left|G L_{C}\left(\mathbb{F}_{q}^{2 n}\right)\right|=(q-1)^{2 n} \cdot q^{2 n} \cdot 2 n
$$

Theorem 1.2 assures there is a pair of ordered bases β and β^{\prime} of \mathbb{F}_{q}^{n} relative to which every linear isometry $T \in G L_{P}\left(\mathbb{F}_{q}^{n}\right)$ is represented by the $[T]_{\beta, \beta^{\prime}} n \times n$ upper triangular matrix

$$
\left(\begin{array}{cccccccccc}
a_{1,1} & 0 & 0 & \cdots & 0 & a_{1, n+1} & 0 & \cdots & 0 & a_{1,2 n} \\
0 & a_{2,2} & 0 & \cdots & 0 & a_{2, n+1} & a_{2, n+2} & \cdots & 0 & 0 \\
0 & 0 & a_{3,3} & \cdots & 0 & 0 & a_{3, n+2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_{n, n} & 0 & 0 & \cdots & a_{n, 2 n-1} & a_{n, 2 n} \\
0 & 0 & 0 & \cdots & 0 & a_{n+1, n+1} & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & a_{n+2, n+2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & a_{2 n-1,2 n-1} & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & a_{2 n, 2 n}
\end{array}\right) .
$$

In the particular case when $W=\{1,2,3,4,5,6,7,8\}$ (see Figure 2), the
canonical form of a linear P-isometry is

$$
\left(\begin{array}{cccccccc}
a_{1,1} & 0 & 0 & 0 & a_{1,5} & 0 & 0 & a_{1,8} \\
0 & a_{2,2} & 0 & 0 & a_{2,5} & a_{2,6} & 0 & 0 \\
0 & 0 & a_{3,3} & 0 & 0 & a_{3,6} & a_{3,7} & 0 \\
0 & 0 & 0 & a_{4,4} & 0 & 0 & a_{4,7} & a_{4,8} \\
0 & 0 & 0 & 0 & a_{5,5} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & a_{6,6} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & a_{7,7} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{8,8}
\end{array}\right) .
$$

Example 2.4 The Boolean n-cube B^{n} is the product of n chains of cardinality 2 , that is, $B^{n}=\mathbf{2} \times \mathbf{2} \times \cdots \times \mathbf{2}$ (n times) where $\mathbf{2}$ is a chain of cardinality 2. It is well known ([2]) that $\operatorname{Aut}\left(B^{n}\right) \simeq S_{n}$. The Boolean cube may also be described as the Boolean order (defined by the set inclusion order) in the set $\mathcal{P}(n)$ of all subsets of $\{1,2, \ldots, n\}$. So, we find that the order of subset $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ is 2^{k}, and there are exactly $\binom{n}{k}$ subsets of cardinality k, that is,

$$
\left|\Gamma^{(m)}(P)\right|=\left\{\begin{array}{cc}
\binom{n}{k} & \text { if } m=2^{k} \\
0 & \text { otherwise }
\end{array} .\right.
$$

It follows, from Corollary 1.2 that

$$
\left|G L_{B^{n}}\left(\mathbb{F}_{q}^{n}\right)\right|=(q-1)^{2^{n}} \cdot\left(\prod_{i=0}^{n} q^{\left(2^{i}-1\right)}\binom{n}{i}\right) n!
$$

From Theorem 1.2, we know we can find ordered bases β and $\beta^{\prime \prime}$ of $\mathbb{F}_{q}^{2^{n}}$ such the matrix $[T]_{\beta, \beta^{\prime}}$ is like

$$
\left(\begin{array}{cccccc}
D_{1} & A_{2} & A_{3} & A_{4} & \cdots & A_{n} \\
0 & D_{2} & C_{2,3} & C_{2,4} & \cdots & B_{2} \\
0 & 0 & D_{3} & C_{3,4} & \cdots & B_{3} \\
0 & 0 & 0 & D_{4} & \cdots & B_{4} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & D_{n}
\end{array}\right)
$$

where D_{i} is an $\binom{n}{i} \times\binom{ n}{i}$ diagonal matrix with non zero determinant, $A_{i}\left(B_{i}\right)$ is an $\left.1 \times\binom{ n}{i}\binom{n}{i} \times 1\right)$ matrix, and $C_{i, j}$ is an $\binom{n}{i} \times\binom{ n}{j}$ matrix, having (at least) $\binom{n}{j}-\binom{i}{j}$ zero entries in each column and (at least) $\binom{n}{j}-\binom{n-i}{j-i}$ zero entries in each row.

The computations done in all the examples of this work is summarize in the tables bellow. We recall we are denoting by T, D, A, W, C and B total, disjoint union of chains, antichain, weak, crowns and Boolean orders. We recall that ν_{j} is the number of the components in D with cardinality equal to j (see Exemple 2.1).

Table 1: Aut (P) and \mid Aut $(P) \mid$.

P	Aut (P)	\mid Aut $(P) \mid$
T	$\{i d\}$	1
D	$\mathbf{S}_{\nu_{1}} \times \mathbf{S}_{\nu_{2}} \times \ldots \times \mathbf{S}_{\nu_{n}}$	$\nu_{1}!\cdot \nu_{2}!\cdot \ldots \cdot \nu_{t}!$
A	\mathbf{S}_{n}	$n!$
W	$\mathbf{S}_{n_{1}} \times \mathbf{S}_{n_{2}} \times \ldots \times \mathbf{S}_{n_{t}}$	$n_{1}!\cdot n_{2}!\cdot \ldots \cdot n_{t}!$
C	D_{n}	$2 n$
B	S_{n}	$n!$

Table 2: $\Gamma^{(m)}(P) \neq \varnothing$ and $\left|\Gamma^{(m)}(P)\right|$.

P	$\Gamma^{(m)}(P) \neq \varnothing$	$\Gamma^{(m)}(P) \mid$
T	$\Gamma^{(m)}(T)=\{1,2, \ldots, m\}$	m
D	$\Gamma^{(m)}(D)=\left\{i_{m}, i_{\Sigma \mu_{1}+m}, \ldots, i_{\Sigma \mu_{s-1}+m}\right\}$	$\Gamma^{(m)}(D) \mid \leq s$
A	$\Gamma^{(1)}(A)=A$	n
W	$\Gamma^{\left(\Sigma n_{s-1}+1\right)}(W)=n_{s} \mathbf{1}$	n_{s}
C	$\begin{gathered} \Gamma^{(1)}(C)=\{1,2, \ldots, n\} \\ \Gamma^{(3)}(C)=\{n+1, n+2, \ldots, 2 n\} \end{gathered}$	n
B	Subsets of cardinality m if $m=2^{k}$ $\emptyset \quad$ otherwise	$\begin{array}{cc} \binom{n}{k} & \text { if } m=2^{k} \\ 0 & \text { otherwise } \end{array}$

Table 3: $\left|G L_{P}\left(\mathbb{F}_{q}^{n}\right)\right|$.

P	$\left\|G L_{P}\left(\mathbb{F}_{q}^{n}\right)\right\|$
T	$(q-1)^{n} \cdot\left(\prod_{i=2}^{n} q^{i-1}\right)$
D	$(q-1)^{n} \cdot\left(\prod_{j=1}^{s} \nu_{j}!\right) \cdot\left(\prod_{k=1}^{s} q^{\frac{\mu_{k}\left(\mu_{k}-1\right)}{2}}\right)$
A	$(q-1)^{n} \cdot n!$
W	$(q-1)^{n} \cdot\left(\prod_{i=2}^{t} q^{n_{i}\left(n_{i-1}+1\right)}\right) \cdot\left(\prod_{j=1}^{t} n_{j}!\right)$
C	$(q-1)^{n} \cdot q^{n} \cdot n$ if n is even
B	$(q-1)^{2^{n}} \cdot\left(\prod_{i=0}^{n} q^{\left(2^{i}-1\right)}\binom{n}{i}\right) n!$

In the table bellow we explicity compute $\left|G L_{P}\left(\mathbb{F}_{q}^{n}\right)\right|$ for T, D, A, W, C and B with $q=2$ and $n=2,3, \ldots, 10$:

Table 4: Numbers of linear isometries of $\left|G L_{P}\left(\mathbb{F}_{2}^{n}\right)\right|$.

n	$\left\|G L_{T}\left(\mathbb{F}_{2}^{n}\right)\right\|$	$\left\|G L_{A}\left(\mathbb{F}_{2}^{n}\right)\right\|$	$\left\|G L_{C}\left(\mathbb{F}_{2}^{n}\right)\right\|$	$\left\|G L_{B}\left(\mathbb{F}_{2}^{2^{n}}\right)\right\|$
2	2	2	8	64
3	8	6	$*$	3145728
4	64	24	64	$\sim 8.8544 \times 10^{20}$
5	1024	120	$*$	$\sim 3.9492 \times 10^{65}$
6	32768	720	384	$\sim 1.1022 \times 10^{203}$
7	2097152	5040	$*$	$\sim 3.3357 \times 10^{623}$
8	268435456	40320	2048	$\sim 3.9778 \times 10^{1902}$
9	$\sim 6.8719 \times 10^{10}$	362880	$*$	$\sim 4.0347 \times 10^{5776}$
10	$\sim 3.5184 \times 10^{13}$	3628800	10240	$\sim 6.6875 \times 10^{17473}$

References

[1] J. Ahn, H. K. Kim, J. S. Kim and M. Kim, Classification of perfect linear codes with crown poset structure, Discrete Mathematics 268 (2003) 21-30.
[2] R. Belding, Structures Characterizing Partially Odered Sets and Tehir Automorphism Groups, Discrete Mathematics 27 (1979) 117-126.
[3] R. Brualdi, J. S. Graves and M. Lawrence, Codes with a poset metric, Discrete Mathematics 147 (1995) 57-72.
[4] S. H. Cho and D. S. Kim, Automorphism group of the crown-weight space, submitted
[5] Y. Jang and J. Park, On a MacWilliams Type Identity and a Perfecteness for a Binary Linear ($n, n-1, j$)-poset code, Discrete Mathematics 265 (2003) 85-104.
[6] D. S. Kim, Association schemes and MacWilliams dualities for generalized Rosenbloom-Tsfasman poset, submittied.
[7] D. S. Kim and J. G. Lee, A MacWilliams-Type Identity for Linear Codes on Weak Order, Discrete Mathematics 262 (2003) 181-194.
[8] Jong Yoon Hyun and Hyun Kwang Kim, The poset strutures admitting the extended binary Hamming code to be a perfect code, Discrete Mathematics 288 (2004) 37-47.
[9] Yongnam Lee, Projective systems and perfect codes with a poset metric, Finite Fields and Their Applications 10 (2004) 105-112.
[10] K. Lee, Automorphism group of the Rosenbloom-Tsfasman space, Eur. J. Combin. 24 (2003) 607-612.
[11] H. Niederreiter, A combinatorial problem for vector spaces over finite fields, Discrete Mathematics 96 (1991) 221-228.
[12] M. Yu Rosenbloom and M. A. Tsfasman, Codes for the m-metric, Probl. Inf. Transm. 33 (1997) 45-52.
[13] R. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth and Brooks/Cole, Monterey, CA, 1986.
[14] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977.

[^0]: *Centro de Ciências Exatas, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 - Maringá - PR, Brazil. Email: lpanek@uem.br
 ${ }^{\dagger}$ IMECC - UNICAMP, Universidade Estadual de Campinas, Cx. Postal 6065, 13081-970

 - Campinas - SP, Brazil. Email: mfirer@ime.unicamp.br
 \ddagger Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, South Korea. Email: hkkim@postech.ac.kr
 ${ }^{\text {§ Department of Mathematics, Pohang University of Science and Technology, Pohang }}$ 790-784, South Korea. Email: hyun33@postech.ac.kr

